JPH1157753A - Removing method of toc component and device therefor - Google Patents

Removing method of toc component and device therefor

Info

Publication number
JPH1157753A
JPH1157753A JP23649397A JP23649397A JPH1157753A JP H1157753 A JPH1157753 A JP H1157753A JP 23649397 A JP23649397 A JP 23649397A JP 23649397 A JP23649397 A JP 23649397A JP H1157753 A JPH1157753 A JP H1157753A
Authority
JP
Japan
Prior art keywords
ozone
toc
toc component
hydrogen peroxide
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23649397A
Other languages
Japanese (ja)
Other versions
JP3506171B2 (en
Inventor
Satoshi Yo
敏 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP23649397A priority Critical patent/JP3506171B2/en
Publication of JPH1157753A publication Critical patent/JPH1157753A/en
Application granted granted Critical
Publication of JP3506171B2 publication Critical patent/JP3506171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rational removing method of a TOC component and a compact production device as to the production of water without substantially containing the TOC component. SOLUTION: In this device, a major part of a TOC component is oxidatively decomposed by an ozone/hydrogen peroxide method while keeping the pH of TOC component-containing water at an around neutral, the obtained treated water is further treated by an ozone/alkali treating method and/or an ozone/UV ray treating method rapid in a reaction rate to ionize a residual TOC component and to remove the ion in the obtained treated water. A feed rate of the ozone and the hydrogen peroxide to the treating system is controlled preferably by feeding back and monitoring the TOC value of the treated water from the system based on the TOC value. A waste ozone from the ozone/hydrogen peroxide treating system is preferably used as at least a part of the ozone to be used in the ozone/alkali treating system and the ozone/UV ray treating system and an ozone utilization rate is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、TOC成分の除去
方法に関し、特に、TOC成分を実質的に含まない水、
例えば、電子工業の洗浄工程に使われる純水、超純水の
製造や回収のためのTOC成分の除去方法及び装置に関
する。
[0001] The present invention relates to a method for removing a TOC component, and more particularly to water containing substantially no TOC component.
For example, the present invention relates to a method and an apparatus for removing a TOC component for producing and recovering pure water and ultrapure water used in a cleaning process in the electronics industry.

【0002】[0002]

【従来の技術】オゾン、過酸化水素、紫外線及び各種酸
化触媒などを適当に組み合わせることにより、個々のこ
れらの酸化手段単独よりも酸化力が強いヒドロキシルラ
ジカルが発生する。これらの酸化手段は酸素元素と水素
元素以外のものを発生しないので、二次汚染の恐れが低
く、後段の処理における塩負荷も低くなる。このような
特徴から、上記の各種酸化手段の適当な組み合わせやオ
ゾンとアルカリとの組み合わせ(アルカリは酸化剤では
無いが、この組み合わせによりヒドロキシルラジカルが
発生する)によりヒドロキシルラジカルを発生させ、こ
れによりTOC成分含有水(以下、時に「原水」と言
う)中のTOC成分を酸化分解して、純水、超純水等の
製造並びに使用後の純水、超純水の回収のためにTOC
成分除去を行うことが広く行われている。
2. Description of the Related Art Properly combining ozone, hydrogen peroxide, ultraviolet light, various oxidation catalysts, and the like generates hydroxyl radicals having stronger oxidizing power than each of these individual oxidation means alone. Since these oxidizing means do not generate anything other than the oxygen element and the hydrogen element, the risk of secondary contamination is low, and the salt load in the subsequent processing is also low. Due to such characteristics, a hydroxyl radical is generated by an appropriate combination of the above-described various oxidation means or a combination of ozone and an alkali (alkaline is not an oxidizing agent, but a hydroxyl radical is generated by this combination). The TOC component in component-containing water (hereinafter sometimes referred to as “raw water”) is oxidized and decomposed to produce TOC, ultrapure water, etc. and to recover pure water and ultrapure water after use.
It is widely practiced to remove components.

【0003】このように、上記の各種酸化手段の種々の
組み合わせやオゾンとアルカリとの組み合わせにより、
共通してヒドロキシルラジカルが発生するが、これらの
組み合わせは、それぞれ互いに異なった特徴を有する。
例えば、過酸化水素と紫外線(UV)との組み合わせは
古典的な使い方であるが、反応速度が遅いため、数時間
以上の反応時間を要するのが通常である。オゾンと紫外
線(UV)との組み合わせは、オゾンによるUV吸収率
が非常に高いため、反応速度はかなり速くなるが、紫外
線照射装置のためにイニシャルコストとランニングコス
ト(電力料と紫外線ランプの交換費用を含む)の両方が
増加することになる。オゾンとアルカリとの組み合わせ
は、反応速度が速く、ランニングコストも低いが、アル
カリ側で反応するため高濃度のTOC成分が存在する場
合に、炭酸イオン(CO3 2- )や重炭酸イオン(HCO
3 - )等のラジカルスカベンジャーによる反応阻害を受
ける(アルカリ側では、TOC成分の分解生成物の一つ
である二酸化炭素が炭酸イオンや重炭酸イオンとして存
在し、高濃度のTOC成分が存在する場合には、二酸化
炭素の生成量も多くなるため)。一方、オゾンと過酸化
水素との組み合わせは、反応速度は少し落ちるが、ラジ
カルスカベンジャーからの影響が少なく、経済的にも有
利であるため、比較的広い使用選択幅を持つものにな
る。なお、重炭酸イオンよりも炭酸イオンの方がラジカ
ルスカベンジャーとしての作用が大きい。
[0003] As described above, by various combinations of the above-mentioned various oxidizing means and combinations of ozone and alkali,
Although hydroxyl radicals are commonly generated, each of these combinations has different characteristics.
For example, the combination of hydrogen peroxide and ultraviolet (UV) is a classic use, but usually requires a reaction time of several hours or more due to the slow reaction rate. The reaction rate of the combination of ozone and ultraviolet light (UV) is considerably high because the UV absorption by ozone is very high, but the initial cost and running cost (power cost and replacement cost of ultraviolet lamp) due to the ultraviolet irradiation device Both) will increase. The combination of ozone and alkali has a high reaction rate and low running cost. However, when a high concentration of TOC component is present due to the reaction on the alkali side, carbonate ion (CO 3 2− ) or bicarbonate ion (HCO 3
3 -) The radical scavengers according to undergo reaction inhibition (the alkaline side, such as, if the carbon dioxide is one of the degradation products of TOC components is present as carbonate ion and bicarbonate ion, there is a high concentration TOC components Increases the amount of carbon dioxide generated). On the other hand, the combination of ozone and hydrogen peroxide slightly reduces the reaction rate, but has a relatively wide range of use because it is less affected by radical scavengers and is economically advantageous. Note that carbonate ions have a greater effect as radical scavengers than bicarbonate ions.

