JPH11508120A - 電子的負荷回路に供給するための回路装置 - Google Patents

電子的負荷回路に供給するための回路装置

Info

Publication number
JPH11508120A
JPH11508120A JP9534808A JP53480897A JPH11508120A JP H11508120 A JPH11508120 A JP H11508120A JP 9534808 A JP9534808 A JP 9534808A JP 53480897 A JP53480897 A JP 53480897A JP H11508120 A JPH11508120 A JP H11508120A
Authority
JP
Japan
Prior art keywords
circuit
pump
value
supply voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9534808A
Other languages
English (en)
Inventor
フィーマン、ハンス―ハインリッヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7789786&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11508120(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH11508120A publication Critical patent/JPH11508120A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

(57)【要約】 回路装置に供給する供給電圧(Vdd)の値よりも絶対値が大きい値の高電圧を電子的負荷回路に供給するための回路装置であって、負荷回路と電気的に接続されているポンプ回路(2)を有し、このポンプ回路が予め定められたポンプ周波数を有する内部のスイッチング信号(3)に基づいて高電圧を負荷回路に出力し、負荷回路により受け入れられるポンプ回路(2)のポンプ電力がほぼ供給電圧(Vdd)の値にもポンプ回路(2)のポンプ周波数の値にも関係する。この回路装置は、ボンプ回路(2)に対応付けられ少なくともポンプ回路(2)の供給電圧(Vdd)から導き出された電圧を供給される電子的制御回路(4)を有し、この制御回路が供給電圧(Vdd)の値に関係する制御信号(5)に関係してポンプ回路(2)から出力される高電圧を発生するためポンプ周波数に作用するスイッチング信号(3)をポンプ回路(2)に、スイッチング信号(3)のポンプ周波数の値が供給電圧(Vdd)の値に対して逆比例するように出力する。

