JP2001170663A - Decomposition method and decomposition device for organic matter in water - Google Patents

Decomposition method and decomposition device for organic matter in water

Info

Publication number
JP2001170663A
JP2001170663A JP36255499A JP36255499A JP2001170663A JP 2001170663 A JP2001170663 A JP 2001170663A JP 36255499 A JP36255499 A JP 36255499A JP 36255499 A JP36255499 A JP 36255499A JP 2001170663 A JP2001170663 A JP 2001170663A
Authority
JP
Japan
Prior art keywords
water
treated
ozone
hydrogen peroxide
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36255499A
Other languages
Japanese (ja)
Other versions
JP4465696B2 (en
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP36255499A priority Critical patent/JP4465696B2/en
Publication of JP2001170663A publication Critical patent/JP2001170663A/en
Application granted granted Critical
Publication of JP4465696B2 publication Critical patent/JP4465696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decomposition method and decomposition device for organic matter in water adequately usable for recovering and recycling of the water, such as waste rinsing water, containing the organic matter used in a semiconductor manufacturing stage and a liquid crystal manufacturing stage. SOLUTION: This decomposition method for the organic matter in the water has a stage for regulating the pH of the water to be treated to 7 to 10, a stage for regulating the cemp. of the water to be treated to >=35 deg.C, a stage for adding hydrogen peroxide and ozone to the heated water to be treated, a stage for oxidation decomposing the organic matter included in the water to be treated and a stage for decomposing and removing the hydrogen peroxide and ozone remaining in the water to be treated in which the organic matter is oxidation decomposed. The decomposition device for the organic matter in the water has a means for regulating the pH of the water to be treated to 7 to 10, a means for regulating the temperature of the water to be treated to >=35 deg.C, a means for adding the hydrogen peroxide and the ozone to the heated water to be treated, a means for oxidation decomposing the organic matter included in the water to be treated and a means for decomposing and removing the hydrogen peroxide and ozone remaining in the water to be treated in which the organic matter is oxidation decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中の有機物の分
解方法及び分解装置に関する。さらに詳しくは、本発明
は、半導体製造工程や液晶製造工程などで使用されたリ
ンス排水などの有機物を含有する水の回収再利用に好適
に用いることができる水中の有機物の分解方法及び分解
装置に関する。
The present invention relates to a method and an apparatus for decomposing organic substances in water. More specifically, the present invention relates to a method and apparatus for decomposing organic substances in water, which can be suitably used for recovery and reuse of water containing organic substances such as rinsing wastewater used in a semiconductor manufacturing process or a liquid crystal manufacturing process. .

【0002】[0002]

【従来の技術】半導体製造工程では、シリコン基板など
の洗浄のために多量の超純水が使用されており、環境へ
の負荷低減、水資源の有効活用などの観点から、リンス
排水の回収再利用が広く行われている。しかし、リンス
排水中には、アルコール、界面活性剤などの有機物が含
まれているので、リンス排水を再利用するためにはこれ
らの物質を除去する必要がある。リンス排水中の有機物
を除去する技術として、従来から、オゾンと過酸化水
素、オゾンと紫外線、紫外線と過酸化水素、オゾンとア
ルカリなどを組み合わせ、促進酸化を行う技術が提案さ
れている。これらの技術は、非常に強い酸化力を有する
ヒドロキシルラジカルを発生させて、この強力な酸化力
を用いて有機物を分解するものである。また、これらの
方法において使用されるオゾンと過酸化水素は、処理後
は分解されて酸素又は水になるだけであり、二次廃棄物
を生成しないという利点も有している。しかし、これら
の技術のみでは有機物を完全に分解することは難しく、
中間生成物までしか分解することができないために、分
解処理の後段に脱イオン設備を設けたり、さらにもう一
段の分解処理を行う二段階の分解処理を行うなどの方法
がとられている。例えば、特開平11−99394号公
報には、水中の有機物除去方法として、被処理水に過酸
化水素及び/又はオゾンを添加して有機物を分解除去す
る第1工程と、第1工程の処理水にペルオキシド基を含
む硫黄化合物を添加して有機物を分解除去する第2工程
を行う方法が提案されている。このように処理を多段階
に行うことにより、有機物の除去率を高めることはでき
るが、イニシャルコストの増加、設置スペースの増加を
招くという不都合が生ずる。また、二段階の分解処理を
行った場合でも後段で副生成物が発生するために、さら
にその後段に脱イオン処理設備を設ける必要があり、か
つその設備に加わる負荷が大きいという問題がある。一
方、リンス排水に過酸化水素とオゾンを添加し、反応槽
に触媒を充填することにより酸化反応を促進し、有機物
の分解率を高める方法も見いだされたが、この方法は単
に過酸化水素の分解反応を促進するものであり、触媒に
よってオゾンの分解も促進されるが、有機物の分解に有
効なヒドロキシルラジカルは生成しないので、顕著な触
媒充填効果は得られない。
2. Description of the Related Art In a semiconductor manufacturing process, a large amount of ultrapure water is used for cleaning a silicon substrate and the like. Widely used. However, since the rinse wastewater contains organic substances such as alcohol and surfactant, it is necessary to remove these substances in order to reuse the rinse wastewater. Conventionally, as a technique for removing organic substances in rinse wastewater, a technique for performing accelerated oxidation by combining ozone and hydrogen peroxide, ozone and ultraviolet light, ultraviolet light and hydrogen peroxide, ozone and alkali, and the like has been proposed. These techniques generate hydroxyl radicals having a very strong oxidizing power and decompose organic substances using the strong oxidizing power. In addition, ozone and hydrogen peroxide used in these methods have the advantage that they are only decomposed to oxygen or water after treatment and do not generate secondary waste. However, it is difficult to completely decompose organic substances using these technologies alone.
Since only intermediate products can be decomposed, a method has been adopted in which a deionization facility is provided at the subsequent stage of the decomposition process, or a two-stage decomposition process is performed in which another one-stage decomposition process is performed. For example, Japanese Patent Application Laid-Open No. 11-99394 discloses, as a method for removing organic substances in water, a first step in which hydrogen peroxide and / or ozone is added to water to be treated to decompose and remove organic substances, and a treated water in the first step. A method has been proposed in which a second step of decomposing and removing organic substances by adding a sulfur compound containing a peroxide group is performed. By performing the treatment in multiple stages in this manner, the removal rate of organic substances can be increased, but disadvantages arise such as an increase in initial cost and an increase in installation space. Further, even when the two-stage decomposition treatment is performed, since by-products are generated in the latter stage, it is necessary to provide a deionization treatment facility further in the subsequent stage, and there is a problem that the load applied to the facility is large. On the other hand, a method has been found in which hydrogen peroxide and ozone are added to the rinse wastewater, and a reaction tank is filled with a catalyst to accelerate the oxidation reaction and increase the decomposition rate of organic substances. The catalyst promotes the decomposition reaction, and the catalyst also promotes the decomposition of ozone. However, since a hydroxyl radical effective for decomposing organic substances is not generated, a remarkable catalyst filling effect cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明は、半導体製造
工程や液晶製造工程などで使用されたリンス排水などの
有機物を含有する水の回収再利用に好適に用いることが
できる水中の有機物の分解方法及び分解装置を提供する
ことを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention relates to a method for decomposing organic substances in water which can be suitably used for recovery and reuse of water containing organic substances such as rinse wastewater used in a semiconductor manufacturing process or a liquid crystal manufacturing process. It is intended to provide a method and a disassembly apparatus.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、有機物を含有する
被処理水のpHを7〜10に調整して加温したのち、過酸
化水素とオゾンを添加して、有機物を酸化分解すること
により、一段の処理で水中の有機物を効果的に分解除去
し得ることを見いだし、この知見に基づいて本発明を完
成するに至った。すなわち、本発明は、(1)被処理水
のpHを7〜10に調整する工程、被処理水の温度を35
℃以上に調整する工程、加温された被処理水に過酸化水
素とオゾンを添加する工程、被処理水中に含まれる有機
物を酸化分解する工程及び有機物が酸化分解された被処
理水中に残存する過酸化水素とオゾンを分解除去する工
程を有することを特徴とする水中の有機物の分解方法、
及び、(2)被処理水のpHを7〜10に調整する手段、
被処理水の温度を35℃以上に調整する手段、加温され
た被処理水に過酸化水素とオゾンを添加する手段、被処
理水中に含まれる有機物を酸化分解する手段及び有機物
が酸化分解された被処理水中に残存する過酸化水素とオ
ゾンを分解除去する手段を有することを特徴とする水中
の有機物の分解装置、を提供するものである。さらに、
本発明の好ましい態様として、(3)被処理水の有機体
炭素濃度が1〜100mg/Lである第1項記載の水中の
有機物の分解方法、(4)被処理水のpHを8〜9.5に
調整する第1項記載の水中の有機物の分解方法、(5)
被処理水の温度を調整する工程の後に、過酸化水素とオ
ゾンを添加する工程を有する第1項記載の水中の有機物
の分解方法、(6)過酸化水素を添加したのち、オゾン
を添加する第1項記載の水中の有機物の分解方法、
(7)過酸化水素の添加量が、被処理水中の有機体炭素
の2〜20重量倍である第1項記載の水中の有機物の分
解方法、及び、(8)オゾンの添加量が、被処理水中の
有機体炭素の2〜20重量倍である第1項記載の水中の
有機物の分解方法、を挙げることができる。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor adjusted the pH of the water to be treated containing organic matter to 7 to 10 and then heated it. By adding hydrogen peroxide and ozone to oxidatively decompose organic substances, it was found that organic substances in water could be effectively decomposed and removed in a single step, and based on this finding, the present invention was completed. . That is, in the present invention, (1) the step of adjusting the pH of the water to be treated to 7 to 10,
° C or more, a step of adding hydrogen peroxide and ozone to heated water to be treated, a step of oxidatively decomposing organic substances contained in the water to be treated, and a step in which the organic substances remain in the water to be oxidized and decomposed. A method for decomposing organic substances in water, comprising a step of decomposing and removing hydrogen peroxide and ozone,
And (2) means for adjusting the pH of the water to be treated to 7 to 10,
Means for adjusting the temperature of the water to be treated to 35 ° C. or higher; means for adding hydrogen peroxide and ozone to the heated water to be treated; means for oxidatively decomposing organic substances contained in the water to be treated; A device for decomposing organic matter in water, comprising means for decomposing and removing hydrogen peroxide and ozone remaining in the water to be treated. further,
As a preferred embodiment of the present invention, (3) the method for decomposing organic substances in water according to item 1, wherein the concentration of organic carbon in the water to be treated is 1 to 100 mg / L; 2. The method for decomposing organic matter in water according to item 1, wherein the method is adjusted to 5.5.
2. The method for decomposing organic substances in water according to claim 1, further comprising a step of adding hydrogen peroxide and ozone after the step of adjusting the temperature of the water to be treated, (6) adding ozone after adding hydrogen peroxide. The method for decomposing organic matter in water according to claim 1,
(7) The method for decomposing organic matter in water according to (1), wherein the amount of hydrogen peroxide added is 2 to 20 times the weight of organic carbon in the water to be treated, and (8) the amount of ozone added is 2. The method for decomposing organic matter in water according to item 1, which is 2 to 20 times by weight of organic carbon in treated water.