【0004】また、上記のいずれのヒドロキシルラジカ
ル発生機構においても、中間生成物として有機酸を生成
するため、かかるヒドロキシルラジカル発生機構で更に
実質的に完全に二酸化炭素と水にまで酸化分解してTO
C成分を実質的に完全に除去するのでは無く、経済的な
方法として、生成した有機酸の中で二酸化炭素と水にま
で分解されない分を残し、この有機酸残部を後段に設け
たイオン除去機構〔例えば、イオン交換装置や逆浸透膜
(RO)装置等のイオン除去装置〕を用いて除去するこ
とがある。
Further, in any of the above-mentioned hydroxyl radical generating mechanisms, since an organic acid is generated as an intermediate product, the hydroxyl radical generating mechanism further substantially completely oxidizes and decomposes to carbon dioxide and water to obtain TO TO.
Rather than removing the C component substantially completely, as an economical method, a portion of the generated organic acid that is not decomposed into carbon dioxide and water is left, and the remaining portion of the organic acid is removed by ion removal provided in the subsequent stage. It may be removed using a mechanism (for example, an ion exchange device or an ion removal device such as a reverse osmosis membrane (RO) device).

【0005】[0005]

【発明が解決しようとする課題】上述のように、オゾン
/過酸化水素法は、ラジカルスカベンジャーからの影響
が少なく、経済性も良いため、TOC成分除去に広く適
用されてきたが、反応速度が遅いため、TOC負荷が高
い場合には大きなリアクター(ヒドロキシルラジカル発
生装置)を要する。また、オゾン/過酸化水素法では、
過酸化水素含有水系へのオゾン吸収効率が充分で無いた
め、オゾン利用率が比較的悪く、そのため後段の排オゾ
ン処理工程(例えば、活性炭処理工程や紫外線照射工
程)にも負担を掛けてしまう。
As described above, the ozone / hydrogen peroxide method has been widely applied to the removal of TOC components because it is less affected by radical scavengers and has good economic efficiency. Due to the slowness, a large reactor (hydroxyl radical generator) is required when the TOC load is high. In the ozone / hydrogen peroxide method,
Since the efficiency of absorbing ozone into the hydrogen peroxide-containing water system is not sufficient, the ozone utilization rate is relatively poor, and this also imposes a burden on the subsequent exhaust ozone treatment step (eg, activated carbon treatment step or ultraviolet irradiation step).

【0006】本発明は、従来技術の上述のような欠点を
解消せんとするもので、オゾン/過酸化水素法の上述の
ような欠点を解消し、TOC成分含有水中のTOC成分
をオゾンと過酸化水素により分解して除去するに当た
り、TOC負荷が高くてもコンパクトなリアクター(ヒ
ドロキシルラジカル発生装置)で対処することを可能と
するTOC成分の除去方法及び装置を提供せんとするも
ので、望ましくはオゾン利用率をも高めようとするもの
である。
The present invention solves the above-mentioned drawbacks of the prior art, and solves the above-mentioned drawbacks of the ozone / hydrogen peroxide method so that the TOC component in the TOC component-containing water is converted to ozone. It is intended to provide a method and an apparatus for removing a TOC component that can be dealt with by a compact reactor (hydroxyl radical generator) even when the TOC load is high, when decomposing and removing with hydrogen oxide. The aim is to increase the ozone utilization rate.

【0007】[0007]

【課題を解決するための手段】本発明は、上記のような
課題を解決するために行った下記のような実験の結果に
基づいて完成されたものである。即ち、本発明は、TO
C成分含有水のpH値を中性付近に保ちながら、前記T
OC成分含有水に過酸化水素とオゾンを供給してTOC
成分の大部分を分解する第一工程、および、第一工程で
得られる処理水に対して更に(1)アルカリ性条件下で
のオゾン処理及び/又は(2)紫外線照射下でのオゾン
処理を行い残りのTOC成分の実質的に全てを少なくと
もイオン化する第二工程を包含することを特徴とするT
OC成分の除去方法、並びに、TOC成分含有水のpH
値を中性付近に保ちながら、前記TOC成分含有水に過
酸化水素とオゾンを供給してTOC成分の大部分を分解
するための第一処理装置、および、第一処理装置から得
られる処理水に対して更に(1)アルカリ性条件下での
オゾン処理及び/又は(2)紫外線照射下でのオゾン処
理を行い残りのTOC成分の実質的に全てを少なくとも
イオン化するための第二処理装置を包含することを特徴
とするTOC成分の除去装置を提供するものである。な
お、(1)アルカリ性条件下でのオゾン処理と(2)紫
外線照射下でのオゾン処理を併用する場合は、2段に行
えばよく、この場合の装置は2段に設ければよい。ま
た、第一工程(第一処理装置)での「中性付近」という
のは、通常6.0〜8.0の範囲のpH値を言い、好ま
しくは6.5〜7.8の範囲のpH値である。
The present invention has been completed based on the results of the following experiments conducted to solve the above-mentioned problems. That is, the present invention relates to TO
While maintaining the pH value of the water containing the C component around neutral, the T
TOC by supplying hydrogen peroxide and ozone to water containing OC component
The first step in which most of the components are decomposed, and the treated water obtained in the first step are further subjected to (1) ozone treatment under alkaline conditions and / or (2) ozone treatment under ultraviolet irradiation. T comprising a second step of ionizing at least substantially all of the remaining TOC component.
Method for removing OC component, and pH of water containing TOC component
A first treatment device for supplying hydrogen peroxide and ozone to the TOC component-containing water to decompose most of the TOC component while maintaining the value near neutral, and treated water obtained from the first treatment device In addition, a second treatment apparatus for performing (1) ozone treatment under alkaline conditions and / or (2) ozone treatment under ultraviolet irradiation to ionize at least substantially all of the remaining TOC components is included. A TOC component removing apparatus is provided. When (1) ozone treatment under alkaline conditions and (2) ozone treatment under ultraviolet irradiation are used in combination, the treatment may be performed in two stages, and in this case, the apparatus may be provided in two stages. Further, “near neutral” in the first step (first processing apparatus) generally means a pH value in a range of 6.0 to 8.0, and preferably a pH value in a range of 6.5 to 7.8. pH value.

【0008】本発明により得られる処理水を、例えば、
後段の超純水製造工程に送る場合は、本発明の方法は第
二工程で得られる処理水からイオンの除去を行う第三工
程を更に包含するのが好ましく、本発明の装置は第二処
理装置から得られる処理水からイオンの除去を行うため
のイオン除去装置を更に包含することが好ましい。
[0008] The treated water obtained by the present invention is, for example,
When sent to the subsequent ultrapure water production step, the method of the present invention preferably further includes a third step of removing ions from the treated water obtained in the second step. It is preferable to further include an ion removing device for removing ions from the treated water obtained from the device.

【0009】本発明者の行った実験の結果によると、オ
ゾン/過酸化水素処理系において、有機物の酸化分解は
TOC濃度(TOC値)に関して一次反応特性を示すこ
とが分かった。詰まり、オゾン/過酸化水素法は、特に
低TOC濃度領域において反応速度が低くなる。従っ
て、TOC成分除去の大部分を低コストのオゾン/過酸
化水素法により行い、残りの部分を反応速度が速い
(1)アルカリ性条件下でのオゾン処理及び/又は
(2)紫外線照射下でのオゾン処理の方法により行うこ
とで、よりコンパクトな装置で合理的な処理コストで効
果的なTOC成分除去を達成することができる。即ち、
上述の本発明のTOC成分の除去方法(装置)により、
優れたTOC成分除去効果を得ることができる。
According to the results of experiments conducted by the inventor, it has been found that in an ozone / hydrogen peroxide treatment system, oxidative decomposition of organic substances shows a primary reaction characteristic with respect to the TOC concentration (TOC value). Clogging, the reaction rate of the ozone / hydrogen peroxide method is low, especially in the low TOC concentration region. Therefore, most of the TOC component removal is carried out by the low-cost ozone / hydrogen peroxide method, and the remaining portion has a high reaction rate (1) ozone treatment under alkaline conditions and / or (2) ultraviolet irradiation. By performing the ozone treatment, it is possible to achieve effective TOC component removal with a more compact apparatus at a reasonable treatment cost. That is,
According to the above-described TOC component removal method (apparatus) of the present invention,
An excellent TOC component removing effect can be obtained.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を説明するが、本発明はこれらに限定されるものでは
無い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0011】実験の結果によると、オゾン/過酸化水素
法ではその処理水のTOC値が2.5mg/L(リット
ル)以下になると反応速度が著しく低くなることが分か
った。従って、オゾン/過酸化水素処理系からの処理水
のTOC値の目標値を、例えば、1.0〜3.0mg/
L程度、好ましくは1.5〜2.5mg/L程度と設定
すればよい。そのような範囲のTOC値となるようにオ
ゾン発生量を制御するのが好ましく、また、過酸化水素
添加量もオゾン発生量に連動させて制御することが好ま
しい。この場合、過酸化水素/オゾン重量比を0.2/
1〜0.4/1にするのが好ましい。
According to the results of the experiment, it has been found that the reaction rate in the ozone / hydrogen peroxide method becomes extremely low when the TOC value of the treated water becomes 2.5 mg / L (liter) or less. Therefore, the target value of the TOC value of the treated water from the ozone / hydrogen peroxide treatment system is, for example, 1.0 to 3.0 mg /
L, preferably about 1.5 to 2.5 mg / L. It is preferable to control the amount of generated ozone so that the TOC value falls within such a range, and it is preferable to control the amount of added hydrogen peroxide in conjunction with the amount of generated ozone. In this case, the weight ratio of hydrogen peroxide / ozone is 0.2 /
Preferably it is 1 to 0.4 / 1.

【0012】TOC成分を酸化分解する第一工程のオゾ
ン/過酸化水素処理系からの処理水を効率良く処理でき
るTOC成分イオン化の第二工程の処理方法としては、
(1)アルカリ性条件下でのオゾン処理による方法と
(2)紫外線(UV)照射下でのオゾン処理による方法
を本発明で用いることができる。この第二工程で用いる
オゾンの少なくとも一部として第一工程のオゾン/過酸
化水素処理系からの排オゾンガスを利用するのが、オゾ
ンの利用率を高めることができるので好ましく、一般的
なTOC源(TOC成分としての有機物質の種類)、例
えば、アルコール類、有機酸類等を主なTOC源とする
場合、排オゾンガスを支障無く用いることができる。
In the second step of the TOC component ionization, which can efficiently treat the treated water from the ozone / hydrogen peroxide treatment system in the first step of oxidatively decomposing the TOC component,
The method of (1) ozone treatment under alkaline conditions and the method of (2) ozone treatment under ultraviolet (UV) irradiation can be used in the present invention. It is preferable to use the ozone gas discharged from the ozone / hydrogen peroxide treatment system in the first step as at least a part of the ozone used in the second step, since the utilization rate of ozone can be increased, and a general TOC source is used. (Type of organic substance as TOC component) When, for example, alcohols, organic acids, and the like are used as main TOC sources, ozone exhaust gas can be used without any trouble.

【0013】アミン類やアンモニア及び/又はその他の
還元態窒素を含む化合物等がTOC源として原水に混入
してくる恐れがある場合は、(1)オゾン/アルカリ処
理法よりも(2)オゾン/UV処理法の方が適切であ
る。これは、アルカリ側では、これらの化合物はオゾン
を消費するからで、例えば、アンモニアはアルカリ性条
件下でオゾンと反応して硝酸となる。
When there is a possibility that amines, ammonia and / or other compounds containing reduced nitrogen may be mixed into the raw water as a TOC source, (2) the ozone / alkaline treatment method is more preferable than the ozone / alkali treatment method. The UV treatment method is more appropriate. This is because on the alkaline side, these compounds consume ozone, for example, ammonia reacts with ozone under alkaline conditions to form nitric acid.

【0014】また、(1)オゾン/アルカリ処理法を第
二工程に適用する場合、第一工程のオゾン/過酸化水素
処理系からの処理水を一旦酸性条件下で曝気し、炭酸イ
オン(CO3 2- )及び重炭酸イオン(HCO3 - )の大
部分を炭酸ガスとして除去してからオゾン/アルカリ処
理するのが、ラジカルスカベンジャーの影響を少なくす
る観点から、好ましい。アルカリとしては、例えば、水
酸化ナトリウムや水酸化カリウム等を用いることができ
る。また、(2)オゾン/UV処理法を第二工程に適用
する場合、この工程に更に過酸化水素を供給してもよ
い。
(1) When the ozone / alkali treatment method is applied to the second step, the treated water from the ozone / hydrogen peroxide treatment system in the first step is once aerated under acidic conditions, and the carbonate ion (CO 2 3 2-) and bicarbonate ion (HCO 3 - is after removing the ozone / alkali treatment most of) the carbon dioxide, from the viewpoint of reducing the influence of a radical scavenger, preferably. As the alkali, for example, sodium hydroxide or potassium hydroxide can be used. Further, when (2) the ozone / UV treatment method is applied to the second step, hydrogen peroxide may be further supplied to this step.

【0015】第一工程(第一処理装置)での原水の処理
により得られ、第二工程(第二処理装置)に入る処理水
(以下、時に「第一処理水」と言う)のTOC値は、上
述のようにほぼ一定した値なので、第二工程(第二処理
装置)からの処理水(以下、時に「第二処理水」と言
う)のTOC値に基づいて、第二工程(第二処理装置)
におけるオゾン供給量とアルカリ添加量及び/又はオゾ
ン供給量と紫外線ランプの出力量を制御することは特に
必要とされないが、勿論、このような制御を行ってもよ
く、第二処理水のTOC値の安定化のためにはこのよう
な制御を行うのが好ましい。
TOC value of treated water (hereinafter sometimes referred to as “first treated water”) obtained by treating raw water in the first step (first treating apparatus) and entering the second step (second treating apparatus) Is a substantially constant value as described above. Therefore, based on the TOC value of the treated water (hereinafter sometimes referred to as “second treated water”) from the second step (second treating apparatus), Two processing equipment)
Although it is not particularly necessary to control the ozone supply amount and the alkali addition amount and / or the ozone supply amount and the output amount of the ultraviolet lamp in the above, it is needless to say that such control may be performed, and the TOC value of the second treated water may be controlled. It is preferable to perform such control in order to stabilize.

【0016】このような制御を(1)オゾン/アルカリ
処理系に行う場合、アルカリ添加量の制御は、オゾン供
給量と連動させるよりも、第二処理水のpH値によって
制御するのが好ましく、第二処理水のpHがアルカリ
側、好ましくは8〜11、更に好ましくは8.5〜1
0.5の範囲内の値になるようにすればよい。なお、一
般的に、pH値を高くすると、反応速度は大きくなる
が、アルカリの添加量が多いのでそれだけ後段のイオン
除去装置(イオン交換樹脂処理装置や逆浸透膜装置等)
における塩負荷が大きくなり、また、二酸化炭素が炭酸
イオンや重炭酸イオン、特に炭酸イオンとして存在する
割合が増えるのでラジカルスカベンジャーとしての作用
も増大する。
When such control is performed in the (1) ozone / alkali treatment system, the control of the alkali addition amount is preferably controlled by the pH value of the second treated water, rather than linked with the ozone supply amount. The pH of the second treated water is on the alkaline side, preferably 8 to 11, more preferably 8.5 to 1.
What is necessary is just to make it the value within the range of 0.5. In general, the higher the pH value, the higher the reaction rate. However, since the amount of alkali added is large, the subsequent stage of the ion removing device (such as an ion exchange resin treatment device or a reverse osmosis membrane device).
, The carbon dioxide ion and the bicarbonate ion, in particular, the ratio of existing as a carbonate ion increases, so that the action as a radical scavenger also increases.

【0017】このような制御を(1)オゾン/紫外線処
理系に行う場合、オゾン供給量と紫外線(UV)ランプ
の出力量は連動させて制御するのが好ましく、UVラン
プ出力量はオゾン供給量に比例するように、詰まり、U
Vランプ出力量/オゾン供給量の比を0.2〜5kw/
kg−O3 になるように制御すればよい。使用する紫外
線ランプとしては、主波長が254nm、あるいは主波
長が254nmと185nmである低圧水銀ランプ、及
び主波長が365nmの高圧水銀ランプのいずれでもよ
いが、好ましくは主波長が254nmの低圧水銀ランプ
を用いる。
When such control is performed in the (1) ozone / ultraviolet treatment system, it is preferable to control the supply amount of ozone and the output amount of the ultraviolet (UV) lamp in conjunction with each other. Clogging, proportional to
V lamp output amount / ozone supply amount ratio of 0.2 to 5 kw /
It may be controlled to be in kg-O 3. The ultraviolet lamp to be used may be a low-pressure mercury lamp having a main wavelength of 254 nm, or a main wavelength of 254 nm or 185 nm, or a high-pressure mercury lamp having a main wavelength of 365 nm, preferably a low-pressure mercury lamp having a main wavelength of 254 nm. Is used.

【0018】オゾンの発生方法としては、無声放電法、
水電解法等の各種の方法を用いることができる。
As a method of generating ozone, a silent discharge method,
Various methods such as a water electrolysis method can be used.

【0019】第二工程(第二処理装置)からの第二処理
水は、残存する酸化剤が後段のイオン除去装置において
用いるイオン交換樹脂や逆浸透膜等の材料の劣化を引き
起こす悪影響を忌避するため、残存する酸化剤の除去を
イオン除去に先立って行うのが通常である。残存酸化剤
の除去方法としては、活性炭処理、還元剤(例えば、亜
硫酸ナトリウム)注入、紫外線照射、還元触媒(例え
ば、パラジウム系触媒)接触等の方法を挙げることがで
きるが、活性炭処理が低コスト且つ装置的にも簡便で好
ましい。
The second treated water from the second step (second treating device) avoids the adverse effect that the remaining oxidizing agent causes to deteriorate the materials such as the ion exchange resin and the reverse osmosis membrane used in the subsequent ion removing device. Therefore, it is usual to remove the remaining oxidizing agent before removing the ions. Examples of the method for removing the residual oxidant include activated carbon treatment, injection of a reducing agent (for example, sodium sulfite), ultraviolet irradiation, contact with a reduction catalyst (for example, a palladium-based catalyst), and the like. In addition, the apparatus is simple and preferable.

【0020】上述のように、オゾン/過酸化水素法は、
高いTOC濃度領域において比較的高い反応速度が得ら
れるために、TOC値が高い段階の原水をオゾン/過酸
化水素法で処理してTOC成分の大部分を除去し、得ら
れる第一処理水を更に反応速度が非常に速い(1)オゾ
ン/アルカリ処理法及び/又は(2)オゾン/紫外線
(UV)処理法で処理することにより、よりコンパクト
で処理コスト面でもより合理的な処理システムを得るこ
とができる。
As mentioned above, the ozone / hydrogen peroxide method
In order to obtain a relatively high reaction rate in a high TOC concentration region, the raw water having a high TOC value is treated by the ozone / hydrogen peroxide method to remove most of the TOC component, and the resulting first treated water is subjected to Further, the processing speed is very high. (1) Ozone / alkali treatment and / or (2) ozone / ultraviolet (UV) treatment provide a more compact and more reasonable treatment system. be able to.

【0021】イオン除去は、各種のイオン交換法(装
置)や逆浸透膜(RO)法(装置)等のイオン除去法
(装置)を用いて行うことができる。
The ion can be removed using various ion exchange methods (apparatuses) or ion elimination methods (apparatuses) such as a reverse osmosis membrane (RO) method (apparatus).

【0022】一般的に、上記のような組み合わせで構成
される処理装置(第一処理装置+第二処理装置)の容量
は、オゾン/過酸化水素処理単独の場合の処理装置(リ
アクター)の容量の1/2〜1/4で良い。なお、第一
処理装置に比べて、第二処理装置の容量は遙に小さくて
よく、第一処理装置の容量の1/2〜1/20でよく、
通常は、1/3〜1/10で充分である。更に、第二工
程のオゾン/アルカリ処理及び/又はオゾン/紫外線
(UV)処理においてオゾンを用いるので、少なくとも
その一部としてオゾン/過酸化水素処理装置からの排オ
ゾンガスをオゾン源として再利用できるため、排オゾン
ガス処理系への負荷も著しく軽減することができる。オ
ゾン/過酸化水素処理装置のオゾン利用率は一般的には
75%〜85%であるが、第一処理装置(オゾン/過酸
化水素処理法)と後段の第二処理装置〔オゾン/アルカ
リ処理法及び/又はオゾン/紫外線(UV)処理法〕と
組み合わせることにより、オゾン利用率を一般的には9
0%以上、所望により95%以上まで高くすることがで
きる。
Generally, the capacity of the processing apparatus (first processing apparatus + second processing apparatus) configured as described above is the capacity of the processing apparatus (reactor) in the case of ozone / hydrogen peroxide processing alone. 1/2 to 1/4 of The capacity of the second processing apparatus may be much smaller than that of the first processing apparatus, and may be 1/2 to 1/20 of the capacity of the first processing apparatus.
Usually, 1/3 to 1/10 is sufficient. Furthermore, since ozone is used in the ozone / alkali treatment and / or ozone / ultraviolet (UV) treatment in the second step, the ozone gas discharged from the ozone / hydrogen peroxide treatment device can be reused as an ozone source at least as a part thereof. Also, the load on the exhaust ozone gas treatment system can be significantly reduced. The ozone utilization rate of the ozone / hydrogen peroxide treatment apparatus is generally 75% to 85%, but the first treatment apparatus (ozone / hydrogen peroxide treatment method) and the second treatment apparatus [ozone / alkali treatment Method and / or ozone / ultraviolet (UV) treatment method], so that the ozone utilization rate is generally 9%.
It can be as high as 0% or more and, if desired, up to 95% or more.

【0023】[0023]

【実施例】以下の実施例により本発明を更に具体的に説
明するが、本発明はこれらに限定されるものでは無い。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0024】図1に実施例で用いた装置を示すが、この
図は本発明の装置の一例を示すシステムフロー図でもあ
る。第一反応槽101は、原水としてのTOC成分含有
水を処理し、過酸化水素とオゾンで原水中のTOC成分
の大部分を酸化分解するリアクターで、この第一反応槽
101には原水ポンプ140により原水ライン141か
ら原水が送水される。第一反応槽101からの第一反応
槽処理水の一部はTOC計120でTOC値を計測さ
れ、このTOC値に基づきPID制御器121から制御
用信号122が送信され、オゾン発生器130の制御を
行うと共に、オゾン発生量と連動された過酸化水素ポン
プ制御用信号123となり過酸化水素ポンプ150の制
御を行う。オゾン発生器130で生じたオゾン化ガス
は、オゾン化ガスライン131を通じて第一反応槽10
1に注入される。実施例と比較例では、第一反応槽10
1におけるオゾン溶解はディフューザー(散気板)を通
じて行ったが、エジェクター(ejector )やラインミキ
サー(in-line mixer )等の他の手段を用いることもで
きる。過酸化水素ポンプ150により過酸化水素ライン
151を通って過酸化水素が第一反応槽101に供給さ
れる。第一反応槽処理水の他の大部分は、第一反応槽処
理水ライン110を通じて第二反応槽161に供給さ
れ、ここで反応速度が速い処理手段(オゾン/アルカリ
又はオゾン/UV)により処理される。この処理手段の
ためのオゾン源としては、第一反応槽排オゾンガスを用
い、第一反応槽排オゾンガスライン133を通じ、循環
水ライン163に設けられたエジェクター165で、第
二反応槽161から循環ポンプ162により送られて来
る処理水に第一反応槽からの排オゾンを溶解させて、オ
ゾンを溶解された処理水を第二反応槽161に戻して用
いる。実施例と比較例では、第二反応槽161における
オゾン溶解は上記のエジェクター165を用いたが、デ
ィフューザーやラインミキサー等の他の手段を用いるこ
ともできる。第二反応槽161からの第二反応槽処理水
は第二反応槽処理水ライン166を通じて活性炭塔11
1に送水され、ここで残存する酸化剤(過酸化水素、オ
ゾン)は分解され、活性炭処理された処理水は、イオン
交換樹脂塔112に送水され、ここでイオン交換により
有機酸等を除去され、イオン交換後の処理水としてイオ
ン交換処理水ライン113に流出して来る。なお、16
4は、第二反応槽排ガス排出管である。
FIG. 1 shows the apparatus used in the embodiment. This figure is also a system flow diagram showing an example of the apparatus of the present invention. The first reaction tank 101 is a reactor that treats TOC component-containing water as raw water and oxidizes and decomposes most of the TOC components in the raw water with hydrogen peroxide and ozone. Thus, raw water is sent from the raw water line 141. The TOC value of a part of the first reaction tank treated water from the first reaction tank 101 is measured by the TOC meter 120, and a control signal 122 is transmitted from the PID controller 121 based on the TOC value, and the ozone generator 130 Along with the control, a hydrogen peroxide pump control signal 123 linked to the ozone generation amount is used to control the hydrogen peroxide pump 150. The ozonized gas generated by the ozone generator 130 is supplied through the ozonized gas line 131 to the first reaction tank 10.
Injected into 1. In Examples and Comparative Examples, the first reaction tank 10
Although the ozone dissolution in 1 was performed through a diffuser (a diffuser plate), other means such as an ejector and an in-line mixer can be used. Hydrogen peroxide is supplied to the first reaction tank 101 through the hydrogen peroxide line 151 by the hydrogen peroxide pump 150. Most of the other water in the first reaction tank treated water is supplied to the second reaction tank 161 through the first reaction tank treated water line 110, where it is treated by a treatment means (ozone / alkali or ozone / UV) having a high reaction rate. Is done. As the ozone source for this treatment means, ozone gas discharged from the first reaction tank is used. The ejector 165 provided in the circulating water line 163 passes through the ozone gas line 133 discharged from the first reaction tank. The ozone discharged from the first reaction tank is dissolved in the treated water sent by 162, and the treated water in which ozone is dissolved is returned to the second reaction tank 161 for use. In the example and the comparative example, the above-described ejector 165 was used for dissolving ozone in the second reaction tank 161, but other means such as a diffuser and a line mixer may be used. The treated water of the second reaction tank from the second reaction tank 161 is supplied to the activated carbon tower 11 through the treated water line 166 of the second reaction tank.
1 and the remaining oxidizing agents (hydrogen peroxide and ozone) are decomposed, and the treated water subjected to the activated carbon treatment is sent to the ion exchange resin tower 112 where organic acids and the like are removed by ion exchange. And flows out to the ion-exchanged treated water line 113 as treated water after ion exchange. Note that 16
Reference numeral 4 denotes a second reaction tank exhaust gas discharge pipe.

【0025】実施例1 図1に示す装置において、100L/hrの流量で、p
H7.5、TOC値6mg/L〔TOC源:イソプロピ
ルアルコール(IPA)〕の原水を先ず50L容量の第
一反応槽101に通水して、オゾン/過酸化水素法で処
理した後、得られた処理水を5L容量の第二反応槽に供
給した。オゾンは無声放電法により発生させた。第一反
応槽101に供給したオゾン量は、原水中のTOC成分
量の約15倍(重量)とし、過酸化水素ポンプ150に
より第一反応槽101に供給した過酸化水素量は、オゾ
ン量の約0.31倍(重量)とした。第一反応槽101
におけるオゾン溶解はディフューザーを通じて行った。
また、第二反応槽161においては、循環ポンプ162
により処理水が循環され、循環水ライン163にはエジ
ェクター165が取り付けられており、第一反応槽10
1からの排オゾンガスをこのエジェクター165により
処理水中に溶解させた。アルカリとしての水酸化ナトリ
ウムを第二反応槽161に供給し、第二反応槽161内
の水のpH値が約9.5に維持されるようにその供給量
を制御した。
Example 1 In the apparatus shown in FIG. 1, a flow rate of 100 L / hr and p
H7.5, raw water having a TOC value of 6 mg / L [TOC source: isopropyl alcohol (IPA)] is first passed through a first reaction tank 101 having a capacity of 50 L and treated by an ozone / hydrogen peroxide method. The treated water was supplied to a 5 L capacity second reaction tank. Ozone was generated by a silent discharge method. The amount of ozone supplied to the first reaction tank 101 was set to about 15 times (weight) the amount of the TOC component in the raw water, and the amount of hydrogen peroxide supplied to the first reaction tank 101 by the hydrogen peroxide pump 150 was equal to the amount of ozone. It was about 0.31 times (weight). First reaction tank 101
Was dissolved through a diffuser.
In the second reaction tank 161, a circulation pump 162
The treated water is circulated, and an ejector 165 is attached to the circulating water line 163.
The discharged ozone gas from No. 1 was dissolved in the treated water by the ejector 165. Sodium hydroxide as an alkali was supplied to the second reaction tank 161, and the supply amount was controlled such that the pH value of water in the second reaction tank 161 was maintained at about 9.5.

【0026】また、第一反応槽101において酸化処理
された処理水110のTOC値をシーバス810型TO
C計120〔シーバス社(米国)製〕によりオンライン
で測定し、TOC計120からの測定信号をPID制御
器121に送り、オゾン発生量をPID制御器121に
より制御すると共に、過酸化水素/オゾン重量比=0.
31/1となるように過酸化水素ポンプ150を制御
し、この両者により第一反応槽101におけるヒドロキ
シルラジカルの発生量を自動制御した。
The TOC value of the treated water 110 oxidized in the first reaction tank 101 is calculated using the sea bath 810 type TO
The measurement is performed on-line by a C meter 120 (manufactured by Seabus Corp. (USA)), a measurement signal from the TOC meter 120 is sent to a PID controller 121, and the amount of ozone generated is controlled by the PID controller 121 and hydrogen peroxide / ozone is used. Weight ratio = 0.
The hydrogen peroxide pump 150 was controlled so as to be 31/1, and the amount of generation of hydroxyl radicals in the first reaction tank 101 was automatically controlled by both.

【0027】第二反応槽161からの処理水は活性炭塔
111で処理し、酸化剤(O3 、H2 2 )を分解後、
イオン交換樹脂塔112によりイオン状有機物(有機
酸)を除去した。第一反応槽101でのHRT(水理学
的滞留時間)を変えて行った上述のTOC成分除去処理
の結果を表1に示す。なお、「O3 /H2 2 処理」の
「イオン交換後TOC」の欄のデータは、第一反応槽1
01でO3 /H2 2 処理直後の処理水の一部をサンプ
リングし、活性炭塔111と同様の活性炭で処理し、酸
化剤(O3 、H2 2 )を分解後、イオン交換樹脂塔1
12と同様のイオン交換樹脂で処理して得られた処理水
のTOCデータである。
The treated water from the second reaction tank 161 is treated in the activated carbon tower 111 to decompose oxidants (O 3 , H 2 O 2 ).
Ionic organic substances (organic acids) were removed by the ion exchange resin tower 112. Table 1 shows the results of the above-described TOC component removal treatment performed by changing the HRT (hydraulic residence time) in the first reaction tank 101. The data in the column of “TOC after ion exchange” of “O 3 / H 2 O 2 treatment” are the values in the first reaction tank 1
01, a part of the treated water immediately after the O 3 / H 2 O 2 treatment is sampled, treated with the same activated carbon as the activated carbon tower 111, and the oxidizing agent (O 3 , H 2 O 2 ) is decomposed. Tower 1
12 is TOC data of treated water obtained by treatment with the same ion exchange resin as in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1Comparative Example 1

【0030】比較のために、オゾン/過酸化水素法のみ
によるTOC成分除去処理も第一反応槽101でのHR
T(水理学滞留時間)を変えながら行った。この比較例
では、第一反応槽101からの処理水を第二反応槽16
1を通さずに、活性炭塔111と同様の活性炭塔で処理
し、酸化剤(O3 、H2 2 )を分解後、イオン交換樹
脂塔112と同様のイオン交換樹脂塔によりイオン状有
機物(有機酸)を除去した。この結果を表2に示す。
For comparison, the HR in the first reaction vessel 101 was also reduced by the TOC component removal treatment using only the ozone / hydrogen peroxide method.
The test was performed while changing T (hydraulic residence time). In this comparative example, the treated water from the first reaction tank 101 was
1 through an activated carbon tower similar to the activated carbon tower 111 to decompose the oxidizing agents (O 3 , H 2 O 2 ), and then convert the ionic organic matter ( Organic acid) was removed. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例2 第二反応槽161における処理をオゾン/アルカリ法に
代えてオゾン/紫外線法によって行った以外は実施例1
と実質的に同じ条件下で同様にして、TOC成分除去処
理を行った。紫外線(UV)の照射量は、UVランプ出
力量として0.2kwh/m3 とした。なお、アルカリ
を用いなかったので、第二反応槽161中の水のpH値
は無制御であり、凡そ4〜5であった。このTOC成分
除去処理の結果を表3に示す。
Example 2 Example 1 was repeated except that the treatment in the second reaction tank 161 was performed by the ozone / ultraviolet method instead of the ozone / alkali method.
Similarly, the TOC component removal treatment was performed under substantially the same conditions. The irradiation amount of the ultraviolet rays (UV) was set to 0.2 kWh / m 3 as the output amount of the UV lamp. Since the alkali was not used, the pH value of the water in the second reaction tank 161 was not controlled, and was about 4 to 5. Table 3 shows the result of the TOC component removal processing.

【0033】[0033]

【表3】 [Table 3]

【0034】表1、表2及び表3から分かるように、ほ
ぼ同じ処理水水質(TOC値)を達成するために、オゾ
ン/過酸化水素法単独ではHRT約1.5時間以上を必
要としたのに対し、オゾン/過酸化水素法とオゾン/ア
ルカリ法又はオゾン/UV法との組み合わせではHRT
約0.5時間前後しか要しなかった(第二反応槽161
の容量は第一反応槽101の1/10であり、第二反応
槽161でのHRTはほぼ無視できる)。従って、本発
明の方法によれば、TOC成分除去装置をコンパクトに
することが可能であることが分かった。また、オゾン利
用率についても、オゾン/過酸化水素法単独では78〜
82%のオゾン利用率であったのに対して、オゾン/過
酸化水素法とオゾン/アルカリ法又はオゾン/UV法と
の組み合わせでは93%以上であり、排オゾンガスの処
理負担を大幅に低減できることが分かった。
As can be seen from Tables 1, 2 and 3, the ozone / hydrogen peroxide method alone required about 1.5 hours or more of HRT to achieve almost the same treated water quality (TOC value). On the other hand, in the combination of the ozone / hydrogen peroxide method and the ozone / alkali method or the ozone / UV method, the HRT
It took only about 0.5 hours (second reaction tank 161).
Is 1/10 of the capacity of the first reaction vessel 101, and the HRT in the second reaction vessel 161 is almost negligible). Therefore, according to the method of the present invention, it was found that the TOC component removing device can be made compact. Also, the ozone utilization rate was 78 to 78 in the ozone / hydrogen peroxide method alone.
Although the ozone utilization rate was 82%, the combined use of the ozone / hydrogen peroxide method and the ozone / alkali method or the ozone / UV method was 93% or more. I understood.

【0035】[0035]

【発明の効果】TOC成分含有水のオゾン/過酸化水素
処理系において、有機物の分解はTOC濃度(TOC
値)に関して一次反応特性を示すことが分かった。その
ため、オゾン/過酸化水素法は、特に低TOC濃度領域
において反応速度が低くなる。従って、TOC成分除去
の大部分を低コストで塩負荷の小さいオゾン/過酸化水
素法により行い、残りの部分を反応速度が速い処理方法
(オゾン/アルカリ処理法及び/又はオゾン/紫外線処
理法)により行う本発明のTOC成分除去方法によれ
ば、よりコンパクトな装置で合理的な処理コストで効果
的なTOC除去を達成することができる。
According to the present invention, in the ozone / hydrogen peroxide treatment system of the water containing the TOC component, the decomposition of the organic matter is carried out by the TOC concentration (TOC concentration).
Value) was found to exhibit first order reaction characteristics. Therefore, the reaction rate of the ozone / hydrogen peroxide method is low particularly in a low TOC concentration region. Therefore, most of the TOC component removal is carried out by the ozone / hydrogen peroxide method with low cost and low salt load, and the remaining part is treated with a high reaction rate (ozone / alkali treatment method and / or ozone / ultraviolet treatment method). According to the method for removing TOC components of the present invention, effective TOC removal can be achieved with a more compact apparatus at a reasonable processing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例で用いた本発明のTOC成分除
去装置の一例を示すシステムフロー図である。
FIG. 1 is a system flow diagram showing one example of a TOC component removing apparatus of the present invention used in an embodiment.

【符号の説明】[Explanation of symbols]

101 第一反応槽 110 第一反応槽処理水ライン 111 活性炭塔 112 イオン交換樹脂塔 113 イオン交換処理水ライン 120 TOC計 121 PID制御器 122 制御用信号 123 過酸化水素ポンプ制御用信号 130 オゾン発生器 131 オゾン化ガスライン 133 第一反応槽排オゾンガスライン 140 原水ポンプ 141 原水ライン 150 過酸化水素ポンプ 151 過酸化水素ライン 161 第二反応槽 162 循環ポンプ 163 循環水ライン 164 第二反応槽排ガス排出管 165 エジェクター 166 第二反応槽処理水ライン Reference Signs List 101 first reaction tank 110 first reaction tank treated water line 111 activated carbon tower 112 ion exchange resin tower 113 ion exchange treated water line 120 TOC meter 121 PID controller 122 control signal 123 hydrogen peroxide pump control signal 130 ozone generator 131 Ozonized gas line 133 First reaction tank exhaust ozone gas line 140 Raw water pump 141 Raw water line 150 Hydrogen peroxide pump 151 Hydrogen peroxide line 161 Second reaction tank 162 Circulation pump 163 Circulating water line 164 Second reaction tank exhaust gas discharge pipe 165 Ejector 166 Second reaction tank treated water line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/78 C02F 1/78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/78 C02F 1/78

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 TOC成分含有水のpH値を中性付近に
保ちながら、前記TOC成分含有水に過酸化水素とオゾ
ンを供給してTOC成分の大部分を分解する第一工程、
および、第一工程で得られる処理水に対して更に(1)
アルカリ性条件下でのオゾン処理及び/又は(2)紫外
線照射下でのオゾン処理を行い残りのTOC成分の実質
的に全てを少なくともイオン化する第二工程を包含する
ことを特徴とするTOC成分の除去方法。
1. A first step of supplying hydrogen peroxide and ozone to the TOC component-containing water to decompose most of the TOC component while maintaining the pH value of the TOC component-containing water near neutral.
And (1) the treated water obtained in the first step.
Removing the TOC component, comprising a second step of performing ozone treatment under alkaline conditions and / or (2) ozone treatment under ultraviolet irradiation to ionize at least substantially all of the remaining TOC component. Method.
【請求項2】 前記第二工程で得られる処理水からイオ
ンの除去を行う第三工程を更に包含することを特徴とす
る請求項1に記載のTOC成分の除去方法。
2. The method for removing a TOC component according to claim 1, further comprising a third step of removing ions from the treated water obtained in the second step.
【請求項3】 前記第一工程でのオゾン供給量を第一工
程で得られる処理水のTOC値により制御し、好ましく
は前記第一工程での過酸化水素供給量も前記オゾン供給
量と連動して制御することを特徴とする請求項1又は2
に記載のTOC成分の除去方法。
3. The amount of ozone supplied in the first step is controlled by the TOC value of the treated water obtained in the first step. Preferably, the amount of hydrogen peroxide supplied in the first step is also linked with the amount of ozone supplied. 3. The control according to claim 1, wherein
3. The method for removing a TOC component according to item 1.
【請求項4】 前記第二工程で使用するオゾンの少なく
とも一部が、前記第一工程において生じる排オゾンガス
であることを特徴とする請求項1から3のいずれかに記
載のTOC成分の除去方法。
4. The method for removing a TOC component according to claim 1, wherein at least a part of the ozone used in the second step is exhausted ozone gas generated in the first step. .
【請求項5】 TOC成分含有水のpH値を中性付近に
保ちながら、前記TOC成分含有水に過酸化水素とオゾ
ンを供給してTOC成分の大部分を分解するための第一
処理装置、および、第一処理装置から得られる処理水に
対して更に(1)アルカリ性条件下でのオゾン処理及び
/又は(2)紫外線照射下でのオゾン処理を行い残りの
TOC成分の実質的に全てを少なくともイオン化するた
めの第二処理装置を包含することを特徴とするTOC成
分の除去装置。
5. A first treatment device for supplying hydrogen peroxide and ozone to the TOC component-containing water to decompose most of the TOC component while maintaining the pH value of the TOC component-containing water near neutrality, Further, the treated water obtained from the first treatment apparatus is further subjected to (1) ozone treatment under alkaline conditions and / or (2) ozone treatment under ultraviolet irradiation to remove substantially all of the remaining TOC components. An apparatus for removing a TOC component, comprising at least a second processing apparatus for ionizing.
【請求項6】 前記第二処理装置から得られる処理水か
らイオンの除去を行うためのイオン除去装置を更に包含
することを特徴とする請求項5に記載のTOC成分の除
去装置。
6. The TOC component removing device according to claim 5, further comprising an ion removing device for removing ions from treated water obtained from the second treating device.
【請求項7】 前記第一処理装置でのオゾン供給量を第
一処理装置から得られる処理水のTOC値により制御
し、好ましくは前記第一処理装置での過酸化水素供給量
も前記オゾン供給量と連動して制御するためのフィード
バック制御機構を更に有することを特徴とする請求項5
又は6に記載のTOC成分の除去装置。
7. The supply amount of ozone in the first treatment device is controlled by a TOC value of treated water obtained from the first treatment device. Preferably, the supply amount of hydrogen peroxide in the first treatment device is also controlled by the ozone supply amount. 6. The apparatus according to claim 5, further comprising a feedback control mechanism for controlling the quantity in conjunction with the quantity.
Or a device for removing a TOC component according to 6.
【請求項8】 前記第二処理装置で使用するオゾンの少
なくとも一部として前記第一処理装置において生じる排
オゾンガスを前記第二処理装置に供給するための排オゾ
ンガス供給手段を更に有することを特徴とする請求項5
から7のいずれかに記載のTOC成分の除去装置。
8. An exhaust ozone gas supply means for supplying exhaust ozone gas generated in the first processing apparatus as at least part of ozone used in the second processing apparatus to the second processing apparatus. Claim 5
8. The apparatus for removing a TOC component according to any one of claims 1 to 7.
JP23649397A 1997-08-19 1997-08-19 Method and apparatus for removing TOC component Expired - Fee Related JP3506171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23649397A JP3506171B2 (en) 1997-08-19 1997-08-19 Method and apparatus for removing TOC component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23649397A JP3506171B2 (en) 1997-08-19 1997-08-19 Method and apparatus for removing TOC component

Publications (2)

Publication Number Publication Date
JPH1157753A true JPH1157753A (en) 1999-03-02
JP3506171B2 JP3506171B2 (en) 2004-03-15

Family

ID=17001557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23649397A Expired - Fee Related JP3506171B2 (en) 1997-08-19 1997-08-19 Method and apparatus for removing TOC component

Country Status (1)

Country Link
JP (1) JP3506171B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170663A (en) * 1999-12-21 2001-06-26 Kurita Water Ind Ltd Decomposition method and decomposition device for organic matter in water
JP2001219181A (en) * 2000-02-10 2001-08-14 Ebara Corp Method and apparatus for treating sewage containing endocrine disrupting substance or carcinogen
JP2001327996A (en) * 2000-03-16 2001-11-27 Sumitomo Heavy Ind Ltd Method and apparatus for treating organic matter- containing water
JP2005224771A (en) * 2004-02-16 2005-08-25 Mitsubishi Heavy Ind Ltd Wastewater treatment apparatus
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2006281061A (en) * 2005-03-31 2006-10-19 Fuji Electric Systems Co Ltd Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2008093558A (en) * 2006-10-11 2008-04-24 Nomura Micro Sci Co Ltd Water treatment method and water treatment apparatus
JP2018196844A (en) * 2017-05-23 2018-12-13 メタウォーター株式会社 Water treatment system, and water treatment method
WO2020116655A1 (en) * 2018-12-06 2020-06-11 株式会社東芝 Water treatment control device, water treatment system, and water treatment device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170663A (en) * 1999-12-21 2001-06-26 Kurita Water Ind Ltd Decomposition method and decomposition device for organic matter in water
JP2001219181A (en) * 2000-02-10 2001-08-14 Ebara Corp Method and apparatus for treating sewage containing endocrine disrupting substance or carcinogen
JP2001327996A (en) * 2000-03-16 2001-11-27 Sumitomo Heavy Ind Ltd Method and apparatus for treating organic matter- containing water
JP2005224771A (en) * 2004-02-16 2005-08-25 Mitsubishi Heavy Ind Ltd Wastewater treatment apparatus
US8562828B2 (en) 2004-02-16 2013-10-22 Mitsubishi Heavy Industries, Ltd. Wastewater treatment apparatus
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2006281061A (en) * 2005-03-31 2006-10-19 Fuji Electric Systems Co Ltd Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP4683977B2 (en) * 2005-03-31 2011-05-18 メタウォーター株式会社 Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2008093558A (en) * 2006-10-11 2008-04-24 Nomura Micro Sci Co Ltd Water treatment method and water treatment apparatus
JP2018196844A (en) * 2017-05-23 2018-12-13 メタウォーター株式会社 Water treatment system, and water treatment method
WO2020116655A1 (en) * 2018-12-06 2020-06-11 株式会社東芝 Water treatment control device, water treatment system, and water treatment device
JP2020089841A (en) * 2018-12-06 2020-06-11 株式会社東芝 Water treatment controlling device, water treatment system, and water treatment device

Also Published As

Publication number Publication date
JP3506171B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
JPH11290878A (en) Control method for removing toc component
KR20090127131A (en) Method and apparatus for removing organic matters
JP3506171B2 (en) Method and apparatus for removing TOC component
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JP3849766B2 (en) Apparatus and method for treating water containing organic matter
JP2001113291A (en) Apparatus for treating organic matter-containing water
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JPH1199394A (en) Method for removing organic matter in water
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPS62176595A (en) Method for removing organic substance in waste water
JP3560631B2 (en) Water treatment equipment
JPH10309588A (en) Water treatment, water treating device and pure water producing device
JPH10202296A (en) Ultrapure water producer
JPH0889976A (en) Method for removing organic matter in water
JP3789631B2 (en) Water treatment method and water treatment apparatus
JP2008173617A (en) Water treatment apparatus and water treating method
JP2000263072A (en) Method and apparatus for treating wastewater
JPH1128482A (en) Production of pure water
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
JP4569884B2 (en) Method and apparatus for treating organic matter in water
JPH08267077A (en) High degree treating method of waste water
JP2005161138A (en) Water treatment method and water treatment apparatus
JP4218140B2 (en) TOC removal device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031209

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees