JP2001113291A - Apparatus for treating organic matter-containing water - Google Patents

Apparatus for treating organic matter-containing water

Info

Publication number
JP2001113291A
JP2001113291A JP29701699A JP29701699A JP2001113291A JP 2001113291 A JP2001113291 A JP 2001113291A JP 29701699 A JP29701699 A JP 29701699A JP 29701699 A JP29701699 A JP 29701699A JP 2001113291 A JP2001113291 A JP 2001113291A
Authority
JP
Japan
Prior art keywords
water
ozone
treated
treatment
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29701699A
Other languages
Japanese (ja)
Inventor
Motomu Koizumi
求 小泉
Original Assignee
Kurita Water Ind Ltd
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Ind Ltd, 栗田工業株式会社 filed Critical Kurita Water Ind Ltd
Priority to JP29701699A priority Critical patent/JP2001113291A/en
Publication of JP2001113291A publication Critical patent/JP2001113291A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably and efficiently decompose and remove organic matter by ozone without being affected by the quality of water to be treated. SOLUTION: Organic matter-containing water the pH of which is adjusted to 4-6 is subjected to degassing treatment in a degassing treatment apparatus 1 before subjected to ozone oxidizing decomposition treatment in a reaction tower. Ozone treatment efficiency is enhanced and stabilized by preliminarily removing a carbonic acid component obstructing ozone oxidation or dissolved gas exerting effect on ozone dissolving quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、有機物含有水中の
有機物をオゾンにより効率的に分解除去する有機物含有
水の処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic substance-containing water treatment apparatus for efficiently decomposing and removing organic substances in organic substance-containing water with ozone.
【0002】[0002]
【従来の技術】従来、有機物含有水中の有機物の除去方
法として、オゾンにより有機物を酸化分解して除去する
方法が知られており、このようなオゾンによる有機物の
分解に当たり、過酸化水素(H)添加、触媒充
填、紫外線(UV)照射又はアルカリ添加によるpH調
整を併用することにより、オゾンの酸化作用を向上させ
て分解を促進することも知られている。
2. Description of the Related Art Conventionally, as a method for removing organic substances in water containing organic substances, a method of oxidizing and decomposing organic substances with ozone has been known. When such organic substances are decomposed by ozone, hydrogen peroxide (H 2 It is also known that by using O 2 ) addition, catalyst filling, ultraviolet (UV) irradiation or pH adjustment by alkali addition, the oxidizing action of ozone is improved to promote decomposition.
【0003】[0003]
【発明が解決しようとする課題】オゾンによる有機物の
酸化分解に当たり、上述の如く、H添加、触媒充
填、UV照射又はアルカリ添加を行うことで、有機物の
分解効率を高めることができるが、被処理水の水質によ
っては有機物を十分に除去できない場合があり、また、
供給されたオゾンの被処理水への溶解量が安定せず、処
理水中に有機物が残留する場合もあった。
In the oxidative decomposition of organic substances by ozone, the decomposition efficiency of organic substances can be increased by adding H 2 O 2 , filling the catalyst, irradiating UV or adding alkali as described above. Depending on the quality of the water to be treated, organic substances may not be sufficiently removed,
In some cases, the amount of the supplied ozone dissolved in the water to be treated was not stable, and organic substances remained in the treated water.
【0004】このようなことから、被処理水の水質に影
響を受けることなく、常に安定した処理効果を得ること
ができる技術の開発が望まれている。
[0004] For these reasons, there is a demand for the development of a technology that can always obtain a stable treatment effect without being affected by the quality of the water to be treated.
【0005】本発明は上記従来の問題点を解決し、被処
理水の水質に影響を受けることなく、安定かつ効率的に
有機物を分解除去することができる有機物含有水の処理
装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides an organic matter-containing water treatment apparatus capable of decomposing and removing organic matter stably and efficiently without being affected by the quality of the water to be treated. With the goal.
【0006】[0006]
【課題を解決するための手段】本発明の有機物含有水の
処理装置は、有機物含有水のpHを4〜6に調整するp
H調整手段と、該pH調整手段でpH調整された水から
溶存ガスを減圧下で分離する脱ガス装置と、該脱ガス装
置で脱ガスされた水にオゾンを供給して有機物をオゾン
分解する有機物分解装置とを備えてなることを特徴とす
る。
According to the present invention, there is provided a treatment apparatus for treating organic-containing water, which adjusts the pH of the organic-containing water to 4 to 6.
H adjusting means, a degassing device for separating a dissolved gas from water whose pH has been adjusted by the pH adjusting means under reduced pressure, and supplying ozone to the water degassed by the degassing device to ozone decompose organic substances. And an organic matter decomposer.
【0007】本発明者は、従来のオゾン処理で有機物を
十分に除去できない場合の被処理水の水質について検討
した結果、次の2点がオゾン処理におけるオゾンの利用
効率を阻害していることを知見した。 被処理水中に炭酸イオンや重炭酸イオンが含まれて
いる場合。即ち、オゾン酸化においてはヒドロキシラジ
カル(・OH)が発生し、このラジカルが有機物分解に
作用しているが、被処理水中に炭酸イオンや重炭酸イオ
ンが存在すると、これらがヒドロキシラジカルを消費
し、有機物の分解を阻害する。 被処理水中に溶存ガスが含まれている場合。即ち、
被処理水中の溶存ガス量に応じて、供給されたオゾンの
被処理水中への溶解量が変動し、十分なオゾン溶解量を
得ることができず、オゾン処理を安定して行うことがで
きない。
The present inventor has studied the quality of the water to be treated when the organic substances cannot be sufficiently removed by the conventional ozone treatment. As a result, the following two points impair the ozone utilization efficiency in the ozone treatment. I learned. When the treated water contains carbonate ions or bicarbonate ions. That is, in ozone oxidation, hydroxyl radicals (.OH) are generated, and these radicals act on decomposition of organic substances. However, when carbonate ions or bicarbonate ions are present in the water to be treated, these radicals consume hydroxy radicals, Inhibits the decomposition of organic matter. When the treated water contains dissolved gas. That is,
The amount of supplied ozone dissolved in the water to be treated fluctuates according to the amount of dissolved gas in the water to be treated, so that a sufficient amount of dissolved ozone cannot be obtained, and the ozone treatment cannot be performed stably.
【0008】本発明では、オゾン処理に先立ち、被処理
水をpH6以下に調整し、減圧処理等により水中の溶存
ガスを分離、除去する。被処理水のpHを6以下に調整
することにより、水中の炭酸イオン、重炭酸イオンは二
酸化炭素となるので、脱ガスすることにより、二酸化炭
素形態の炭酸成分及び他の溶存ガスを被処理水から効率
的に除去することができる。
In the present invention, prior to the ozone treatment, the water to be treated is adjusted to a pH of 6 or less, and the dissolved gas in the water is separated and removed by a reduced pressure treatment or the like. By adjusting the pH of the water to be treated to 6 or less, the carbonate ions and bicarbonate ions in the water become carbon dioxide. By degassing, the carbon dioxide component in the form of carbon dioxide and other dissolved gases are removed from the water to be treated. Can be removed efficiently.
【0009】従って、本発明の有機物含有水の処理装置
では、オゾン処理に供される水は、予め、炭酸イオンや
重炭酸イオンが除去されているので、オゾン処理に当た
り生成するヒドロキシラジカルがこれらに消費されるこ
とがなく、水質に影響されずに、有機物の酸化に寄与す
ることができる。また、他の溶存ガスも除去されている
ので、オゾンを供給すると、供給オゾンは水中に容易に
溶解し、所望量のオゾンを溶解させることができる。こ
のため、溶存ガス量により溶解オゾン量が変動すること
はなく、安定したオゾン溶解量とすることができ、オゾ
ン処理も安定に行うことができる。
Therefore, in the organic matter-containing water treatment apparatus of the present invention, the water to be subjected to the ozone treatment has been subjected to removal of the carbonate ions and the bicarbonate ions in advance, so that the hydroxyl radicals generated during the ozone treatment are not included in the water. It is not consumed and can contribute to the oxidation of organic matter without being affected by water quality. Further, since other dissolved gases are also removed, when ozone is supplied, the supplied ozone is easily dissolved in water, and a desired amount of ozone can be dissolved. Therefore, the amount of dissolved ozone does not fluctuate due to the amount of dissolved gas, the amount of dissolved ozone can be stabilized, and the ozone treatment can be stably performed.
【0010】このように、本発明の有機物含有水の処理
装置では、オゾン処理に先立ち、オゾンの利用効率の阻
害因子となる被処理水中の炭酸成分や溶存ガスを予め除
去するため、オゾンの利用効率を高めて安定かつ効率的
なオゾン処理を行える。
As described above, in the treatment apparatus for water containing organic matter according to the present invention, prior to ozone treatment, the use of ozone to remove carbonic acid components and dissolved gas in the water to be treated, which is a factor inhibiting the efficiency of use of ozone, is performed. Efficiency can be increased to perform stable and efficient ozone treatment.
【0011】[0011]
【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.
【0012】図1は本発明の有機物含有水の処理装置の
実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the apparatus for treating organic matter-containing water of the present invention.
【0013】本発明の有機物含有水の処理装置におい
て、被処理水としての有機物含有水としては特に制限は
なく、有機物の除去を必要とする任意の水を被処理水と
することができる。例えば、市水、工水、井水、プロセ
ス排水などの比較的有機物含有量の少ない水を処理して
プロセス用水、純水、超純水などの用水処理を行う場
合、或いは、工場排水、下水などの比較的有機物含有量
の多い水を処理する汚水処理を行う場合など、様々な有
機物処理に本発明は好適に適用可能である。
In the apparatus for treating organic matter-containing water of the present invention, the organic matter-containing water as the water to be treated is not particularly limited, and any water that requires removal of organic substances can be used as the water to be treated. For example, when processing water with relatively low organic matter content such as city water, industrial water, well water, and process wastewater to perform process water, pure water, and ultrapure water, or factory wastewater, sewage The present invention can be suitably applied to various organic substance treatments, for example, when performing sewage treatment for treating water having a relatively high organic substance content.
【0014】被処理水の水温には特に制限はなく、常温
〜70℃の範囲であれば良い。
The temperature of the water to be treated is not particularly limited, and may be in the range of room temperature to 70 ° C.
【0015】本発明においては、このような有機物含有
水(被処理水)に必要に応じて酸を添加することによ
り、pH4〜6、好ましくはpH4.5〜6にpH調整
する。このように被処理水のpHを6以下とすることに
より、前述の如く、水中の炭酸イオンや重炭酸イオンを
後段の脱ガス装置で除去可能な二酸化炭素の形態とする
ことができる。なお、この調整pHを4未満としても、
脱ガス効率の向上は望めず、pH調整用の酸が多量に必
要となる上に、後段のオゾン処理における酸化反応を損
なうこととなり、そのためのpH調整が必要となった
り、設備の腐食の問題を引き起こしたりするため、この
調整pHは4以上とする。このpH調整に用いる酸とし
ては特に制限はなく、塩酸(HCl)、硫酸(HSO
)等の任意のものを用いることができる。
In the present invention, the pH is adjusted to pH 4 to 6, preferably pH 4.5 to 6, by adding an acid to such organic substance-containing water (water to be treated) as necessary. By setting the pH of the water to be treated to 6 or less, it is possible to form carbon dioxide and bicarbonate ions in the water in a form of carbon dioxide that can be removed by a degassing device at the subsequent stage, as described above. In addition, even if this adjusted pH is less than 4,
No improvement in degassing efficiency can be expected, and a large amount of acid for pH adjustment is required, and the oxidation reaction in the subsequent ozone treatment is impaired, which requires pH adjustment and equipment corrosion. This adjusted pH is set to 4 or more in order to cause or the like. The acid used for this pH adjustment is not particularly limited, and hydrochloric acid (HCl), sulfuric acid (H 2 SO
Any one of 4 ) and the like can be used.
【0016】なお、図1の有機物含有水の処理装置で
は、酸を添加してpH調整を行っているが、本発明にお
いて、pH調整手段としては酸添加に限らず、H型カチ
オン交換樹脂塔に被処理水を通水するものであっても良
い。
In the apparatus for treating organic matter-containing water shown in FIG. 1, the pH is adjusted by adding an acid. However, in the present invention, the pH adjusting means is not limited to the addition of an acid, but may be an H-type cation exchange resin tower. The water may be passed through the water to be treated.
【0017】このようにしてpH4〜6にpH調整した
被処理水は、次いで膜脱気装置1等の脱ガス装置で減圧
下に脱ガス処理することにより、二酸化炭素の形態とな
った炭酸成分、その他の溶存ガスを除去する。
The water to be treated, whose pH has been adjusted to pH 4 to 6, is then degassed under reduced pressure by a degassing device such as a membrane degassing device 1 so that the carbonic acid component in the form of carbon dioxide is formed. , Remove other dissolved gases.
【0018】本発明において脱ガス装置としては、気相
側が減圧状態となる装置であれば良く、膜脱気装置の
他、真空脱気装置等も使用できる。真空脱気装置は、被
処理水と接する気相が減圧されることで被処理水中の溶
存ガスが気相側に移行する。膜脱気装置においても、膜
の一方の側が気相で、この気相側が真空ポンプにより吸
引され、膜を介して被処理水中の溶存ガスが吸引除去さ
れる。
In the present invention, as the degassing device, any device can be used as long as the gas phase side is in a reduced pressure state. In addition to a film degassing device, a vacuum degassing device or the like can be used. In the vacuum deaerator, the dissolved gas in the water to be treated moves to the gaseous phase side when the gas phase in contact with the water to be treated is decompressed. Also in the membrane deaerator, one side of the membrane is a gas phase, and this gas phase side is sucked by a vacuum pump, and the dissolved gas in the water to be treated is sucked and removed through the membrane.
【0019】なお、脱ガス装置として他の脱気装置、例
えば、脱炭酸塔、加熱脱気、窒素脱気などの適用も考え
られるが、脱炭酸には有効であっても、他の溶存ガスの
除去ができず、被処理水にはガスが溶存したままか、或
いは溶存ガス成分が他のガスに置換して残留するため、
本発明においては、溶存ガスの除去が可能な真空脱気装
置や膜脱気装置等の減圧下で処理する脱ガス装置を用い
る。
As a degassing device, other degassing devices, such as a decarbonation tower, heating degassing, and nitrogen degassing, can be applied. Can not be removed, the gas remains dissolved in the water to be treated, or the dissolved gas component is replaced by another gas and remains.
In the present invention, a degassing device that performs processing under reduced pressure, such as a vacuum degassing device or a film degassing device that can remove dissolved gas, is used.
【0020】脱ガス処理した水は次いでオゾン処理す
る。
The degassed water is then subjected to ozone treatment.
【0021】本発明において、オゾンと有機物とを反応
させて有機物を分解する有機物分解装置の反応塔の形式
には特に制限はなく、オゾンと水との接触時間(反応時
間)を十分に確保できるものであれば良い。通常は、水
が所定時間滞留する反応塔が用いられる。反応塔では予
めオゾンを溶解した水を導入して貯留しても良いし、反
応塔に被処理水を導入し塔内にオゾンを供給しても良
い。オゾンの供給は、オゾン含有ガスを直接被処理水と
接触させてオゾンを溶解させても良く、また、予めオゾ
ンを溶解させた水を調製し、そのオゾン溶解水と被処理
水とを混合しても良い。更に、反応装置は、反応塔形式
ではなく、エジェクター等の接触時間を有する配管形式
のものであっても良い。いずれの形式のものであって
も、反応装置は余剰オゾンガスやガス状反応生成物を処
理水と分離する手段を備えるものとなる。
In the present invention, the type of the reaction tower of the organic substance decomposing apparatus for decomposing organic substances by reacting ozone with organic substances is not particularly limited, and a sufficient contact time (reaction time) between ozone and water can be secured. Anything is fine. Usually, a reaction tower in which water stays for a predetermined time is used. In the reaction tower, water in which ozone is dissolved may be introduced and stored, or water to be treated may be introduced into the reaction tower to supply ozone into the tower. Ozone may be supplied by dissolving ozone by bringing an ozone-containing gas into direct contact with the water to be treated, or preparing water in which ozone is dissolved in advance and mixing the ozone-dissolved water with the water to be treated. May be. Further, the reactor may be of a piping type having a contact time such as an ejector instead of a reaction tower type. Regardless of the type, the reactor is provided with means for separating excess ozone gas and gaseous reaction products from treated water.
【0022】また、このオゾン処理は、オゾンの単独酸
化処理であっても良く、他の酸化効率向上手段の1種又
は2種以上を併用したものであっても良い。この場合、
併用手段は下記の〜等のオゾン酸化促進法として公
知のものが挙げられ、いずれの場合もヒドロキシラジカ
ルの生成量を増大してオゾンの酸化作用を向上させるの
に有効である。 Hの併用:少量のHを共存させるとオ
ゾンの酸化力が向上する。この場合、Hはオゾン
処理の前段で添加され、その添加量はH/O
(モル比)で0.2〜2程度となる量とするのが好ま
しい。 アルカリ添加:アルカリの添加でpH中性〜11、
好ましくは9〜11とすると酸化反応を促進できる。こ
の場合、アルカリはオゾン処理の前段で添加される。添
加するアルカリには特に制限はなく、水酸化ナトリウム
(NaOH)、水酸化カリウム(KOH)等を用いるこ
とができる。 UV照射:反応塔に波長360nm以下のUVラン
プを設置して照射することにより酸化反応を促進でき
る。 触媒充填:反応塔内に酸化還元触媒を充填しておく
ことにより酸化反応を促進することができる。また、余
剰の溶解オゾンも分解されるので、処理水にオゾンが残
留することを防止できる。触媒は反応塔に充填する他、
反応塔の後段に触媒充填塔を設置して用いても良い。使
用する触媒としては、Pt,Ru,Pd等の金属触媒が
挙げられる。
This ozone treatment may be a single oxidation treatment of ozone or a combination of one or more other oxidation efficiency improving means. in this case,
Examples of the combined use method include the following known methods for promoting ozone oxidation, such as the following methods. In each case, it is effective to increase the amount of generated hydroxyl radicals and improve the oxidizing action of ozone. Of H 2 O 2 in combination: oxidizing power of the coexistence of a small amount of H 2 O 2 Ozone is improved. In this case, H 2 O 2 is added before the ozone treatment, and the added amount is H 2 O 2 / O.
3 (molar ratio) It is preferable to set the amount to be about 0.2 to 2. Addition of alkali: pH neutral to 11 by addition of alkali,
Preferably, when it is 9 to 11, the oxidation reaction can be promoted. In this case, the alkali is added before the ozone treatment. The alkali to be added is not particularly limited, and sodium hydroxide (NaOH), potassium hydroxide (KOH), or the like can be used. UV irradiation: An oxidation reaction can be promoted by irradiating a reaction tower with a UV lamp having a wavelength of 360 nm or less. Catalyst filling: An oxidation reaction can be promoted by filling a reaction tower with an oxidation-reduction catalyst. In addition, since excess dissolved ozone is also decomposed, it is possible to prevent ozone from remaining in the treated water. In addition to filling the catalyst into the reaction tower,
A catalyst packed tower may be installed and used at the subsequent stage of the reaction tower. Examples of the catalyst used include metal catalysts such as Pt, Ru, and Pd.
【0023】図1(a)〜(c)に示す処理装置のう
ち、図1(a)はアルカリ添加を併用するものであり、
膜脱気装置1の脱ガス処理水にアルカリを添加してpH
調整した後、オゾンを添加してスタティックミキサー2
で混合し、その後、反応塔3Aで反応させる。図1
(b)はアルカリ添加とH添加を併用するもので
あり、膜脱気装置1の脱ガス処理水にアルカリを添加し
てpH調整した後、Hを添加してスタティックミ
キサー2で混合し、その後、反応塔3Bでオゾンと向流
接触させて反応させる。図1(c)はアルカリ添加とH
添加と触媒充填を併用するものであり、膜脱気装
置1の脱ガス処理水にアルカリを添加してpH調整した
後、Hを添加してスタティックミキサー2で混合
し、その後、触媒4を充填した反応塔3Bでオゾンと向
流接触させて反応させる。
1 (a) to 1 (c), the processing apparatus shown in FIG. 1 (a) uses an alkali addition.
The alkali is added to the degassed water of the membrane deaerator 1
After adjustment, add ozone and add static mixer 2
And then react in the reaction tower 3A. FIG.
(B) combines the addition of an alkali and the addition of H 2 O 2. The pH is adjusted by adding an alkali to the degassed water of the membrane deaerator 1, and then the H 2 O 2 is added and a static mixer is added. 2 and then react in countercurrent contact with ozone in the reaction tower 3B. FIG. 1 (c) shows the addition of alkali and H
The addition of 2 O 2 and the filling of the catalyst are used in combination. After the alkali is added to the degassed water of the membrane deaerator 1 to adjust the pH, H 2 O 2 is added and mixed with the static mixer 2, Thereafter, the reaction is performed by bringing the ozone countercurrently into contact with the reaction tower 3B filled with the catalyst 4.
【0024】なお、オゾン反応塔は多段に設置して、各
塔でオゾンを添加するようにしても良い。
The ozone reaction tower may be provided in multiple stages, and ozone may be added in each tower.
【0025】このようなオゾン処理において、反応塔の
滞留時間(HRT)は被処理水の有機物濃度に応じて適
宜決定されるが、通常の場合15〜120分程度とされ
る。
In such an ozone treatment, the residence time (HRT) of the reaction tower is appropriately determined according to the organic matter concentration of the water to be treated, and is usually about 15 to 120 minutes.
【0026】また、被処理水に供給して被処理水に溶解
させるオゾンの溶解濃度は、被処理水中の有機物含有量
に応じて適宜決定されるが、通常の場合、被処理水中の
TOCと同量〜10重量倍量となるように供給するのが
好ましい。
The dissolved concentration of ozone to be supplied to the water to be treated and dissolved in the water to be treated is determined as appropriate according to the content of organic substances in the water to be treated. It is preferable to supply them in the same amount to 10 times by weight.
【0027】反応塔から排出される排ガスは残留オゾン
を含むものであるため、オゾン分解装置で処理した後系
外へ排出される。また、処理水は、系外へ排出され、必
要に応じて更に脱塩装置等で脱塩処理される。
Since the exhaust gas discharged from the reaction tower contains residual ozone, it is discharged outside the system after being treated by an ozone decomposer. Further, the treated water is discharged out of the system, and is further desalinated by a desalination device or the like as necessary.
【0028】[0028]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.
【0029】実施例1 市水と純水(イソプロピルアルコールをTOCとして3
ppm含む)とを1:1で混合した水を被処理水とし
て、図1(a)に示す装置で処理した(ただし、アルカ
リの代りにHを添加した。)。この被処理水の水
質は下記の通りである。
Example 1 City water and pure water (isopropyl alcohol as TOC was 3
1: 1 was used as the water to be treated and treated with the apparatus shown in FIG. 1A (however, H 2 O 2 was added instead of alkali). The quality of the water to be treated is as follows.
【0030】〔被処理水水質〕 導電率: 70μS/cm pH : 6.7 TOC: 1.9ppm CO: 8.3ppm この被処理水にHClを添加してpH5.0に調整した
後、膜脱気装置(ヘキスト社製「Liqu Cel」4
インチ,1本)に160L/hrで通水した。この膜脱
気装置には、スイープガスとしてNガスを0.1N−
/hrで通気し、真空度40Torrで処理した。
得られた脱ガス処理水のpHは6.1であった。
[Water quality of treated water] Conductivity: 70 μS / cm pH: 6.7 TOC: 1.9 ppm CO 2 : 8.3 ppm HCl was added to the treated water to adjust the pH to 5.0, and then the membrane was treated. Deaerator (“Liqu Cel” 4 manufactured by Hoechst)
(1 inch) at 160 L / hr. The membrane degasifier, a N 2 gas as sweep gas 0.1N-
The mixture was ventilated at m 3 / hr and treated at a vacuum of 40 Torr.
The pH of the resulting degassed water was 6.1.
【0031】この脱ガス処理水にHを50ppm
添加した後、オゾンガスを2g−O /hr添加し、反
応塔で反応させた。この反応塔(560mm直径×20
00mm高さ)の滞留時間(HRT)は60分であっ
た。
The degassed water contains H2O250 ppm
After the addition, ozone gas is 3/ Hr added,
The reaction was carried out in the tower. This reaction tower (560 mm diameter × 20
(HRT) is 60 minutes.
Was.
【0032】この処理において、反応塔の入口水のCO
濃度及びTOC濃度と、出口水(処理水)のTOC濃
度を調べ、結果を表1に示した。また、反応塔における
TOC除去率を算出し、結果を表1に併記した。
In this treatment, CO at the inlet water of the reaction tower
2 and the TOC concentration and the TOC concentration of the outlet water (treated water) were examined. The results are shown in Table 1. Further, the TOC removal rate in the reaction tower was calculated, and the results are shown in Table 1.
【0033】実施例2 実施例1において、反応塔内に15メッシュ金網にPt
メッキを施した触媒を100L充填して反応を行ったこ
と以外は同様にして処理を行い、各部のCO濃度、T
OC濃度、TOC除去率を調べ、結果を表1に示した。
Example 2 In Example 1, a 15-mesh wire mesh was used to form Pt in the reaction tower.
The same process was performed except that 100 L of the plated catalyst was charged and the reaction was performed, and the CO 2 concentration, T
The OC concentration and the TOC removal rate were examined, and the results are shown in Table 1.
【0034】比較例1,2 実施例1,2において、それぞれ膜脱気装置における脱
ガス処理を行わなかったこと以外は同様にして処理を行
い(ただし、反応塔の入口水のpHは同等となるように
調整した。)、各部のCO濃度、TOC濃度、TOC
除去率を調べ、結果を表1に示した。
Comparative Examples 1 and 2 In Examples 1 and 2, treatment was carried out in the same manner as in Examples 1 and 2, except that the degassing treatment was not carried out in the membrane deaerator. The concentration was adjusted so that the CO 2 concentration, TOC concentration, TOC
The removal rate was examined, and the results are shown in Table 1.
【0035】[0035]
【表1】 [Table 1]
【0036】表1より、本発明の有機物含有水の処理装
置により、オゾン処理に先立ち炭酸成分や溶存ガスを除
去することにより、オゾンによる有機物の酸化分解効率
を高めることができることがわかる。
From Table 1, it can be seen that the efficiency of oxidative decomposition of organic substances by ozone can be increased by removing carbonic acid components and dissolved gases prior to ozone treatment by the apparatus for treating organic substance-containing water of the present invention.
【0037】[0037]
【発明の効果】以上詳述した通り、本発明の有機物含有
水の処理装置によれば、被処理水の水質に影響を受ける
ことなく、安定かつ効率的に有機物を分解除去すること
ができる。
As described above in detail, according to the apparatus for treating organic substance-containing water of the present invention, organic substances can be decomposed and removed stably and efficiently without being affected by the quality of the water to be treated.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の有機物含有水の処理装置の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an organic matter-containing water treatment apparatus of the present invention.
【符号の説明】[Explanation of symbols]
1 膜脱気装置 2 スタティックミキサー 3A,3B,3C 反応塔 1 membrane deaerator 2 static mixer 3A, 3B, 3C reaction tower
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D037 AA01 AA11 AB11 BA18 BA23 BB07 BB09 CA03 CA12 CA14 CA15 4D050 AA02 AA04 AA13 AA15 AB07 AB14 BB02 BB09 BC06 BC09 BC10 BD02 BD03 BD06 BD08 CA03 CA08 CA13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D037 AA01 AA11 AB11 BA18 BA23 BB07 BB09 CA03 CA12 CA14 CA15 4D050 AA02 AA04 AA13 AA15 AB07 AB14 BB02 BB09 BC06 BC09 BC10 BD02 BD03 BD06 BD08 CA03 CA08 CA13

Claims (1)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 有機物含有水のpHを4〜6に調整する
    pH調整手段と、該pH調整手段でpH調整された水か
    ら溶存ガスを減圧下で分離する脱ガス装置と、該脱ガス
    装置で脱ガスされた水にオゾンを供給して有機物をオゾ
    ン分解する有機物分解装置とを備えてなることを特徴と
    する有機物含有水の処理装置。
    1. A pH adjusting means for adjusting the pH of water containing organic matter to 4 to 6, a degassing device for separating a dissolved gas from water whose pH has been adjusted by said pH adjusting means under reduced pressure, and a degassing device. An organic matter decomposer for supplying ozone to the degassed water to decompose organic matter by ozonolysis.
JP29701699A 1999-10-19 1999-10-19 Apparatus for treating organic matter-containing water Pending JP2001113291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29701699A JP2001113291A (en) 1999-10-19 1999-10-19 Apparatus for treating organic matter-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29701699A JP2001113291A (en) 1999-10-19 1999-10-19 Apparatus for treating organic matter-containing water

Publications (1)

Publication Number Publication Date
JP2001113291A true JP2001113291A (en) 2001-04-24

Family

ID=17841161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29701699A Pending JP2001113291A (en) 1999-10-19 1999-10-19 Apparatus for treating organic matter-containing water

Country Status (1)

Country Link
JP (1) JP2001113291A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069418A1 (en) * 2004-12-30 2006-07-06 Aid-Development Engineering Pty Limited Method for ground water and wastewater treatment
JPWO2006064755A1 (en) * 2004-12-13 2008-06-12 サントリー株式会社 How to store fragrance ingredients
AU2005321750B2 (en) * 2004-12-30 2009-02-19 Sebbes, Mary Robertson Method for ground water and wastewater treatment
JP2011161345A (en) * 2010-02-08 2011-08-25 Japan Organo Co Ltd Method and apparatus for treating chemical pollution
JP2013522021A (en) * 2010-03-15 2013-06-13 シム,ジョン ソプ Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
JP2016209849A (en) * 2015-05-13 2016-12-15 株式会社日立製作所 Organic material decomposition apparatus and organic material decomposition method
US11111165B2 (en) 2015-03-16 2021-09-07 Infinite Water Technologies Pty Ltd Process and apparatus for treating water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006064755A1 (en) * 2004-12-13 2008-06-12 サントリー株式会社 How to store fragrance ingredients
JP5374020B2 (en) * 2004-12-13 2013-12-25 サントリー食品インターナショナル株式会社 How to store fragrance ingredients
WO2006069418A1 (en) * 2004-12-30 2006-07-06 Aid-Development Engineering Pty Limited Method for ground water and wastewater treatment
AU2005321750B2 (en) * 2004-12-30 2009-02-19 Sebbes, Mary Robertson Method for ground water and wastewater treatment
JP2011161345A (en) * 2010-02-08 2011-08-25 Japan Organo Co Ltd Method and apparatus for treating chemical pollution
JP2013522021A (en) * 2010-03-15 2013-06-13 シム,ジョン ソプ Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
US11111165B2 (en) 2015-03-16 2021-09-07 Infinite Water Technologies Pty Ltd Process and apparatus for treating water
JP2016209849A (en) * 2015-05-13 2016-12-15 株式会社日立製作所 Organic material decomposition apparatus and organic material decomposition method

Similar Documents

Publication Publication Date Title
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
JP2005224771A (en) Wastewater treatment apparatus
JPH1199395A (en) Treatment of organic matter containing water
JP2001113291A (en) Apparatus for treating organic matter-containing water
JP3506171B2 (en) Method and apparatus for removing TOC component
JP2007125519A (en) Method and apparatus for producing ultrapure water
JP5678436B2 (en) Ultrapure water production method and apparatus
JP2005161138A (en) Water treatment method and water treatment apparatus
EP0242941B1 (en) Process and apparatus for the deodorization of air
JP4835498B2 (en) Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production
JPH10202296A (en) Ultrapure water producer
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JPH1199394A (en) Method for removing organic matter in water
JP3789631B2 (en) Water treatment method and water treatment apparatus
JP2000308815A (en) Producing device of ozone dissolved water
JP2500968B2 (en) Pure water production equipment
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JPH1128482A (en) Production of pure water
JPH0889976A (en) Method for removing organic matter in water
JP2008173617A (en) Water treatment apparatus and water treating method
JP4159823B2 (en) Ultrapure water production method
TWI732970B (en) Water treatment method and apparatus
JP5512358B2 (en) Pure water production method and apparatus
JP4569884B2 (en) Method and apparatus for treating organic matter in water