【0005】[0005]

【発明の実施の形態】本発明の水中の有機物の分解方法
は、被処理水のpHを7〜10に調整する工程、被処理水
の温度を35℃以上に調整する工程、加温された被処理
水に過酸化水素とオゾンを添加する工程、被処理水中に
含まれる有機物を酸化分解する工程、有機物が酸化分解
された被処理水中に残存する過酸化水素とオゾンを分解
除去する工程を有する。本発明の水中の有機物の分解装
置は、被処理水のpHを7〜10に調整する手段、被処理
水の温度を35℃以上に調整する手段、加温された被処
理水に過酸化水素とオゾンを添加する手段、被処理水中
に含まれる有機物を酸化分解する手段及び有機物が酸化
分解された被処理水中に残存する過酸化水素とオゾンを
分解する手段を有する。本発明方法及び本発明装置を適
用する被処理水に特に制限はないが、電子材料洗浄工程
で発生するリンス排水のように、有機体炭素濃度が1〜
100mg/Lである水に特に好適に適用することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for decomposing organic matter in water according to the present invention, the step of adjusting the pH of the water to be treated to 7 to 10, the step of adjusting the temperature of the water to be treated to 35 ° C. or more, and the steps of A step of adding hydrogen peroxide and ozone to the water to be treated, a step of oxidatively decomposing organic substances contained in the water to be treated, and a step of decomposing and removing hydrogen peroxide and ozone remaining in the water to be treated by oxidative decomposition of the organic substances. Have. The apparatus for decomposing organic matter in water according to the present invention includes means for adjusting the pH of the water to be treated to 7 to 10, means for adjusting the temperature of the water to be treated to 35 ° C. or more, and adding hydrogen peroxide to the heated water to be treated. And ozone, a means for oxidatively decomposing organic substances contained in the water to be treated, and a means for decomposing hydrogen peroxide and ozone remaining in the water to be treated in which the organic substances are oxidized and decomposed. There is no particular limitation on the water to be treated to which the method of the present invention and the apparatus of the present invention are applied.
It is particularly suitable for water at 100 mg / L.

【0006】本発明においては、被処理水のpHを7〜1
0、好ましくは8〜9.5に調整する。pHが7未満であ
っても、10を超えても、有機物の分解除去率が低下す
るおそれがある。被処理水のpHを調整する方法に特に制
限はなく、例えば、水酸化ナトリウム、水酸化カリウム
などのアルカリを添加することにより、pHを調整するこ
とができる。被処理水のpH調整は、被処理水への過酸化
水素とオゾンの添加より前の工程であれば、いずれの段
階においても行うことができる。本発明においては、被
処理水の温度を35℃以上に調整し、以後の処理を加温
された状態で行う。被処理水の温度が35℃未満である
と、有機物が十分に分解除去されないおそれがある。被
処理水の温度を高めると、有機物の分解除去率は向上す
るが、45℃あたりで除去率が平衡に近づくので、被処
理水の温度は45〜60℃に調整することが好ましい。
60℃以上に加温するためには、熱エネルギーコストが
嵩むおそれがある。本発明において、被処理水の温度調
整方法に特に制限はないが、被処理水と処理水の間で熱
交換したのち、被処理水を所定の温度まで加温すること
が、熱エネルギーの節減の上から好ましい。本発明にお
いて、被処理水のpHの7〜10への調整と、被処理水の
温度の35℃以上への調整の順序に制限はなく、被処理
水のpH調整を行ったのちに温度調整することができ、被
処理水を温度調整したのちにpH調整することもでき、あ
るいは、被処理水を温度調整しつつpH調整することもで
きる。
[0006] In the present invention, the pH of the water to be treated is 7 to 1
Adjust to 0, preferably 8 to 9.5. If the pH is less than 7 or more than 10, the decomposition removal rate of organic substances may decrease. There is no particular limitation on the method of adjusting the pH of the water to be treated. For example, the pH can be adjusted by adding an alkali such as sodium hydroxide or potassium hydroxide. The pH of the water to be treated can be adjusted at any stage as long as it is a step before the addition of hydrogen peroxide and ozone to the water to be treated. In the present invention, the temperature of the water to be treated is adjusted to 35 ° C. or higher, and the subsequent treatment is performed in a heated state. If the temperature of the water to be treated is lower than 35 ° C., organic substances may not be sufficiently decomposed and removed. When the temperature of the water to be treated is increased, the decomposition removal rate of organic substances is improved, but the removal rate approaches equilibrium around 45 ° C. Therefore, the temperature of the water to be treated is preferably adjusted to 45 to 60 ° C.
Heating to 60 ° C. or higher may increase thermal energy costs. In the present invention, the method for adjusting the temperature of the water to be treated is not particularly limited. However, after heat exchange between the water to be treated and the water to be treated, the water to be treated is heated to a predetermined temperature, thereby saving heat energy. Is preferred from above. In the present invention, there is no limitation on the order of the adjustment of the pH of the water to be treated to 7 to 10 and the adjustment of the temperature of the water to be treated to 35 ° C. or more. PH can be adjusted after the temperature of the water to be treated is adjusted, or the pH can be adjusted while adjusting the temperature of the water to be treated.

【0007】本発明において、被処理水の温度調整と、
過酸化水素とオゾンの添加の順序に特に制限はなく、例
えば、被処理水を温度調整したのち、過酸化水素とオゾ
ンを添加することができ、被処理水に過酸化水素とオゾ
ンを添加したのち、温度調整することもでき、被処理水
を温度調整しつつ、過酸化水素とオゾンを添加すること
もでき、あるいは、被処理水に過酸化水素を添加し、温
度調整したのち、オゾンを添加することもできる。これ
らの中で、被処理水を温度調整したのち、過酸化水素と
オゾンを添加する方法は、熱交換器配管の腐食を防止す
ることができ、オゾンの自己分解による損失を防いで、
過酸化水素とオゾンの添加直後より有機物の分解が開始
されるので、好適に用いることができる。本発明におい
て、被処理水への過酸化水素とオゾンの添加順序に特に
制限はなく、過酸化水素を添加したのちオゾンを添加す
ることができ、オゾンを添加したのち過酸化水素を添加
することもでき、あるいは、過酸化水素とオゾンを同時
に添加することもできる。しかし、オゾンは自己分解し
やすい物質であり、有機物の分解に効率よくオゾンを利
用するためには、オゾンを最後に添加することが好まし
い。
In the present invention, the temperature of the water to be treated is adjusted,
There is no particular limitation on the order of addition of hydrogen peroxide and ozone.For example, after adjusting the temperature of the water to be treated, hydrogen peroxide and ozone can be added, and hydrogen peroxide and ozone are added to the water to be treated. After that, the temperature can be adjusted, and hydrogen peroxide and ozone can be added while adjusting the temperature of the water to be treated, or ozone can be added after adding hydrogen peroxide to the water to be treated and adjusting the temperature. It can also be added. Among them, the method of adding hydrogen peroxide and ozone after adjusting the temperature of the water to be treated can prevent the corrosion of the heat exchanger piping and prevent the loss due to the self-decomposition of ozone,
Since decomposition of organic substances starts immediately after the addition of hydrogen peroxide and ozone, it can be suitably used. In the present invention, the order of adding hydrogen peroxide and ozone to the water to be treated is not particularly limited, and ozone can be added after adding hydrogen peroxide, and hydrogen peroxide is added after adding ozone. Alternatively, hydrogen peroxide and ozone can be added simultaneously. However, ozone is a substance that is easily decomposed by itself, and it is preferable to add ozone last in order to efficiently use ozone for decomposing organic substances.

【0008】本発明方法において、被処理水への過酸化
水素の添加量に特に制限はないが、被処理水中の有機体
炭素に対して、2〜20重量倍であることが好ましく、
5〜10重量倍であることがより好ましい。過酸化水素
の添加量が有機体炭素の2重量倍未満であると、有機物
が十分に分解除去されないおそれがある。過酸化水素の
添加量は、通常は有機体炭素の20重量倍以下で十分で
あり、有機体炭素の20重量倍を超える過酸化水素の添
加は、後段の過酸化水素除去工程の負荷が増大するとと
もに、設備の腐食を招くおそれがある。本発明方法にお
いて、被処理水へのオゾンの添加量に特に制限はない
が、被処理水中の有機体炭素に対して、2〜20重量倍
であることが好ましく、5〜10重量倍であることがよ
り好ましい。オゾンの添加量が有機体炭素の2重量倍未
満であると、有機体物が十分に分解除去されないおそれ
がある。オゾンの添加量は、通常は有機体炭素の20重
量倍以下で十分であり、有機体炭素の20重量倍を超え
るオゾンの添加は、いたずらに自己分解するオゾンの量
が増えるとともに、後段のオゾン除去工程の負荷が増大
するおそれがある。本発明において、被処理水にオゾン
を添加する方法に特に制限はなく、例えば、二国機械工
業(株)製の15UPD02Sようなポンプを用いて給水
ポンプ吸い込み口にオゾンを添加することができ、エジ
ェクターを設置してオゾンを添加することもでき、ある
いは、溶解槽又は反応槽の下部にオゾンを直接散気する
こともできる。被処理水に添加したオゾンは、必ずしも
物理的に完全に溶解した状態である必要はなく、微細な
気泡となって被処理水中に分散した状態であってもよ
い。
In the method of the present invention, the amount of hydrogen peroxide added to the water to be treated is not particularly limited, but is preferably 2 to 20 times the weight of the organic carbon in the water to be treated.
More preferably, it is 5 to 10 times by weight. If the amount of added hydrogen peroxide is less than 2 times the weight of organic carbon, organic substances may not be sufficiently decomposed and removed. The amount of hydrogen peroxide to be added is usually sufficient to be not more than 20 times by weight of the organic carbon, and the addition of hydrogen peroxide exceeding 20 times by weight of the organic carbon increases the load of the subsequent hydrogen peroxide removing step. At the same time, the corrosion of the equipment may be caused. In the method of the present invention, the amount of ozone added to the water to be treated is not particularly limited, but is preferably 2 to 20 times by weight, and preferably 5 to 10 times by weight, based on the amount of organic carbon in the water to be treated. Is more preferable. If the amount of ozone added is less than 2 times the weight of organic carbon, organic substances may not be sufficiently decomposed and removed. The addition amount of ozone is usually sufficient to be 20 times by weight or less of the organic carbon, and the addition of ozone exceeding 20 times by weight of the organic carbon increases the amount of ozone which is self-decomposing unnecessarily and increases the amount of ozone in the latter stage. The load of the removal step may increase. In the present invention, there is no particular limitation on the method of adding ozone to the water to be treated, for example, ozone can be added to the water supply pump suction port using a pump such as 15UPD02S manufactured by Fukukoku Kikai Kogyo Co., Ltd. Ozone can be added by installing an ejector, or ozone can be directly diffused into the lower part of the dissolution tank or the reaction tank. The ozone added to the water to be treated does not necessarily need to be in a physically completely dissolved state, but may be in a state of being dispersed in the water to be treated as fine bubbles.