Description

【発明の詳細な説明】 電子的負荷回路に供給するための回路装置 本発明は、回路装置に供給する供給電圧の値よりも絶対値が大きい値の高電圧 を電子的負荷回路に供給するための回路装置であって、負荷回路と電気的に接続 されているポンプ回路を有し、このポンプ回路が予め定められたポンプ周波数を 有する内部のスイッチング信号に基づいて高電圧を、負荷回路により受け入れら れるポンプ回路のポンプ電力がほぼ供給電圧の値にもポンプ回路のスイッチング 信号のポンプ周波数の値にも関係するように負荷回路に出力する回路装置に関す る。 電気的にプログラミング可能かつ消去可能な半導体メモリに対しては、プログ ラミングおよび消去のために、たいていの場合通常の供給電圧を越える絶対値の 電圧が必要とされる。電気的にプログラミング可能かつ消去可能な半導体メモリ のメモリセルは通常、2つの外部から駆動可能な電極と、それらの間に位置する 非電位拘束の電極とから構成されている。このようなメモリセルのプログラミン グは外部から駆動可能な両電極の間に典型的には約+18ボルトの大きさの高電 圧を与えることにより非電位拘束の電極に電荷をもたらすことによって行われ、 また消去はプログラミング電圧に対し逆極性の典型的には約−12ボルトの大き さの高電圧を与えることにより非電位拘束の電極から電荷を除去することによっ て行われる。電気的にプログラミング可能かつ消去可能な半導体メモリの重要な 使用分野は、電子式データ処理設備と並んで、特に例えばメモリカードおよびマ イクロプロセッサカードのような電子式カードである。これらの場合にはその際 供給電圧が外部からいわゆるターミナルから電子式カードとターミナルとの間の データ交換の際に供給される。バイポーラトランジスタから構成された集積半導 体構成素子を有するTTL技術の領域においては一般に5ボルト±10%であり 、また電界効果トランジスタから構成された集積半導体構成素子を有するCMO S技術の領域においては典型的には3ボルト±10%である。従って、電気的に プログラミング可能かつ消去可能な半導体メモリの上記の使用分野に対しては、 約 3ボルトの供給電圧でも約5ボルトの供給電圧でも動作する両方の極性の電圧に 対する高電圧発生回路を用いることが望ましい。 本発明の課題は、冒頭に記載されている種類の回路装置であって、負荷回路に 一定のポンプ電力を出力するため異なった供給電圧により作動可能な回路装置を 提供することである。 この課題は請求項1による回路装置により解決される。 本発明によれば、回路装置が、ポンプ回路に対応付けられ少なくともポンプ回 路の供給電圧から導き出された電圧を供給される電子的制御回路を有し、この制 御回路が供給電圧の値に関係する制御信号に関係してポンプ回路から出力される 高電圧を発生するためポンプ周波数に作用するスイッチング信号をポンプ回路に 、スイッチング信号のポンプ周波数の値が供給電圧の値に対して逆比例するよう に出力する。本発明は、負荷回路に与えられるポンプ電力と、供給電圧とポンプ 周波数との積との関係を利用し、異なる供給電圧の際にも可能なかぎり一定のポ ンプ電力を与えるためにポンプ周波数を制御し、ポンプ周波数を供給電圧の低下 と共に上昇せしめるという認識に基づいている。その際に、ポンプ周波数を制御 するために供給電圧の値に相応する単一の制御信号しか必要とされないので、回 路技術的費用は比較的わずかである。ポンプ周波数はこうして専ら供給電圧の値 に関係して制御することができる。たとえばポンプ回路が与える電力または負荷 回路が受ける電力のような他の量はポンプ周波数に本質的に影響しないので、ポ ンプ周波数を制御するために供給電圧とは異なる他の量に関係するその他の信号 は必要とされない。 本発明による回路装置の好ましい構成では、ポンプ回路は制御回路の制御信号 により負荷回路に少なくとも近似的に一定のポンプ電力を出力するために制御さ れ、その際にポンプ回路のポンプ電力の出力が制御回路によりほぼ供給電圧値と ポンプ周波数との積に比例して制御されるようにすることができる。ポンプ回路 のポンプ電力を一定の値に保つため、ポンプ周波数をポンプ電力への供給電圧値 の影響が補償されるように供給電圧の値により制御するように構成されていてよ い。 ポンプ電力と、供給電圧とポンプ周波数との積との間の比例的な関係を考慮に 入れて、さらに、ポンプ回路のポンプ電力の出力は制御回路により供給電圧値に 関係して、ポンプ周波数が供給電圧値に間接的に比例するように制御されている ように構成されていてよい。ポンプ電力P=c・U・f(ここでPはポンプ電力 、cは理想的には一定の係数、Uは供給電圧、fはポンプ周波数)を有するポン プ回路では理想的には、ポンプ周波数fを関係式f=d/U(ここでdは理想的 な定数)に従って制御する制御回路がポンプ電力を一定の値に保つであろう。ポ ンプ周波数の関係に対してはそのときそれによって次式が生ずる:P=c・d。 間接的に供給電圧の値に比例しているポンプ周波数のこのような制御において、 ポンプ電力と供給電圧およびポンプ周波数との関係を補償することができる。実 際の回路では定数cおよびdはたとえば温度または構成素子固有のパラメータに 関係している。この影響は、必要とみなされるかぎり、場合によっては適当な回 路技術的手段により補償することができる。 本発明による回路装置の別の好ましい構成では、制御回路はスイッチング信号 を発生しかつ出力するために発振器回路を有し、その発振周波数が発振器回路の 入力端に与えられている制御信号に関係して制御されるようにすることができる 。発振器回路から発生される信号をポンプ回路に対するスイッチング信号として 使用する際にはポンプ周波数は発振器周波数に比例しており、それによってポン プ周波数は制御信号に関係して制御される。 供給電圧値とポンプ周波数との間の間接的な比例関係を得るため、さらに、発 振器回路の入力端に与えられている制御信号は直接的に供給電圧値から導き出さ れるようにすることができる。それによりポンプ周波数の値は直接的に供給電圧 の値により制御される。 本発明による回路装置の一層詳細な構成では、発振器回路がシュミット・トリ ガ回路を有するものとして構成されていてよい。シュミット・トリガ回路を有す る発振器回路の周波数は簡単な仕方でただ電圧により制御することができる。そ れによって本発明による回路装置は比較的わずかな回路技術的費用により構成す ることができる。 発振器回路から出力される信号のその後の処理のために、ポンプ回路に対応付 けられている制御回路が発振器回路の出力側に接続されている分周器を有し、こ の分周器が2つの互いに反対称なクロック信号をポンプ回路の両ポンプ入力端に 与えるように構成されていることは有利である。ポンプ回路の申し分のない機能 のために、高いレベルおよび低いレベルが等しい時間的長さを有する2つの互い に逆のクロック信号を用いることは有利である。このようなクロック信号は本発 明による回路装置の分周器により比較的簡単な仕方で与えられ得る。分周器はた とえばTTLまたはCMOS構造様式のようなたいていの通常の半導体技術で得 られる簡単なゲート回路により構成することができる。 本発明のさらに好ましい構成では、ポンプ回路が、コンデンサとダイオードと して動作するトランジスタとを有する複数の段から構成されている縦続回路を有 し、その縦続回路の段が高電圧出力端と供給電圧値との間に直列回路をなして接 続されており、ダイオードとして動作するトランジスタが直列に接続されており 、またダイオードとして動作するトランジスタの結合点に結合されているコンデ ンサがダイオードとして動作するトランジスタと反対の側で交互に両ポンプ入力 端に結合され、またポンプ回路が別のトランジスタを有し、このトランジスタは 供給電圧とトランジスタから構成されている直列回路との間に接続され、制御入 力端で供給電圧に接続され、帰還結合され、ダイオードとして動作する。ダイオ ードとして動作し、帰還結合され、特にCMOS技術によるトランジスタの使用 により半導体基板上の面積占有が小さく保たれ得る。このようなポンプ回路はた とえばTTLまたはCMOS構造様式のようなたいていの通常の半導体技術で実 現可能であり、このことは半導体基板上の完全な集積可能性を保証する。 可能なかぎりコンパクトな構造を保証するため、回路装置が負荷回路と共通に 半導体基板上に集積されて構成されていることは有利である。発振器回路、分周 器および縦続回路は同一の半導体技術で実現され得るので、単一の半導体基板上 にモノリシックな回路構成部分を作ることが可能である。 本発明による制御回路の特に好ましい応用においては、電子的負荷回路が不揮 発性の電気的に消去可能、プログラミング可能な半導体メモリの一群のプログラ ミングすべきまたは消去すべきメモリセルを有するものとして構成されていてよ い。この場合、高電圧の値が好ましくは約+18ボルトまたは−12ボルト、ま た供給電圧の値が好ましくは約+3ボルト±10%ないし+5ボルト±10%で あることは有利である。 回路技術費用を低減するため、さらに、制御信号の値は直接的に供給電圧の値 に相当するように構成されていてよい。それに対し供給電圧と制御信号との間の 変換回路は、場合によっては、制御信号と供給電圧との間の非線型な伝達関数を 結果として生じ、このことはポンプ周波数と供給電圧との間の間接的な比例関係 の乱れを生じさせ得るであろう。 本発明の他の特徴、利点および合目的性は図面による実施例の以下の説明から 明らかになる。 図1は本発明による回路装置の概略構成図、 図2はシュミット・トリガ発振器回路の概略構成図、また 図3は本発明による回路装置のいくつかの電圧の時間的経過を示す図である。 図1は高電圧出力端1に接続されている、図1中に詳細には示されていない電 子的負荷回路に、回路装置に供給する供給電圧Vddの値よりも絶対値が大きい値 の高電圧を供給するための本発明による回路装置の1つの実施例を示す。負荷回 路は、好ましくは、電子式メモリカードまたはマイクロプロセッサカードのなか に設けられている電気的にプログラミング可能かつ消去可能な半導体メモリのメ モリセルであってよい。回路装置は負荷回路と接続されているポンプ回路2を有 し、このポンプ回路は予め定められたポンプ周波数を有する内部のスイッチング 信号3に基づいて典型的には+18ボルトの高電圧を高電圧出力端1を介して負 荷回路に出力し、負荷回路により受け入れられるポンプ回路2のポンプ電力がほ ぼ供給電圧Vddの値にもポンプ回路2のポンプ周波数の値にも関係するようにす る。回路装置は、ポンプ回路2に対応付けられ、ポンプ回路2の供給電圧Vddか ら導き出された電圧を供給される電子的制御回路4を有し、この電子的制御回路 は供給電圧Vddの値に関係する制御信号5に関係して、ポンプ回路2から高電圧 の発生のためポンプ周波数に作用するスイッチング信号3をポンプ回路2に、ス イッチング信号3のポンプ周波数の値が供給電圧Vddの値に対して逆比例するよ うに与える。制御回路4およびポンプ回路2は制御回路4の制御出力端6、7お よびポンプ回路2のポンプ入力端8、9を介して互いに結合されている。図1に よる実施例では制御回路4の制御信号5は直接的に回路装置の供給電圧Vddであ る。制御回路4はシュミット・トリガ発振器10と、シュミット・トリガ発振器 10の出力側に接続され、ゲート回路11ないし21から構成されている分周器 22とを有する。図2を参照すると、発振器回路10は第1の参照電圧入力端2 3および第2の参照電圧入力端24を有し、これらの入力端に回路装置を調節す るための2つの一定の参照電圧が与えられている。発振器回路10はさらに4つ のトランジスタ25ないし28、2つのpチャネル電界効果トランジスタ25、 26および2つのnチャネル電界効果トランジスタ27、28から成る直列回路 を有し、この直列回路は供給電圧Vddと接地端子との間に接続されている。それ に対して並列に、4つのトランジスタ29ないし32、2つのpチャネル電界効 果トランジスタ29、30および2つのnチャネル電界効果トランジスタ31、 32から成る第2の直列回路が接続されている。トランジスタ25の制御入力端 は第1の参照電圧入力端23と、又トランジスタ28の制御入力端は第2の参照 電圧入力端子24と接続されている。トランジスタ26、27の制御入力端は互 いに接続されている。トランジスタ29ないし32の制御入力端は互いに結合さ れ、またトランジスタ26、27の両電極の結合点と接続されている。トランジ スタ26、27に対して並列にさらにコンデンサ35が接続されている。トラン ジスタ29ないし31に対して並列にpチャネル電界効果トランジスタ33が接 続されている。トランジスタ30ないし32に対して並列にnチャネル電界効果 トランジスタ34が接続されている。トランジスタ33、34の制御入力端はト ランジスタ30、31の電極の結合点と、また2つのノットゲート36、37の 入力端と接続されている。ノットゲート36の出力端はトランジスタ26、27 の共通の制御端子と接続されている。ノットゲート37の出力端は発振器回路1 0の出力端38に相当する。発振器回路10は発振器出力端38を介して分周器 22と結合されている。ゲート11ないし21から形成される分周器22は5つ のノットゲート11ないし15と、2つの否定オアゲート16、17と、それぞ れ集積されたアンドゲートと直列接続されている4つの否定オアゲート18ない し21とを有し、これらのゲートは図1から明らかなように接続されている。制 御回路4の第1および第2の制御出力端6、7はポンプ回路2にスイッチング信 号3を供給するため第1および第2のポンプ入力端8、9と結合されている。1 4のコンデンサ39、40および15のトランジスタ41、42から構成されて いるポンプ回路2はそれぞれコンデンサ39、40とダイオードとして動作する トランジスタ41とを有する14の段から成っている縦続回路であり、この縦続 回路は図1中に示されているように接続されている。縦続回路の段はその際に、 ダイオードとして動作するトランジスタ41が直列回路を形成するように、直列 回路をなして高電圧出力端1と供給電圧Vddとの間に接続されており、ダイオー ドとして動作するトランジスタ41の制御入力端に結合されているコンデンサ3 9、40が交互にトランジスタ41と反対の側で両方のポンプ入力端8、9に結 合されており、その際に偶数のコンデンサ39はポンプ入力端8に、また奇数の コンデンサ40はポンプ入力端9に接続されている。ポンプ回路2は別のトラン ジスタ42を有し、このトランジスタ42は、供給電圧Vddとトランジスタ41 から成る直列回路との間に接続され、制御入力端で供給電圧Vddに接続され、帰 還結合され、またダイオードとして動作する。図3には、図1および図2に示さ れている回路装置のいくつかの電圧の時間的経過を示す4つのダイアグラム43 ないし46が示されている。第1の曲線43は供給電圧Vdd=5ボルトの際に発 振器回路10により発生され出力端38に与えられているクロック信号を示し、 また第2の曲線44は同時に高電圧出力端1に与えられている高電圧を示す。そ れと類似して曲線45および46は供給電圧Vdd=3ボルトの際に出力端38に 与えられているクロック信号、高電圧出力端1に与えられている高電圧を示す。 図1および2に示されている回路装置の作用を以下に図3に示されている電圧 経過により一層詳細に説明する。シュミット・トリガ発振器10はその出力端3 8に長方形信号45、46を発生し、その周波数は回路装置の供給電圧Vddの値 と同一である制御信号5に間接的に比例して制御されている。参照電圧入力端2 3、24に与えられている参照電圧により、図2中に示されトランジスタ25な いし28から形成されている直列回路は電流源として動作し、その電流は供給電 圧Vddに比例している。ノットゲート36により帰還結合されているトランジス タ29ないし31およびコンデンサ35の直列回路は振動回路を形成し、発振を 生じ、これらの発振はノットゲート37により長方形信号に整形され、出力端3 8を介して分周器22に供給される。5ボルトまたは3ボルトの供給電圧Vddの 際の発振器出力端38におけるクロック信号を表す曲線43および45の比較は 、供給電圧Vddと発振器出力端38におけるクロック周波数との間の近似的に間 接的に比例する関係を示す。シュミット・トリガ発振器10の出力側に接続され ている分周器22は出力端38に与えられている信号を、スイッチング信号3が 制御出力端6、7、従ってポンプ入力端8、9に与えられ、常に互いに逆の2つ の長方形信号から成るように処理する。ポンプ回路2はポンプ入力端8、9に与 えられているスイッチング信号を処理して高電圧として高電圧出力端1に与える 。曲線44および46は、高電圧出力端1に与えられている高電圧が、5ボルト および3ボルトのそのつどの供給電圧Vddを出発値として、ポンプ回路2により 発振器出力端38に与えられている相応のクロック信号の半分の周波数によりパ ケット状に上昇することを明らかにする。両方の場合に高電圧出力端1に与えら れている高電圧の値は2μSの後にそのつどの供給電圧Vddのほぼ2倍の値に上 昇し、またその後の2μSの後にそのつどの供給電圧Vddのほぼ3倍の値に上昇 し、このことは供給電圧Vddにほぼ無関係なポンプ電力を意味する。

Claims (1)

  1. 【特許請求の範囲】 1.回路装置に供給する供給電圧(Vdd)の値よりも絶対値が大きい値の高電圧 を電子的負荷回路に供給するための回路装置であって、負荷回路と電気的に接続 されているポンプ回路(2)を有し、このポンプ回路が予め定められたポンプ周 波数を有する内部のスイッチング信号(3)に基づいて高電圧を、負荷回路によ り受け入れられるポンプ回路(2)のポンプ電力がほぼ供給電圧(Vdd)の値に もポンプ回路(2)のスイッチング信号(3)のポンプ周波数の値にも関係する ように負荷回路に出力する回路装置において、 回路装置が、ポンプ回路(2)に対応付けられ少なくともポンプ回路(2)の 供給電圧(Vdd)から導き出された電圧を供給される電子的制御回路(4)を有 し、この制御回路が供給電圧(Vdd)の値に関係する制御信号(5)に関係して ポンプ回路(2)から出力される高電圧を発生するためポンプ周波数に作用する スイッチング信号(3)をポンプ回路(2)に、スイッチング信号(3)のポン プ周波数の値が供給電圧(Vdd)の値に対して逆比例するように出力することを 特徴とする高電圧を電子的負荷回路に供給するための回路装置。 2.ポンプ回路(2)が制御回路(4)の制御信号(5)により負荷回路に少な くとも近似的に一定のポンプ電力を出力するために制御されていることを特徴と する請求項1記載の回路装置。 3.ポンプ回路(2)のポンプ電力の出力が制御回路(4)によりほぼ供給電圧 値(Vdd)とポンプ周波数との積に比例して制御されていることを特徴とする請 求項1または2記載の回路装置。 4.ポンプ回路(2)のポンプ電力の出力が制御回路(4)により供給電圧値( Vdd)に関係して、ポンプ周波数が供給電圧値(Vdd)に間接的に比例している ように制御されていることを特徴とする請求項1ないし3のいずれか1つに記載 の回路装置。 5.制御回路(4)がスイッチング信号(3)を発生しかつ出力するために発振 器回路(10)を有し、その発振周波数が発振器回路(10)の入力端に与えら れている制御信号(5)により制御されていることを特徴とする請求項1ないし 4のいずれか1つに記載の回路装置。 6.発振器回路(10)の入力端に与えられている制御信号(5)が直接的に供 給電圧値(Vdd)から導き出されていることを特徴とする請求項5記載の回路装 置。 7.発振器回路(10)がシュミット・トリガ回路を有することを特徴とする請 求項5または6記載の回路装置。 8.ポンプ回路(2)に対応付けられている制御回路(4)が発振器回路(10 )の出力側に接続されている分周器(22)を有し、この分周器が2つの互いに 反対称なクロック信号をポンプ回路(2)の両ポンプ入力端(8、9)に与える ことを特徴とする請求項1ないし7のいずれか1つに記載の回路装置。 9.ポンプ回路(2)が、コンデンサ(39、40)とダイオードとして動作す るトランジスタ(41)とを有する複数の段から構成されている縦続回路を有し 、その際に縦続回路の段が高電圧出力端(1)と供給電圧値(Vdd)との間に直 列回路をなして接続されており、ダイオードとして動作するトランジスタ(41 )が直列に接続されており、ダイオードとして動作するトランジスタ(41)の 結合点に結合されているコンデンサ(39、40)がダイオードとして動作する トランジスタ(41)と反対の側で交互に両ポンプ入力端(8、9)に結合され 、またポンプ回路が別のトランジスタ(42)を有し、このトランジスタは供給 電圧(Vdd)とトランジスタ(41)から構成されている直列回路との間に接続 され、制御入力端で供給電圧(Vdd)に接続され、帰還結合され、ダイオードと して動作することを特徴とする請求項1ないし8のいずれか1つに記載の回路装 置。 10.回路装置が共通に半導体基板上に集積されて構成されていることを特徴と する請求項1ないし9のいずれか1つに記載の回路装置。 11.電子的負荷回路が不揮発性の電気的に消去可能、プログラミング可能な半 導体メモリの一群のプログラミングすべきまたは消去すべきメモリセルを有する ことを特徴とする請求項1ないし10のいずれか1つに記載の回路装置。 12.制御信号(5)の値が供給電圧(Vdd)の値に相当することを特徴とする 請求項1ないし11のいずれか1つに記載の回路装置。 13.高電圧の値が好ましくは約+18ボルトまたは−12ボルトであり、供給 電圧(Vdd)の値が約+3ボルト±10%ないし+5ボルト±10%であること を特徴とする請求項1ないし12のいずれか1つに記載の回路装置。
JP9534808A 1996-03-28 1997-03-27 電子的負荷回路に供給するための回路装置 Pending JPH11508120A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19612443A DE19612443C2 (de) 1996-03-28 1996-03-28 Schaltungsanordnung zur Versorgung eines elektronischen Lastkreises
DE19612443.3 1996-03-28
PCT/DE1997/000625 WO1997037424A1 (de) 1996-03-28 1997-03-27 Schaltungsanordnung zur versorgung eines elektronischen lastkreises

Publications (1)

Publication Number Publication Date
JPH11508120A true JPH11508120A (ja) 1999-07-13

Family

ID=7789786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9534808A Pending JPH11508120A (ja) 1996-03-28 1997-03-27 電子的負荷回路に供給するための回路装置

Country Status (13)

Country Link
US (1) US6026002A (ja)
EP (1) EP0890215B1 (ja)
JP (1) JPH11508120A (ja)
KR (1) KR20000004953A (ja)
CN (1) CN1066292C (ja)
AT (1) ATE252781T1 (ja)
BR (1) BR9708371A (ja)
DE (2) DE19612443C2 (ja)
ES (1) ES2210520T3 (ja)
IN (1) IN191735B (ja)
RU (1) RU2182742C2 (ja)
UA (1) UA54417C2 (ja)
WO (1) WO1997037424A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236657A (ja) * 1999-02-15 2000-08-29 Nec Kyushu Ltd 昇圧回路
US20030184360A1 (en) * 2002-03-29 2003-10-02 Yi-Ti Wang Charge pump for flash memory with serially connected capacitors for preventing breakdown
WO2005039032A1 (en) 2003-10-21 2005-04-28 Koninklijke Philips Electronics N.V. A charge pump
FR2900290B1 (fr) * 2006-04-19 2008-11-21 Atmel Corp Procede et systeme pour fournir une pompe de charge pour les applications basse tension
US8044705B2 (en) * 2007-08-28 2011-10-25 Sandisk Technologies Inc. Bottom plate regulation of charge pumps
US7586362B2 (en) * 2007-12-12 2009-09-08 Sandisk Corporation Low voltage charge pump with regulation
US7586363B2 (en) * 2007-12-12 2009-09-08 Sandisk Corporation Diode connected regulation of charge pumps
US7969235B2 (en) 2008-06-09 2011-06-28 Sandisk Corporation Self-adaptive multi-stage charge pump
US20090302930A1 (en) * 2008-06-09 2009-12-10 Feng Pan Charge Pump with Vt Cancellation Through Parallel Structure
US8710907B2 (en) * 2008-06-24 2014-04-29 Sandisk Technologies Inc. Clock generator circuit for a charge pump
US7683700B2 (en) 2008-06-25 2010-03-23 Sandisk Corporation Techniques of ripple reduction for charge pumps
US7795952B2 (en) * 2008-12-17 2010-09-14 Sandisk Corporation Regulation of recovery rates in charge pumps
US7973592B2 (en) * 2009-07-21 2011-07-05 Sandisk Corporation Charge pump with current based regulation
US8339183B2 (en) * 2009-07-24 2012-12-25 Sandisk Technologies Inc. Charge pump with reduced energy consumption through charge sharing and clock boosting suitable for high voltage word line in flash memories
US20110133820A1 (en) * 2009-12-09 2011-06-09 Feng Pan Multi-Stage Charge Pump with Variable Number of Boosting Stages
US20110148509A1 (en) * 2009-12-17 2011-06-23 Feng Pan Techniques to Reduce Charge Pump Overshoot
US8294509B2 (en) 2010-12-20 2012-10-23 Sandisk Technologies Inc. Charge pump systems with reduction in inefficiencies due to charge sharing between capacitances
US8339185B2 (en) 2010-12-20 2012-12-25 Sandisk 3D Llc Charge pump system that dynamically selects number of active stages
US8699247B2 (en) 2011-09-09 2014-04-15 Sandisk Technologies Inc. Charge pump system dynamically reconfigurable for read and program
US8514628B2 (en) 2011-09-22 2013-08-20 Sandisk Technologies Inc. Dynamic switching approach to reduce area and power consumption of high voltage charge pumps
US8400212B1 (en) 2011-09-22 2013-03-19 Sandisk Technologies Inc. High voltage charge pump regulation system with fine step adjustment
US8710909B2 (en) 2012-09-14 2014-04-29 Sandisk Technologies Inc. Circuits for prevention of reverse leakage in Vth-cancellation charge pumps
US8836412B2 (en) 2013-02-11 2014-09-16 Sandisk 3D Llc Charge pump with a power-controlled clock buffer to reduce power consumption and output voltage ripple
US8981835B2 (en) 2013-06-18 2015-03-17 Sandisk Technologies Inc. Efficient voltage doubler
US9024680B2 (en) 2013-06-24 2015-05-05 Sandisk Technologies Inc. Efficiency for charge pumps with low supply voltages
US9077238B2 (en) 2013-06-25 2015-07-07 SanDisk Technologies, Inc. Capacitive regulation of charge pumps without refresh operation interruption
US9007046B2 (en) 2013-06-27 2015-04-14 Sandisk Technologies Inc. Efficient high voltage bias regulation circuit
EP2827483A1 (en) * 2013-07-15 2015-01-21 Infineon Technologies AG Circuitry, multi-branch charge pump, method for controlling a charge pump and system
US9083231B2 (en) 2013-09-30 2015-07-14 Sandisk Technologies Inc. Amplitude modulation for pass gate to improve charge pump efficiency
US9154027B2 (en) 2013-12-09 2015-10-06 Sandisk Technologies Inc. Dynamic load matching charge pump for reduced current consumption
US9917507B2 (en) 2015-05-28 2018-03-13 Sandisk Technologies Llc Dynamic clock period modulation scheme for variable charge pump load currents
US9647536B2 (en) 2015-07-28 2017-05-09 Sandisk Technologies Llc High voltage generation using low voltage devices
US9520776B1 (en) 2015-09-18 2016-12-13 Sandisk Technologies Llc Selective body bias for charge pump transfer switches

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US541614A (en) * 1895-06-25 charles w
US4236199A (en) * 1978-11-28 1980-11-25 Rca Corporation Regulated high voltage power supply
IT1225608B (it) * 1988-07-06 1990-11-22 Sgs Thomson Microelectronics Regolazione della tensione prodotta da un moltiplicatore di tensione.
JPH04222455A (ja) * 1990-12-20 1992-08-12 Nec Corp インタフェース回路
NL9200056A (nl) * 1992-01-14 1993-08-02 Sierra Semiconductor Bv Hoogspanningsgenerator met uitgangsstroomregeling.
US5301097A (en) * 1992-06-10 1994-04-05 Intel Corporation Multi-staged charge-pump with staggered clock phases for providing high current capability
JP2639325B2 (ja) * 1993-11-30 1997-08-13 日本電気株式会社 定電圧発生回路
US5550728A (en) * 1994-04-18 1996-08-27 Analog Devices, Inc. Charge pump converter structure
US5414614A (en) * 1994-06-06 1995-05-09 Motorola, Inc. Dynamically configurable switched capacitor power supply and method
FR2724468B1 (fr) * 1994-09-14 1996-11-15 Suisse Electronique Microtech Dispositif electronique comportant un multiplicateur de tension
US5543668A (en) * 1994-09-16 1996-08-06 Catalyst Semiconductor, Inc. Charge stacking on-chip high-voltage generator and method
US5694308A (en) * 1995-07-03 1997-12-02 Motorola, Inc. Method and apparatus for regulated low voltage charge pump
US5760637A (en) * 1995-12-11 1998-06-02 Sipex Corporation Programmable charge pump
US5625544A (en) * 1996-04-25 1997-04-29 Programmable Microelectronics Corp. Charge pump
US5886887A (en) * 1997-03-27 1999-03-23 Integrated Memory Technologies, Inc. Voltage multiplier with low threshold voltage sensitivity

Also Published As

Publication number Publication date
DE19612443A1 (de) 1997-10-02
CN1214810A (zh) 1999-04-21
US6026002A (en) 2000-02-15
KR20000004953A (ko) 2000-01-25
ES2210520T3 (es) 2004-07-01
DE19612443C2 (de) 1998-02-05
RU2182742C2 (ru) 2002-05-20
EP0890215A1 (de) 1999-01-13
UA54417C2 (uk) 2003-03-17
ATE252781T1 (de) 2003-11-15
WO1997037424A1 (de) 1997-10-09
CN1066292C (zh) 2001-05-23
DE59710890D1 (de) 2003-11-27
EP0890215B1 (de) 2003-10-22
IN191735B (ja) 2003-12-20
BR9708371A (pt) 1999-08-03

Similar Documents

Publication Publication Date Title
JPH11508120A (ja) 電子的負荷回路に供給するための回路装置
US4935644A (en) Charge pump circuit having a boosted output signal
JP2528196B2 (ja) 電圧逓倍回路
US7208996B2 (en) Charge pump circuit
US6927441B2 (en) Variable stage charge pump
JP2740947B2 (ja) チャージポンプ回路
US6249446B1 (en) Cascadable, high efficiency charge pump circuit and related methods
US5790393A (en) Voltage multiplier with adjustable output level
EP0404124B1 (en) Charge pump having pull-up circuit operating with two clock pulse sequences
JPH0818408A (ja) 発振回路および不揮発性半導体記憶装置
US4045686A (en) Voltage comparator circuit
KR100314651B1 (ko) 반도체메모리장치의전압발생회로
RU2137294C1 (ru) Моп-устройство включения высоких напряжений на полупроводниковой интегральной схеме
US6670844B2 (en) Charge pump circuit
US20050162214A1 (en) Semiconductor device
JP3096252B2 (ja) ネガティブ電圧駆動回路
US6847250B2 (en) Pumping circuit for outputting program voltage and program verify voltage of different levels
JP2807664B2 (ja) ネガティブ電圧駆動回路
JPH0428226Y2 (ja)
US5926059A (en) Stacked Charge pump circuit
GB1561980A (en) Voltage multiplier circuits
EP0159047B1 (en) Timer circuit
JPH01134796A (ja) 不揮発性半導体記憶装置
CN111934543B (zh) 电荷泵电路、电荷泵电路的控制方法、芯片及电子装置
US5612611A (en) Switching regulator with dyssymetrical differential input stage