【0009】本発明において、過酸化水素とオゾンが添
加された被処理水中に含まれる有機物を分解する方式に
特に制限はなく、例えば、反応装置において回分式に分
解処理することができ、あるいは、連続式に処理するこ
ともできる。反応装置の形態に特に制限はなく、例え
ば、被処理水が均一に混合される反応槽とすることがで
き、あるいは、被処理水が連続的に通水される反応塔と
することもできる。本発明においては、被処理水中に含
まれる有機物を酸化分解したのちに、被処理水中に残存
する過酸化水素とオゾンを分解する。温度調整された被
処理水に過酸化水素とオゾンを添加して処理することに
より、被処理水中の有機物の大部分が酸化分解される
が、有機物を酸化分解したのちの水中には、余剰の過酸
化水素とオゾンが残存する。有機物の酸化分解後に、残
存する過酸化水素とオゾンを分解除去することにより、
回収水の水質を高めることができる。過酸化水素とオゾ
ンの分解方法に特に制限はなく、例えば、活性炭又は白
金、ルテニウムなどの酸化剤分解触媒を充填した反応槽
や充填塔などに通水することにより、残存する過酸化水
素とオゾンを分解除去することができる。
In the present invention, there is no particular limitation on the method of decomposing organic substances contained in the water to be treated to which hydrogen peroxide and ozone have been added. For example, the decomposition can be carried out batchwise in a reactor, or It can also be processed continuously. The form of the reaction apparatus is not particularly limited. For example, the reaction apparatus may be a reaction tank in which the water to be treated is uniformly mixed, or may be a reaction tower through which the water to be treated is continuously passed. In the present invention, after oxidatively decomposing organic substances contained in the water to be treated, hydrogen peroxide and ozone remaining in the water to be treated are decomposed. By adding hydrogen peroxide and ozone to the temperature-controlled water to be treated and treating it, most of the organic matter in the water to be treated is oxidatively decomposed. Hydrogen peroxide and ozone remain. After oxidative decomposition of organic matter, by decomposing and removing remaining hydrogen peroxide and ozone,
The quality of the recovered water can be improved. The method for decomposing hydrogen peroxide and ozone is not particularly limited.For example, by passing water through a reaction tank or a packed tower filled with an oxidizing agent decomposition catalyst such as activated carbon or platinum or ruthenium, the remaining hydrogen peroxide and ozone are removed. Can be decomposed and removed.

【0010】図1は、本発明装置の一態様の工程系統図
である。熱回収用熱交換器1において、被処理水と処理
水の間で熱交換が行われ、処理水から熱エネルギーが回
収されて被処理水が予熱される。次いで、加温用熱交換
器2において、被処理水が所定の温度まで加温される。
加温された被処理水にアルカリが添加されて所定のpHに
調整され、次いで、過酸化水素が添加され、さらに、オ
ゾン溶解槽3において、オゾンが添加される。オゾン溶
解槽の余剰ガスは、加温用熱交換器とオゾン溶解槽の間
に設けられたエジェクター4へ返送され、再溶解され
る。オゾン溶解槽の余剰ガスを給水ラインに戻すことに
より、排オゾンガス処理の負担を軽減することができ
る。過酸化水素とオゾンが添加された被処理水は、ポン
プ5により反応槽6へ送られ、水中に含まれる有機物が
酸化分解される。有機物が酸化分解された水は、ポンプ
7により酸化剤分解塔8に送られ、水中に残存する過酸
化水素とオゾンが分解されて処理水となる。処理水は、
熱回収用熱交換器1を経由して熱エネルギーを放出し、
冷却されたのち再利用される。反応槽6から排出される
ガスは、排オゾンガス分解塔9でオゾンを分解除去した
のち、大気中に放出される。本発明方法及び装置によれ
ば、多段処理をすることなく、単一の反応槽による一段
処理で被処理水中の有機物を効率的に分解除去すること
ができる。また、反応槽を通過した水をさらに酸化剤分
解塔に通水し、残存する過酸化水素とオゾンを分解する
ことにより良質の処理水を得ることができる。さらに、
pH調整及び加温の効果により、オゾンと過酸化水素が効
率的に有機物の分解反応に使用されるために、酸化剤の
コストと、酸化剤の分解処理コストを低減することがで
きる。
FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention. In the heat recovery heat exchanger 1, heat exchange is performed between the water to be treated and the treated water, heat energy is recovered from the treated water, and the water to be treated is preheated. Next, in the heating heat exchanger 2, the water to be treated is heated to a predetermined temperature.
The alkali is added to the heated water to be treated to adjust the pH to a predetermined value, then hydrogen peroxide is added, and further, ozone is added in the ozone dissolving tank 3. The surplus gas in the ozone dissolving tank is returned to the ejector 4 provided between the heating heat exchanger and the ozone dissolving tank, and is re-dissolved. By returning the surplus gas in the ozone dissolving tank to the water supply line, the burden of the exhaust ozone gas treatment can be reduced. The water to be treated to which hydrogen peroxide and ozone have been added is sent to the reaction tank 6 by the pump 5, and the organic substances contained in the water are oxidized and decomposed. The water in which the organic matter has been oxidatively decomposed is sent to the oxidizing agent decomposition tower 8 by the pump 7, and the hydrogen peroxide and ozone remaining in the water are decomposed into treated water. The treated water is
Releasing heat energy via the heat exchanger 1 for heat recovery,
It is reused after being cooled. The gas discharged from the reaction tank 6 is decomposed and removed by the ozone gas decomposing tower 9 and then released into the atmosphere. ADVANTAGE OF THE INVENTION According to the method and apparatus of this invention, organic substance in to-be-processed water can be decomposed | removed and removed efficiently by single-step processing with a single reaction tank, without performing multi-step processing. Further, high-quality treated water can be obtained by further passing the water that has passed through the reaction tank to the oxidizing agent decomposition tower to decompose the remaining hydrogen peroxide and ozone. further,
Ozone and hydrogen peroxide are efficiently used for the decomposition reaction of organic substances by the effects of pH adjustment and heating, so that the cost of the oxidizing agent and the cost of the decomposition treatment of the oxidizing agent can be reduced.

【0011】[0011]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。図2は、実施例及び比較例にお
いて用いた装置の説明図である。反応槽10に被処理水
を仕込み、温度調整とアルカリ添加によるpH調整とを行
う。次いで、所定時間被処理水を撹拌しつつ有機物を酸
化分解する。有機物が酸化分解された被処理水は、ポン
プ11により酸化剤分解塔12に送り、水中に残存する
過酸化水素とオゾンを分解し、処理水を得る。なお、実
施例及び比較例において、有機体炭素(TOC)濃度
は、JIS K0551にしたがって測定した。また、
過酸化水素(H22)濃度は、DMP法(ネオクロプロ
インの還元による吸光度測定)により、オゾン(O3
濃度は、吸光度(波長254nm)により測定した。た
だし、曝気してオゾンを脱離させた液を対照試料として
測定した。 比較例1 超純水にイソプロピルアルコール5.0mg/Lを添加し
て、有機体炭素(TOC)3.0mgC/Lを含有する水
を調製し、試験用の被処理水とした。被処理水のpHは
7.0、水温は25℃であった。この被処理水2Lを反
応槽に入れ、過酸化水素水を過酸化水素の濃度が30mg
/Lになるように添加し、次いで電解式オゾン発生器
[笹倉(株)、オゾンマスターOM−2]で発生させたオ
ゾンを濃度が30mg/Lになるように添加した。被処理
水の温度25℃を保ったまま、反応槽の中で30分撹拌
し、イソプロピルアルコールの酸化分解処理を行った。
酸化分解処理後の水のTOC濃度は2.4mgC/Lであ
り、TOC除去率は20.0%であった。また、残存過
酸化水素濃度は5.5mg/Lであり、残存オゾン濃度は
2mg/Lであった。この水を、白金メッキした線径0.
4mmのステンレス鋼網0.4Lを充填した触媒反応塔
に、空間速度5h-1で通水した。触媒反応塔から流出し
た処理水中には、過酸化水素、オゾンともに検出されな
かった。 実施例1 比較例1と同じ被処理水を用い、処理温度を変えて、イ
ソプロピルアルコールの分解を行った。被処理水2Lを
反応槽に入れ、35℃に加温し、過酸化水素水を過酸化
水素の濃度が30mg/Lになるように添加し、次いで電
解式オゾン発生器[笹倉(株)、オゾンマスターOM−
2]で発生させたオゾンを濃度が30mg/Lになるよう
に添加した。被処理水の温度35℃を維持したまま、反
応槽の中で30分撹拌し、イソプロピルアルコールの酸
化分解処理を行った。酸化分解処理後の水のTOC濃度
は1.2mgC/Lであり、TOC除去率は60.0%であ
った。また、残存過酸化水素濃度は3.1mg/Lであ
り、残存オゾン濃度は1.2mg/Lであった。この水
を、白金メッキした線径0.4mmのステンレス鋼網0.4
Lを充填した触媒反応塔に、温度35℃を維持して、空
間速度5h-1で通水した。触媒反応塔から流出した処理
水中には、過酸化水素、オゾンともに検出されなかっ
た。被処理水の温度を45℃、55℃、65℃及び90
℃として、同じ操作を繰り返した。被処理水の温度45
℃のとき、酸化分解処理後の水のTOC濃度は0.3mg
C/Lであり、TOC除去率は90.0%であった。ま
た、残存過酸化水素濃度は1.2mg/Lであり、残存オ
ゾン濃度は0.8mg/Lであった。触媒反応塔通水後の
処理水中には、過酸化水素、オゾンともに検出されなか
った。被処理水の温度55℃のとき、酸化分解処理後の
水のTOC濃度は0.06mgC/Lであり、TOC除去
率は98.0%であった。また、残存過酸化水素濃度は
0.4mg/Lであり、残存オゾン濃度は0.3mg/Lであ
った。触媒反応塔通水後の処理水中には、過酸化水素、
オゾンともに検出されなかった。被処理水の温度65℃
のとき、酸化分解処理後の水のTOC濃度は0.006m
gC/Lであり、TOC除去率は99.8%であった。ま
た、残存過酸化水素濃度は0.2mg/Lであり、残存オ
ゾン濃度は0.08mg/Lであった。触媒反応塔通水後
の処理水中には、過酸化水素、オゾンともに検出されな
かった。被処理水の温度90℃のとき、酸化分解処理後
の水にはTOCは検出されず、TOC除去率は100%
であった。また、残存過酸化水素濃度は0.02mg/L
であり、残存オゾン濃度は0.01mg/Lであった。触
媒反応塔通水後の処理水中には、過酸化水素、オゾンと
もに検出されなかった。比較例1及び実施例1の結果
を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. FIG. 2 is an explanatory diagram of the devices used in the examples and comparative examples. The water to be treated is charged into the reaction tank 10, and the temperature is adjusted and the pH is adjusted by adding an alkali. Next, the organic matter is oxidatively decomposed while stirring the water to be treated for a predetermined time. The water to be treated, in which organic substances have been oxidatively decomposed, is sent to an oxidizing agent decomposition tower 12 by a pump 11 to decompose hydrogen peroxide and ozone remaining in the water to obtain treated water. In Examples and Comparative Examples, the organic carbon (TOC) concentration was measured according to JIS K0551. Also,
The hydrogen peroxide (H 2 O 2 ) concentration was measured by the DMP method (absorbance measurement by reduction of neocloproin) using ozone (O 3 ).
The concentration was measured by absorbance (wavelength 254 nm). However, the liquid from which ozone was desorbed by aeration was measured as a control sample. Comparative Example 1 5.0 mg / L of isopropyl alcohol was added to ultrapure water to prepare water containing 3.0 mgC / L of organic carbon (TOC), which was used as test water to be treated. The pH of the water to be treated was 7.0, and the water temperature was 25 ° C. 2 L of the water to be treated is put into a reaction tank, and the hydrogen peroxide solution is supplied with a hydrogen peroxide concentration of 30 mg.
/ L, and then ozone generated by an electrolytic ozone generator [Sakura Co., Ltd., Ozone Master OM-2] was added to a concentration of 30 mg / L. While maintaining the temperature of the water to be treated at 25 ° C., the mixture was stirred in a reaction tank for 30 minutes to perform oxidative decomposition of isopropyl alcohol.
The TOC concentration of the water after the oxidative decomposition treatment was 2.4 mgC / L, and the TOC removal rate was 20.0%. The residual hydrogen peroxide concentration was 5.5 mg / L, and the residual ozone concentration was 2 mg / L. This water was plated with a platinum-plated wire with a diameter of 0.
Water was passed at a space velocity of 5 h -1 through a catalytic reactor packed with 0.4 L of a 4 mm stainless steel mesh. Neither hydrogen peroxide nor ozone was detected in the treated water flowing out of the catalytic reaction tower. Example 1 Isopropyl alcohol was decomposed by using the same water to be treated as in Comparative Example 1 and changing the treatment temperature. 2 L of the water to be treated is placed in a reaction vessel, heated to 35 ° C., an aqueous solution of hydrogen peroxide is added so that the concentration of hydrogen peroxide becomes 30 mg / L, and then an electrolytic ozone generator [Sakura Co., Ltd. Ozone Master OM-
2] was added so that the concentration became 30 mg / L. While maintaining the temperature of the water to be treated at 35 ° C., the mixture was stirred in a reaction tank for 30 minutes to perform oxidative decomposition treatment of isopropyl alcohol. The TOC concentration of the water after the oxidative decomposition treatment was 1.2 mgC / L, and the TOC removal rate was 60.0%. The residual hydrogen peroxide concentration was 3.1 mg / L, and the residual ozone concentration was 1.2 mg / L. This water is applied to a platinum-plated 0.4 mm stainless steel net 0.4.
Water was passed through the catalyst reaction tower filled with L at a space velocity of 5 h -1 while maintaining the temperature at 35 ° C. Neither hydrogen peroxide nor ozone was detected in the treated water flowing out of the catalytic reaction tower. The temperature of the water to be treated is 45 ° C, 55 ° C, 65 ° C and 90 ° C.
The same operation was repeated at a temperature of ° C. Temperature of treated water 45
At ℃, TOC concentration of water after oxidative decomposition treatment is 0.3mg
C / L, and the TOC removal rate was 90.0%. The residual hydrogen peroxide concentration was 1.2 mg / L, and the residual ozone concentration was 0.8 mg / L. Neither hydrogen peroxide nor ozone was detected in the treated water after passing through the catalyst reaction tower. When the temperature of the water to be treated was 55 ° C., the TOC concentration of the water after the oxidative decomposition treatment was 0.06 mgC / L, and the TOC removal rate was 98.0%. The residual hydrogen peroxide concentration was 0.4 mg / L, and the residual ozone concentration was 0.3 mg / L. In the treated water after passing through the catalyst reaction tower, hydrogen peroxide,
Ozone was not detected. Temperature of treated water 65 ° C
In this case, the TOC concentration of the water after the oxidative decomposition treatment is 0.006 m
gC / L, and the TOC removal rate was 99.8%. The residual hydrogen peroxide concentration was 0.2 mg / L, and the residual ozone concentration was 0.08 mg / L. Neither hydrogen peroxide nor ozone was detected in the treated water after passing through the catalyst reaction tower. When the temperature of the water to be treated is 90 ° C., TOC is not detected in the water after the oxidative decomposition treatment, and the TOC removal rate is 100%.
Met. The residual hydrogen peroxide concentration was 0.02 mg / L.
And the residual ozone concentration was 0.01 mg / L. Neither hydrogen peroxide nor ozone was detected in the treated water after passing through the catalyst reaction tower. Table 1 shows the results of Comparative Example 1 and Example 1.

【0012】[0012]

【表1】 [Table 1]

【0013】第1表に見られるように、被処理水の温度
を35℃に調整し、過酸化水素とオゾンを添加して酸化
分解することにより、水中の有機物の60%が除去さ
れ、被処理水の温度を55℃に調整すると、除去率は9
8%に達する。また、有機物の酸化分解後に水中に残存
する過酸化水素とオゾンは、白金触媒を充填した触媒反
応塔へ通水することにより、完全に分解除去される。一
般的に、水温が高くなるとヘンリー定数が大きくなるた
めに、ガスの溶解度は減少する。この場合も例外ではな
く、反応系の温度が高くなるとオゾンの溶解度が減少す
るために、溶存オゾン不足による酸化反応の停滞が心配
される。しかし、第1表より明らかなように、加温効果
は、有機体炭素除去率の向上に貢献するという結果が得
られている。これは、加温により、過酸化水素とオゾン
の分解が効率よく促進され、有機物分解に必要なヒドロ
キシルラジカルの発生が促進されることとイソプロピル
アルコール分解過程の活性化エネルギーが低下すること
によるものと考えられる。また、温度を高めるほど有機
体炭素除去率は向上するが、45℃あたりで除去率が平
衡に近づくことから、被処理水の温度は45〜60℃で
あることが好ましいと考えられる。60℃以上に加温す
るためには、加温コストが高くなる。 実施例2 超純水にイソプロピルアルコール5.0mg/Lを添加し
て、有機体炭素(TOC)3.0mgC/Lを含有する水
を調製し、試験用の被処理水とした。被処理水2Lを反
応槽に入れ、pHを7.3、温度を60℃に調整したの
ち、過酸化水素水を過酸化水素の濃度が30mg/Lにな
るように添加し、次いで電解式オゾン発生器[笹倉
(株)、オゾンマスターOM−2]で発生させたオゾンを
濃度が30mg/Lになるように添加した。被処理水の温
度60℃を保ったまま、反応槽の中で30分撹拌し、イ
ソプロピルアルコールの酸化分解処理を行った。酸化分
解処理後の水にはTOCは検出されず、TOC除去率は
100%であった。また、残存過酸化水素濃度は0.2m
g/Lであり、残存オゾン濃度は0.08mg/Lであっ
た。この水を、白金メッキした線径0.4mmのステンレ
ス鋼網0.4Lを充填した触媒反応塔に、空間速度5h
-1で通水した。触媒反応塔から流出した処理水中には、
過酸化水素、オゾンともに検出されなかった。さらに、
被処理水のpHを9.0に調整して、同じ操作を繰り返し
た。酸化分解処理後の水にはTOCは検出されず、TO
C除去率は100%であった。また、残存過酸化水素濃
度は0.02mg/Lであり、残存オゾン濃度は0.03mg
/Lであった。この水を、白金メッキした線径0.4mm
のステンレス鋼網0.4Lを充填した触媒反応塔に、空
間速度5h-1で通水した。触媒反応塔から流出した処理
水中には、過酸化水素、オゾンともに検出されなかっ
た。 比較例2 実施例2と同じ被処理水を用い、pHを2.3、3.2及び
11.8、温度を60℃に調整し、実施例2と同様にし
てイソプロピルアルコールの分解を行い、酸化分解処理
後の水のTOC濃度、残存過酸化水素濃度、残存オゾン
濃度と、触媒反応塔から流出した処理水中の過酸化水素
濃度、オゾン濃度を測定した。被処理水のpHを2.3に
調整したとき、酸化分解処理後の水のTOC濃度は0.
65mgC/Lであり、TOC除去率は78.3%であっ
た。被処理水のpHを3.2に調整したとき、酸化分解処
理後の水のTOC濃度は0.18mgC/Lであり、TO
C除去率は94.0%であった。被処理水のpHを11.8
に調整したとき、酸化分解処理後の水のTOC濃度は
0.82mgC/Lであり、TOC除去率は72.7%であ
った。 比較例3 実施例2と同じ被処理水を用い、pHを2.3、3.2、
7.3、9.0及び11.8、温度を25℃に調整して、
実施例2と同様にしてイソプロピルアルコールの分解を
行い、酸化分解処理後の水のTOC濃度、残存過酸化水
素濃度、残存オゾン濃度と、触媒反応塔から流出した処
理水中の過酸化水素濃度、オゾン濃度を測定した。被処
理水のpHを2.3に調整したとき、酸化分解処理後の水
のTOC濃度は2.7mgC/Lであり、TOC除去率は
10.0%であった。被処理水のpHを3.2に調整したと
き、酸化分解処理後の水のTOC濃度は2.53mgC/
Lであり、TOC除去率は15.7%であった。被処理
水のpHを7.3に調整したとき、酸化分解処理後の水の
TOC濃度は2.33mgC/Lであり、TOC除去率は
22.3%であった。被処理水のpHを9.0に調整したと
き、酸化分解処理後の水のTOC濃度は2.25mgC/
Lであり、TOC除去率は25.0%であった。被処理
水のpHを11.8に調整したとき、酸化分解処理後の水
のTOC濃度は2.37mgC/Lであり、TOC除去率
は21.0%であった。実施例2及び比較例2〜3の結
果を、第2表に示す。
As can be seen from Table 1, by adjusting the temperature of the water to be treated to 35 ° C. and adding hydrogen peroxide and ozone to oxidatively decompose, 60% of the organic matter in the water is removed. When the temperature of the treated water is adjusted to 55 ° C., the removal rate is 9
Reaches 8%. In addition, hydrogen peroxide and ozone remaining in water after oxidative decomposition of organic substances are completely decomposed and removed by passing water through a catalyst reaction tower filled with a platinum catalyst. In general, gas solubility decreases as Henry's law constant increases with increasing water temperature. In this case, too, the solubility of ozone decreases as the temperature of the reaction system increases, and there is a concern that the oxidation reaction may stagnate due to a shortage of dissolved ozone. However, as is evident from Table 1, the results show that the heating effect contributes to the improvement of the organic carbon removal rate. This is because, by heating, the decomposition of hydrogen peroxide and ozone is efficiently promoted, the generation of hydroxyl radicals required for organic matter decomposition is promoted, and the activation energy in the isopropyl alcohol decomposition process is reduced. Conceivable. In addition, the higher the temperature, the higher the organic carbon removal rate. However, since the removal rate approaches equilibrium at around 45 ° C., the temperature of the water to be treated is preferably 45 to 60 ° C. In order to heat the temperature to 60 ° C. or higher, the heating cost increases. Example 2 5.0 mg / L of isopropyl alcohol was added to ultrapure water to prepare water containing 3.0 mgC / L of organic carbon (TOC), which was used as test water to be treated. 2 L of the water to be treated is put into a reaction tank, the pH is adjusted to 7.3 and the temperature is adjusted to 60 ° C., and then hydrogen peroxide is added so that the concentration of hydrogen peroxide becomes 30 mg / L. Generator [Sakura
Ozone generated by Ozone Master OM-2] was added so as to have a concentration of 30 mg / L. While maintaining the temperature of the water to be treated at 60 ° C., the mixture was stirred in a reaction tank for 30 minutes to perform oxidative decomposition treatment of isopropyl alcohol. TOC was not detected in the water after the oxidative decomposition treatment, and the TOC removal rate was 100%. The residual hydrogen peroxide concentration is 0.2 m
g / L, and the residual ozone concentration was 0.08 mg / L. This water was placed in a catalytic reaction tower filled with 0.4 L of a platinum-plated stainless steel net having a wire diameter of 0.4 mm for a space velocity of 5 h.
Water was passed at -1 . In the treated water flowing out of the catalytic reaction tower,
Neither hydrogen peroxide nor ozone was detected. further,
The same operation was repeated while adjusting the pH of the water to be treated to 9.0. TOC is not detected in the water after the oxidative decomposition treatment.
The C removal rate was 100%. The residual hydrogen peroxide concentration was 0.02 mg / L, and the residual ozone concentration was 0.03 mg / L.
/ L. This water is platinum-plated with a wire diameter of 0.4 mm.
Was passed at a space velocity of 5 h -1 through a catalytic reaction tower filled with 0.4 L of a stainless steel mesh. Neither hydrogen peroxide nor ozone was detected in the treated water flowing out of the catalytic reaction tower. Comparative Example 2 Using the same water to be treated as in Example 2, the pH was adjusted to 2.3, 3.2 and 11.8, the temperature was adjusted to 60 ° C., and isopropyl alcohol was decomposed in the same manner as in Example 2. The TOC concentration, the residual hydrogen peroxide concentration, and the residual ozone concentration of the water after the oxidative decomposition treatment, and the hydrogen peroxide concentration and the ozone concentration in the treated water flowing out of the catalytic reaction tower were measured. When the pH of the water to be treated was adjusted to 2.3, the TOC concentration of the water after the oxidative decomposition treatment was 0.3.
The content was 65 mgC / L, and the TOC removal rate was 78.3%. When the pH of the water to be treated was adjusted to 3.2, the TOC concentration of the water after the oxidative decomposition treatment was 0.18 mgC / L.
The C removal rate was 94.0%. PH of the water to be treated is 11.8
, The TOC concentration of the water after the oxidative decomposition treatment was 0.82 mgC / L, and the TOC removal rate was 72.7%. Comparative Example 3 Using the same water to be treated as in Example 2, the pH was 2.3, 3.2,
7.3, 9.0 and 11.8, adjusting the temperature to 25 ° C,
Isopropyl alcohol was decomposed in the same manner as in Example 2, and the TOC concentration, the residual hydrogen peroxide concentration, and the residual ozone concentration of the water after the oxidative decomposition treatment, the hydrogen peroxide concentration in the treated water flowing out of the catalytic reaction tower, and the ozone concentration were measured. The concentration was measured. When the pH of the water to be treated was adjusted to 2.3, the TOC concentration of the water after the oxidative decomposition treatment was 2.7 mgC / L, and the TOC removal rate was 10.0%. When the pH of the water to be treated was adjusted to 3.2, the TOC concentration of the water after the oxidative decomposition treatment was 2.53 mgC /
L, and the TOC removal rate was 15.7%. When the pH of the water to be treated was adjusted to 7.3, the TOC concentration of the water after the oxidative decomposition treatment was 2.33 mgC / L, and the TOC removal rate was 22.3%. When the pH of the water to be treated was adjusted to 9.0, the TOC concentration of the water after the oxidative decomposition treatment was 2.25 mgC /
L, and the TOC removal rate was 25.0%. When the pH of the water to be treated was adjusted to 11.8, the TOC concentration of the water after the oxidative decomposition treatment was 2.37 mgC / L, and the TOC removal rate was 21.0%. Table 2 shows the results of Example 2 and Comparative Examples 2 and 3.

【0014】[0014]

【表2】 [Table 2]

【0015】第2表に見られるように、被処理水のpHを
7.3又は9.0に調整し、温度を60℃に調整したと
き、過酸化水素とオゾンを添加して酸化分解することに
より、水中のイソプロピルアルコールは完全に分解除去
される。これに対して、pHが低すぎる場合も、高すぎる
場合も、有機体炭素の除去率は低下する。また、被処理
水の温度が25℃である場合は、有機体炭素の除去率は
最高25%にまでしか達しない。また、有機物の酸化分
解後に水中に残存する過酸化水素とオゾンは、白金触媒
を充填した触媒反応塔へ通水することにより、完全に分
解除去される。この結果から、すべてのpH領域におい
て、加温により有機体炭素の除去が促進されることが分
かる。これは、加温によるオゾンと過酸化水素の分解反
応が促進され、有機物の分解に必要なヒドロキシルラジ
カルの生成が促進されることとイソプロピルアルコール
の分解過程の活性化エネルギーが低下することによるも
のと考えられる。また、被処理水のpHをアルカリ側に傾
けることによって有機体炭素の除去率は向上するが、pH
11以上の領域においては有機体炭素除去率は低下す
る。この除去率の低下は、ヒドロキシルラジカルの強力
なスカベンジャーである炭酸イオンの影響が高pH領域に
おいて強くなるためと考えられる。以上の結果から、有
機物の分解反応を促進させ、かつヒドロキシルラジカル
へのスカベンジャー効果を最低限に抑えるpH領域は7〜
10であり、好ましくは8〜9.5であることが分か
る。
As shown in Table 2, when the pH of the water to be treated is adjusted to 7.3 or 9.0 and the temperature is adjusted to 60 ° C., hydrogen peroxide and ozone are added to oxidize and decompose. Thereby, the isopropyl alcohol in the water is completely decomposed and removed. On the other hand, if the pH is too low or too high, the removal rate of organic carbon decreases. When the temperature of the water to be treated is 25 ° C., the removal rate of the organic carbon reaches only up to 25%. In addition, hydrogen peroxide and ozone remaining in water after oxidative decomposition of organic substances are completely decomposed and removed by passing water through a catalyst reaction tower filled with a platinum catalyst. From this result, it can be seen that in all pH ranges, removal of organic carbon is promoted by heating. This is because the decomposition reaction of ozone and hydrogen peroxide by heating is accelerated, the generation of hydroxyl radicals necessary for the decomposition of organic substances is promoted, and the activation energy in the decomposition process of isopropyl alcohol is reduced. Conceivable. In addition, although the removal rate of organic carbon is improved by inclining the pH of the water to be treated toward the alkali side,
In the region of 11 or more, the organic carbon removal rate decreases. This decrease in the removal rate is considered to be due to the strong effect of carbonate ions, which are strong scavengers of hydroxyl radicals, in a high pH range. From the above results, the pH range that promotes the decomposition reaction of organic substances and minimizes the scavenging effect on hydroxyl radicals is 7 to
10, and preferably 8 to 9.5.

【0016】[0016]

【発明の効果】本発明方法及び装置によれば、有機物を
含有する被処理水のpHを7〜10に調整し、35℃以上
に加温して、過酸化水素とオゾンを添加することによ
り、有機物を分解して有機体炭素を除去し、後段にイオ
ン交換塔を設置するなどの多段処理を行うことなく、電
子材料洗浄工程のリンス排水などを回収して再利用する
ことができる。また、過酸化水素とオゾンが有機物の分
解に消費されるために、後段の過酸化水素とオゾンの分
解処理コストの負担を軽減し、処理コストを低減するこ
とができる。
According to the method and apparatus of the present invention, the pH of the water to be treated containing an organic substance is adjusted to 7 to 10, the temperature is increased to 35 ° C. or more, and hydrogen peroxide and ozone are added. In addition, it is possible to recover and reuse rinse water and the like in the electronic material washing step without performing multi-stage treatment such as decomposing organic matter to remove organic carbon and installing an ion exchange tower at a later stage. In addition, since hydrogen peroxide and ozone are consumed for the decomposition of organic substances, the burden of the cost for decomposition treatment of hydrogen peroxide and ozone in the subsequent stage can be reduced, and the processing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明装置の一態様の工程系統図であ
る。
FIG. 1 is a process flow diagram of one embodiment of the apparatus of the present invention.

【図2】図2は、実施例において用いた装置の説明図で
ある。
FIG. 2 is an explanatory diagram of an apparatus used in an example.

【符号の説明】[Explanation of symbols]

1 熱回収用熱交換器 2 加温用熱交換器 3 オゾン溶解槽 4 エジェクター 5 ポンプ 6 反応槽 7 ポンプ 8 酸化剤分解塔 9 排オゾンガス分解塔 10 反応槽 11 ポンプ 12 酸化剤分解塔 DESCRIPTION OF SYMBOLS 1 Heat exchanger for heat recovery 2 Heat exchanger for heating 3 Ozone dissolution tank 4 Ejector 5 Pump 6 Reaction tank 7 Pump 8 Oxidizing agent decomposition tower 9 Exhaust ozone gas decomposition tower 10 Reaction tank 11 Pump 12 Oxidizing agent decomposition tower

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被処理水のpHを7〜10に調整する工程、
被処理水の温度を35℃以上に調整する工程、加温され
た被処理水に過酸化水素とオゾンを添加する工程、被処
理水中に含まれる有機物を酸化分解する工程及び有機物
が酸化分解された被処理水中に残存する過酸化水素とオ
ゾンを分解除去する工程を有することを特徴とする水中
の有機物の分解方法。
A step of adjusting the pH of the water to be treated to 7 to 10,
A step of adjusting the temperature of the water to be treated to 35 ° C. or higher; a step of adding hydrogen peroxide and ozone to the heated water to be treated; a step of oxidatively decomposing organic substances contained in the water to be treated; A process for decomposing and removing hydrogen peroxide and ozone remaining in the water to be treated.
【請求項2】被処理水のpHを7〜10に調整する手段、
被処理水の温度を35℃以上に調整する手段、加温され
た被処理水に過酸化水素とオゾンを添加する手段、被処
理水中に含まれる有機物を酸化分解する手段及び有機物
が酸化分解された被処理水中に残存する過酸化水素とオ
ゾンを分解除去する手段を有することを特徴とする水中
の有機物の分解装置。
2. A means for adjusting the pH of the water to be treated to 7 to 10,
Means for adjusting the temperature of the water to be treated to 35 ° C. or higher; means for adding hydrogen peroxide and ozone to the heated water to be treated; means for oxidatively decomposing organic substances contained in the water to be treated; An apparatus for decomposing organic substances in water, comprising means for decomposing and removing hydrogen peroxide and ozone remaining in the water to be treated.
JP36255499A 1999-12-21 1999-12-21 Method and apparatus for decomposing organic substances in water Expired - Fee Related JP4465696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36255499A JP4465696B2 (en) 1999-12-21 1999-12-21 Method and apparatus for decomposing organic substances in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36255499A JP4465696B2 (en) 1999-12-21 1999-12-21 Method and apparatus for decomposing organic substances in water

Publications (2)

Publication Number Publication Date
JP2001170663A true JP2001170663A (en) 2001-06-26
JP4465696B2 JP4465696B2 (en) 2010-05-19

Family

ID=18477156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36255499A Expired - Fee Related JP4465696B2 (en) 1999-12-21 1999-12-21 Method and apparatus for decomposing organic substances in water

Country Status (1)

Country Link
JP (1) JP4465696B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093558A (en) * 2006-10-11 2008-04-24 Nomura Micro Sci Co Ltd Water treatment method and water treatment apparatus
CN101982237A (en) * 2010-09-20 2011-03-02 中国海洋石油总公司 Preparation method of ozone catalytic oxidation catalyst used for treating oil refining waste water
AU2011101664B4 (en) * 2011-02-04 2012-05-03 Waterco Limited Water Treatment System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834080A (en) * 1981-08-25 1983-02-28 Toyo Eng Corp Treatment of acid-digested waste liquid
JPH1157753A (en) * 1997-08-19 1999-03-02 Japan Organo Co Ltd Removing method of toc component and device therefor
JPH11114584A (en) * 1997-08-13 1999-04-27 Nomura Micro Sci Co Ltd Treatment of water and water treatment device
JP2000193789A (en) * 1998-12-28 2000-07-14 Hitachi Ltd Processing method and processing device for radioactive waste liquid including surfactant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834080A (en) * 1981-08-25 1983-02-28 Toyo Eng Corp Treatment of acid-digested waste liquid
JPH11114584A (en) * 1997-08-13 1999-04-27 Nomura Micro Sci Co Ltd Treatment of water and water treatment device
JPH1157753A (en) * 1997-08-19 1999-03-02 Japan Organo Co Ltd Removing method of toc component and device therefor
JP2000193789A (en) * 1998-12-28 2000-07-14 Hitachi Ltd Processing method and processing device for radioactive waste liquid including surfactant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093558A (en) * 2006-10-11 2008-04-24 Nomura Micro Sci Co Ltd Water treatment method and water treatment apparatus
CN101982237A (en) * 2010-09-20 2011-03-02 中国海洋石油总公司 Preparation method of ozone catalytic oxidation catalyst used for treating oil refining waste water
AU2011101664B4 (en) * 2011-02-04 2012-05-03 Waterco Limited Water Treatment System

Also Published As

Publication number Publication date
JP4465696B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
TWI444338B (en) Method and apparatus for removing organic matter
JPH1157752A (en) Controlling method and device of toc component removal
JP2007000767A (en) Method and apparatus for treating water
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
JPH08229577A (en) Method for treating waste liquid from nonelectrolytic plating process
JP2007083207A (en) Accelerated oxidation water treatment method and apparatus
JP3506171B2 (en) Method and apparatus for removing TOC component
JP4465696B2 (en) Method and apparatus for decomposing organic substances in water
JP2001113291A (en) Apparatus for treating organic matter-containing water
JPH1199394A (en) Method for removing organic matter in water
JP3789631B2 (en) Water treatment method and water treatment apparatus
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
JP2001149957A (en) Method and device for decomposing organic carbon
JP3547573B2 (en) Water treatment method
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP2013103156A (en) Biological sludge volume reduction method and apparatus
JP2002001320A (en) Method of treating waste ozone water
JP2002126730A (en) Apparatus and method for treating wastewater
JP2000279973A (en) Oxidation treatment of organic matter-containing waste water
JP2005161138A (en) Water treatment method and water treatment apparatus
JP2002001366A (en) Method and system for treating organic substance in water
JP3794113B2 (en) Method for removing TOC component and dissolved oxygen
JP2000350993A (en) Treatment apparatus of dmso-containing water and treatment equipment of waste water of semiconductor factory
JP2004358422A (en) Method for treating oxidizable substance-containing water
JP4423654B2 (en) Treatment method for organic water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees