JPH11505177A - 電気絶縁体を含む金属地複合体の製造方法 - Google Patents

電気絶縁体を含む金属地複合体の製造方法

Info

Publication number
JPH11505177A
JPH11505177A JP8534962A JP53496296A JPH11505177A JP H11505177 A JPH11505177 A JP H11505177A JP 8534962 A JP8534962 A JP 8534962A JP 53496296 A JP53496296 A JP 53496296A JP H11505177 A JPH11505177 A JP H11505177A
Authority
JP
Japan
Prior art keywords
metal
composite
liquid phase
preform
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP8534962A
Other languages
English (en)
Inventor
アール. ソーテル,ラルフ
プレムクマル,エム.ケイ.
アイ. ユン,デビッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminium Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Company of America filed Critical Aluminium Company of America
Publication of JPH11505177A publication Critical patent/JPH11505177A/ja
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/101Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by casting or moulding of conductive material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • C04B2111/00931Coated or infiltrated preforms, e.g. with molten metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/128Molten metals, e.g. casting thereof, or melting by heating and excluding molten solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】 電気的に絶縁された面積部分(34,36,38)を含む金属地複合体(30)を製造する方法、およびこの方法で形成された金属地複合体(30)である。この方法は、(a)強化されていないアルミニウム合金の液体溜りを備え、(b)強化されていないアルミニウム合金(46)を上側および下側の多孔質プリフォームと、それらのプリフォームの間に配置された電気絶縁体(42)とを含んでなるスタックに溶浸させ、(c)液相金属を凝固させて、スタックを完全に包囲した金属地複合体製品を形成させ、(d)凝固した金属に少なくとも一つの溝を形成し、この溝は絶縁基体へ向かって内方へ延在されて、金属地複合体の表面の少なくとも一つの面積部分を電気的に絶縁させることを含む。

Description

【発明の詳細な説明】 電気絶縁体を含む金属地複合体の製造方法 本発明は相互に電気的に絶縁されている部分を有する金属地複合体(metal ma trix composites)を製造する方法に関する。特に、本発明の方法は内部絶縁基体 を有する金属地複合体の製造に関する。 金属地複合体は、剛性、耐摩耗性および耐熱性が非常に優れた部品を製造する 比較的新しい方法を提供する。優れた剛性は一層薄い材料の使用を可能にして、 部品の寸法および重量を減少させる。軽量であることは宇宙産業および電子産業 における部材の製造において重要なことである。 現在、金属地複合体の製造に使用されている方法には、真空/低圧溶浸法、高 圧圧搾鋳造法および無圧鋳造法が含まれる。これらの方法は以下の特徴を有して いる。 ・低圧/真空溶浸法 この方法は、金属を溶浸させるために真空および低圧(典型的には105.5 kg/cm2(1500プサイ)未満)のガスが組合わされて使用される。この 方法は主として少数の研究開発試料(R&D sample)を作るのに使用されている。 これは研究所規模の方法として設計されており、商業規模における安価な多量生 産には適していない。 ・無圧溶浸法 この方法は溶浸を毛細管の作用力に依存するものである。毛細管の作用力を発 生させるために、集合材(aggregate)と地材(matrix)との間の濡れが化学反応 によって得られる。この方法は地材合金元素(1重量%以上のMgを含むAl) と、加熱(700°C以上)されたセラミック集合材と、ガス雰囲気(10〜1 00体積%の窒素)との特別な組合わせの使用を必要とする。この方法は地材例 えばAl−Mg合金の選定を制限し、また長い反応時間のために製造費が高くな る問題を抱えている。この方法はさらにまた、表面状態および自然発生的な濡れ にその方法が敏感に影響されるために、プロセス制御の観点から難しい。 ・高圧圧搾鋳造法 溶浸させるためにこの方法は大型の流体圧作動プレスまたは機械式プレスを使 用して高圧力(703〜2109kg/cm2(10000〜30000プサイ ))を用いる。この方法は集合材および地材の広範な組合わせにおいて溶浸を行 えるが、高圧力を必要とすることで課せられる型設計における制限のために、製 造される製品の複雑さおよび寸法公差に制限を受ける。大型プレスに関する投資 費用が大きいために製品製造費も高くなる。 米国特許第4920864号明細書は、予め成形してあるファイバープリフォ ームの間隙内に地合金材を溶浸させるために、密閉型加圧鋳造法を一般に開示し ている。米国特許第4777998号明細書は、恐らくセラミック材料のファイ バーを含有した金属部品のダイキャスト法を示しているが、真空ダイキャスト原 理の使用は試みていない。 本発明はこのような背景に対してなされた。 これまでの方法よりも優れ、特に集合材の体積率が大きい金属地複合体を作る ための、品質、再現性および融通性を組合わされた性質を有する電気的に絶縁さ れた面積部分を有する金属地複合体の製造方法を提供することに関心が持たれて いる。 また、電気的性質、熱膨張係数および熱伝導率の独特な組合わせを有するアル ミニウムまたはアルミニウム合金と炭化けい素との金属地複合体を提供すること に関心が持たれる。 本発明の方法は、金属地複合製品を製造するために真空ダイキャスト法を使用 する。この方法は、様々な集合材および地材(matrix)の組合わせを使用して、 高品質で網形状またはそれに近い形状をした、薄肉壁部を有する複雑な形状の金 属地複合材料を製造することができる。この方法は、機械装置、絶縁基体、集合 材、真空および金属の導入装置のような各種のシステムを必要とする。 本発明によれば、電気的に絶縁された面積部分を含む金属地複合体の製造方法 が提供される。この方法は、(a)成形室内に絶縁基体を配置し、(b)成形室 を真空排気し、(c)液相金属を成形室に溶浸させ、(d)液相金属を絶縁基体 のまわりで凝固させ、(e)凝固金属に少なくとも一つの溝を形成し、該溝は絶 縁基体の外面へ向かって内方へ延在され、これにより複合体構造の表面の少なく とも一つの領域を他の領域から電気的に絶縁することを含む。好ましい実施例で は、絶縁基体は窒化アルミニウムで形成され、金属地材はアルミニウム合金であ る。 本発明の第二の実施例において、電気的に絶縁された面積部分を含む金属地複 合体の製造方法が提供される。この方法は、(a)成形室内に多孔質プリフォー ムを配置し、(b)前記多孔質プリフォームに絶縁基体を配置し、(c)成形室 を真空排気し、(d)液相金属を成形室に溶浸させ、(e)液相金属を前記多孔 質プリフォームおよび絶縁基体のまわりおよびその内部で凝固させて金属地複合 体を形成させ、(f)凝固金属に少なくとも一つの溝を形成し、該溝は絶縁基体 の表面へ向かって内方へ延在され、これにより該表面上の少なくとも一つの領域 を他の領域から電気的に絶縁することを含む。代替実施例では、第二の多孔質プ リフォームが前記絶縁基体に備えられる。 本発明の他の概念は、互いに電気的に絶縁された面積部分を有する金属地複合 製品である。好ましい実施例においては、この製品は意図的に強化されない金属 の面積部分も有する。本発明の好ましい実施例では、絶縁基体は窒化アルミニウ ムで構成され、多孔質プリフォームはAlNであり、金属地材はアルミニウム合 金である。本発明の最も好ましい実施例においては、金属地複合体、強化された 部分および強化されていない部分は一回の真空ダイキャスト作業で形成される。 本発明の他の特徴は添付図面を参照して考慮すべき好ましい実施例の説明に関 する以下の記載でさらに詳しく説明されており、図面を通じて同じ符号は同じ部 分を示しており、またさらに、 図1は本発明の実施に使用されるダイキャスト機の部分的に断面とした側面図 を示す。 図1aは図1の一部分に相当し、代替の金属導入システムを示している。 図2は本発明の金属地複合体の斜視図である。 図3は図2の線III−IIIに沿う断面図である。 図4は図2のIV−IVに沿う断面図である。 図5a〜図5dは本発明の好ましい方法にしたがって本発明の金属地複合体を 形成するのに必要な順次の工程段階を示す図である。 図6a〜図6eは本発明の代替の好ましい形態を形成するのに必要な順次の工 程段階を示す図である。 図7は図6の断面VII−VIIの平面図である。 図8は図7の線VIII−VIIIに沿う図7の横断面図である。 図9は一つの型で複数の製品をダイキャストする代替設計の横断面図である。 図10は電気的に絶縁された金属層が製品の反対両側に形成された本発明の代 替の好ましい実施例である。 これらの図面において図示の便宜上、幾つかの層、被覆および領域の厚さおよ び深さは縮尺されて示されたものではなく、相対的な比率にしたがって正確に示 されているものではない。定義 「複雑な部品」の用語は、その部品の本体からいずれかの方向へ向かって少な くとも自体の肉厚の二倍に等しい距離を突出している壁、ウェブまたはフィン( プレートフィンまたはピンフィンのいずれともされ得る)のような突起を少なく とも一つ有する部品を意味するように本明細書で使用されている。 「大きい体積率(大体積率)」の用語は、30体積%より大きい、好ましくは 45体積%より大きい体積率を意味するように本明細書で使用されている。 「薄肉壁部を有する」および「薄肉壁部を有する部分」の用語は、厚さが2. 54mm(0.1インチ)以下、好ましくは1.27mm(0.05インチ)以 下、さらには0.762mm(0.03インチ)以下の壁、ウェブまたはフィン (例えばプレスフィンまたはピンフィンとされ得る)のような部分を有する部品 を説明するために本明細書で使用されている。 「強化材料」の用語は、ファイバー、ウィスカー、フィラメント、粒体、リボ ン、ワイヤーフレーク、結晶および小片の形状をしたセラミック、金属、セメン トおよび重合体を意味するように本明細書で使用されている。これに代えて強化 材料は、これらの強化材料で作られた多孔質プリフォームとされることができる 。 「プリフォーム」、「多孔質プリフォーム」または「浸潤可能なプリフォーム 」の用語は、充填用の多孔質材料を意味するように本明細書で使用されており、 こ の多孔質充填材料は液相金属を溶浸させるための境界面を本質的に形成する少な くとも一つの表面を有して製造される。プリフォームは液相金属を溶浸される前 に寸法の一体性即ち完全性(integrity)を与えるために十分な形状の一体性即ち 完全性および強度を保持する。プリフォームは液相金属の溶浸を受入れるために 十分に多孔質である。プリフォームは典型的に均質または非均質の充填材の結合 されたアレーすなわち配置を含み、またいずれかの適当な強化材料、すなわちセ ラミックまたは金属の粒体、粉末、ファイバー、ウィスカーなど、およびそれら の組合わせを含み得る。プリフォームは単独で存在するか、2以上の分離可能な 部材の集合体として存在する。分離可能なプリフォームが使用されるばあい、そ れらのプリフォームを機械的または他の方法によって相互に結合させる必要はな い。 「ユニ・キャスト」および「一回鋳造体」の用語は、単体の地材本体を形成す る一回の金属溶浸作業によって形成された金属地複合体を示すために本明細書で 同意的に使用されている。この単体構造は、熱の流れを妨害するような結合部が 構造体の内部に存在しないことを意味する。 「強化されていない金属」の用語は、非金属の添加された強化材料を5体積% 未満、好ましくは1体積%未満ほど含む金属または合金を示すために本明細書で 使用されている。未強化の材料の例には、アルミニウム、チタン、マグネシウム 、鉄、銅、亜鉛、およびそれらの金属の少なくとも一つが最大量の単独成分であ る合金が含まれる。 「強化された金属」および「強化された合金」の用語は、5体積%より多い強 化材料を含む金属および合金を示すように本明細書で使用されている。この用語 は金属間化合物(intermetallics)だけを含む金属を含むようには意図されてい ない。 「金属地複合体」の用語は、内部に強化材料の組込まれた二次元または三次元 的に相互連結されている合金または金属地材を含んでなる材料を意味するように 本明細書で使用されている。金属地材は、強化されない金属をプリフォームおよ び(または)強化材料すなわち充填材料の質量体(mass)に溶浸させた後にその 金属を凝固させることで形成され得る。金属地複合体は意図的に強化材料のない 状態で形成された面積部分を有し得る。これに代えて、金属地材は強化材料を含 有する溶融金属をプリフォームまたは集合材の質量体に溶浸させて形成され得る 。この実施例では、強化材料は二つの供給源を有する。この二番目の実施例の金 属地複合体は、唯一の強化材料供給源すなわち溶融金属によって意図的に形成さ れた面積部分を有し得る。 「電気絶縁体」の用語は、本明細書ではガラス、セラミックまたはプラスチッ クのような低誘電材料を意味するように意図されている。典型的なセラミック製 電気絶縁体は窒化アルミニウムである。 「液相金属」および「溶融金属」の用語は、本明細書では金属が完全に凝固さ れていない流体状態相および準流体状態相のすべてを説明するために使用されて おり、互いに置き換えすることができる。これらの用語は、金属スラリーと、未 分解セラミック粒体を含む準固相および液体の金属とを含む。本発明の実施の態様 液相による製造方法は、金属地複合体の製造に特に好適である。液相金属は多 孔質プリフォームの内部および周囲に溶浸される。この金属はその後冷却され、 または冷えるままにされて、強化された連続する金属質量体を形成するようにな される。金属は導電性であり、また金属地材が連続しているので、金属地複合体 は一般にその地材の一部分が他の部分から電気的に絶縁されることが必要な応用 例に使用することができない。驚くことに、金属地複合体は互いに電気的に絶縁 された面積部分を有して製造できることが見出された。 本発明で使用されるダイキャストの機械装置は、米国特許明細書第52594 36号および該明細書に記載されている引用例に示されているようなダイキャス ト機自体、型および真空付与装置を含む。 このダイキャスト機は典型的に、測定された量の溶融金属が集められる充填室 と、測定した量の金属を型へ移動させるための駆動ピストンとを含む。ピストン 駆動装置はピストンによって金属に対して中間的な溶浸圧力(通常703kg/ cm2(10000プサイ)未満)を作用させる。型半体は固定プラテンおよび 可動プラテンに取付けられる。型は一度に幾つかの製品を実質的に同時に製造す るために、複数キャビティを有するものとされ得る。 真空装置が型キャビティおよび充填室を真空排気するために連結され、そのま までは金属地複合体の内部に多孔を生じることになってしまうガスを排除するよ うになす。空気を排除することで生じた酸素の存在量の減少は、酸化が特性の低 下をもたらすことになりかねない地材および(または)集合材の成分を有する金 属地複合体のばあいに特に有利である。ガスの排除および真空の作用も型キャビ ティの充填および溶浸において有利である。 鋳造の前に、型キャビティ、充填室およびピストンは潤滑、離型などの処理を 受けることができる。 金属地複合体の電気絶縁体は、型キャビティ内に電気絶縁体で形成された基体 を配置することで形成される。基体は集合体またはプリフォームの一部分に配置 される。さらに、集合体は電気絶縁体の上面にも配置されることができる。この 代わりに、付加的なプリフォーム、すなわち1以上のプリフォームが電気絶縁体 に配置されることができる。 粒体に加えて、ファイバー、ウィスカーまたはフィラメントのような他の物理 的な形状がプリフォームを形成するために集合材として使用できる。この集合材 はその表面特性に影響を及ぼす材料で被覆されることができる。フィラメントは 様々な方法で準備されることができ、これには撚糸または未撚糸、高バルクフィ ラメント糸(high bulk filament yarns)などの多数のフィラメントが含まれる 。ファイバーは織られ、網組され、ニット織りされ、一方向に配向され、または ランダム配向されることができる。参照することで本明細書に組入れられるフラ ンク・K・Ko氏による「金属地複合体のためのプリフォーム・ファイバーのア ーキテクチャ」と題する論文、アメリカン・セラミック・ソサイエティ・ブリテ ン、1989年2月、(第68巻、第2号)第401〜414頁、は各種材料の 集合材を準備に関するこれらおよび他の可能性を記載している。集合材用の材料 の例には、以下の例の炭化けい素(SiC)に加えて、炭素、黒鉛、窒化けい素 、ほう素、ほう素/タングステン、炭化ほう素/タングステン、窒化ほう素、ベ リリウム、溶融シリカ、ムライト、ガラス、ボロシリケート、および酸化物、窒 化物、カーバイド、およびジルコニアのようなほう化物、炭化ほう素、シリコン ・カーボニトライド・アルミナおよびアルミニウム・シリケート(ムライト)お よびそ れらの組合わせが含まれる。 プリフォームは形成された多孔質体であって、生強度(green strength)を与 えるのに必要な適当な接着剤で互いに結合された集合材の小片によって構成され ている。結合剤は有機材とされることができ、このばあいには、プリフォームを 型キャビティ内に配置する前にそのプリフォームを熱処理することが好ましく、 この熱処理は有機材を揮発させてプリフォームからその有機材を除去するととも に集合材の小片を互いに結合させるようにする。後で金属地材を受入れなければ ならない孔を塞がないように、部分的な結合が好ましい。結合剤は例えばソジウ ム・シリケートのような無機材とされることができ、このばあい、残留物の存在 は金属地複合体製品の最終使用者に有害ではない。結合剤の無いプリフォームも またしようでき、このばあい、集合材は個々の集合材小片の機械的な相互固定に よって結合される。T・B・シェーファー氏他による「セラミックを多く含有す る網形状の金属地複合体」と題する論文、SAEテクニカル・ペーパー第910 832号、ソサエティー・オブ・オウトモーティヴ・エンジニアリング、米国ペ ンシルバニア州ウォーレンデール、を参照されたい。最終的にこのプリフォーム は焼結処理によって結合されることができる。 金属導入システムは、金属をダイキャスト機の充填室に導入するための設備お よび手順を含み、これに続いて充填金属を充填室からその内部を移動するピスト ンによって駆動する。溶融金属は充填室から移動され、型キャビティに侵入して 集合材に溶浸する。 三つの代表的な金属導入システムは注入システム、吸引システムおよび圧力移 送システムである。注入システムでは、所望量の溶融金属が充填室の頂部開口を 通して注入され、この後にピストンが前方へ移動されてその開口を塞ぎ、これに より真空装置が型および充填室を真空排気できるようにする。吸引システムでは 、溶融金属を充填室に吸引するのに大気圧より低い圧力が使用される。圧力移送 システムでは、溶融金属を充填室へ押圧するのに圧力差が使用される。 アルミニウム合金は地材として好ましい材料であり、そのような合金例は以下 の例に含まれている。しかしながら、他の金属地材も使用でき、その例は本質的 に純アルミニウムおよびマグネシウム、マグネシウム合金、亜鉛および亜鉛合金 などである。本発明で使用される金属は1000°C(1832°F)、900 °C(1652°F)、または800°C(1472°F)より低い溶融温度す なわち液相線温度を有し得る。例えば型および充填室用の構造材料によっては、 他の金属、例えばチタン、銅、錫、ニッケル、鉄、鉛、コバルトおよびそれらの 合金とされることができる。 加熱手段が充填室および型に備えられて、強化のための集合材が実質的に完全 に溶浸し終わるまで溶融金属が凝固しないようになされる。溶浸が完了した後、 地材に望まれる金属学的特性を得るために、また起こりそうなばあいにおいてで あるが溶融金属が集合材と反応すなわち溶解するのを防止するために、急激に凝 固させることが有利である。凝固は、それによる鋳引け(収縮)を可能な限り最 小限にするために、方向性を有して、溶融金属供給源へ向かって前縁に沿って進 展することも好ましい。実質的に溶浸が完了した後に迅速且つ所望の方向性を有 する凝固を達成するためのこれらの要求は、温度状態の釣合わせ、すなわち調時 制御を要求する。界面結合を向上させるために溶融地材と集合材との間に何らか の相互作用を行わせることも有利となり得るのであり、これにより急激に凝固す べきことに対して制限が与えるられるようになされ得る。しかしながら、本発明 の真空補助加圧ダイキャスト法の特定の利点は、溶融金属と集合材または強化材 料との間の潜在的な有害反応を最少限にするか排除するために、迅速な溶浸およ び凝固の組合わせによる可能性を与えることである。 本発明の特別な利点は、大体積率の集合材、特に65体積%以上で例えば80 体積%まで、さらには85体積%以上までもの大きな体積率を含む実質的に無孔 質の金属地複合体を得るための能力にあることが見出されている。これは、本発 明により、真空ダイキャスト機の型キャビティに、例えば大体積率とするのに必 要とされる介在形式の充填材を得るための寸法分布の粒体で作られた集合材プリ フォームを装填することによって、達成される。これらのプリフォームは強度お よび有機結合剤の除去のために熱処理されるならば、密封空間が過剰に形成され ないように注意を払わねばならない。そうしないと地材溶浸が遮られることにな り、またこのようにして形成された金属地複合体製品が実質的に無孔質と言えな くなるからである。しかしながら結合され過ぎないように注意して固有に得られ るプリフォームは、そうでないばあいに得られるほど強力ではない。これは、プ リフォームを侵食しないように溶浸速度が制御されねばならないことを意味する 。圧搾鋳造に比べて低いダイキャストの圧力は、真空ダイキャスト法において使 用される事前の真空排気および金属の速度制御と組合って状態の適当な釣合いを 生じ、これにより多量に装填されたプリフォームを損傷させることなく、集合材 の体積率が大きい適当強度の金属地複合体を得ることができる。 したがって、本発明の金属地複合体製品に特有の特徴は、ほぼ網形状で集合材 の体積率が大きい実質的に無孔質の製品であることを含む。薄肉壁部(2.54 mm(0.1インチ)未満で、1.27mm(0.05インチ)までの、さらに は0.762mm(0.03インチ)以下まで)および大きな角度を付与された かみ合せ面(mating surfaces)を特徴とする複雑な形状を製造することができ、 これは溶浸圧力を低下させる一方で集合材の多量に装填されたプリフォームを完 全に溶浸させる能力を保持するような方法、特に真空を使用したこの方法の独特 な特徴による。したがって、通常のダイキャストまたは圧搾ダイキャストよりも 優れている真空ダイキャストの使用による利点は、複雑な形状で集合材装填量の 大きい実質的に無孔質の金属地複合体を製造する能力を特徴とする。これらの他 の通常方法は、実質的に無孔質の材料または複雑な形状を製造することが不可能 であるという影響を受けている。 電子パッケージ用の材料に関しては、本発明は例えばアルミニウムよりもかな り小さい熱膨張係数の値と組合わせて大きな熱伝導率を有するアルミニウム地材 による金属地複合体の製造を可能にする。複雑な形状の金属地複合体を製造する ための本発明の可能性は、例えば電子パッケージ用の統合された熱管理システム の製造を可能にする。このシステムは例えば単体的に組合わされた熱交換器およ び電子パッケージの蓋を含む。 集合材の存在しない金属地材の表面層は、この方法を容易化するための真空ダ イキャスト時に本発明の金属地複合体製品に形成される。 本発明のアルミニウム地材による金属地複合体の付加的な利点は、アルミニウ ム表面が対腐食保護のため、および電気的に絶縁された面積部分の選択的な識別 および配置のために、陽極酸化処理され得ることである。方法および設備 図1を参照すれば、同図は改修された冷間チャンバの水平真空ダイキャスト機 を示しており、これには本質的にダイキャスト機の固定型すなわちモールド成形 型半体2の取付けられている固定されたクランププレート1すなわちプラテン、 および可動型すなわちモールド成形型半体5の取付けられている可動のクランプ プレート3すなわちプラテンがピストン4、溶融金属供給のための吸引チューブ 6と、保持炉8と、充填室10とともに含まれ、吸引チューブ6はクランプ22 で充填室10に連結されている。クランプ22は下側のフック形をしたフォーク 付き舌部24を有しており、この舌部24は吸引チューブ6の環状フランジ25 の下方を延在されている。頂部からねじ26がクランプ22を通してねじ込まれ ている。これが充填室10の入口開口に対する吸引チューブ6の端部の締め付け を可能にしている。取出しピン(図示せず)が通路7を通して備えられて、溶融 金属地材が凝固した後で型半体が開離されたときに鋳造製品を取外す手段を構成 することができる。 空気および他のガスを矢印方向に排除して型キャビティを真空排気する真空ラ イン11は、型が流入する溶融金属で最終的に満たされる箇所において型に連結 されている。真空ライン11は弁12を使用して開閉され、この弁12は制御装 置(図示せず)によって制御ライン13を経て作動されることができる。 金属射出圧力を発生するために駆動装置(図示せず)が備えられている。この 圧力は通常は351.5〜703kg/cm2(5000〜10000プサイ) の範囲であるが、さらに高圧力を要求される部品を取扱いできる能力を与えるた めに、1124.8kg/cm2(16000プサイ)まで圧力をかけることの できる機械が望ましい。 充填室の帯状ヒーター9a、および型半体およびプラテンのヒーターチューブ カートリッジの形態をしたヒーター部材9b,9cは、集合材に対する溶浸が完 了する前の溶融金属地材の早すぎる凝固を防止する。誘導ヒーターおよび他の装 置もこの早すぎる凝固を防止するために使用できる。585°C(1085°F )の液相線温度および575°C(1067°F)の固相線温度を有する10重 量%のけい素を含有するアルミニウム合金のばあい、充填室への溶融金属の投入 温 度が700°C(1292°F)であれば型キャビティおよび充填室の壁部はこ の目的のために250°C(482°F)に一定して制御される。この温度25 0°C(482°F)はこの合金の固相線温度よりも低いが、熱損失を遅らせて 溶浸を完了できるようにして、その直後に凝固が開始されるようにする温度の例 である。高い型温度は溶浸を一層向上させることができる。しかしながら、高い 型温度は凝固時間を長くする。 ピストンヘッドは、例えば熱膨張により充填室内で固着するのを防止するため 、およびピストンが型キャビティへ駆動されて溶浸が完了した後にそのピストン の前進ストローク範囲を超えて充填室の端に残存した地材合金のビスケットから 熱を除去するために、内部的に冷却されることができる。 図1の真空ダイキャスト機は吸引チューブ6を通して充填室10への装填を行 うために真空を使用する。この方式の作動は、参照することで本明細書に組入れ られる国際特許公開公報WO90/10516号にさらに詳しく記載されている 。図1aは以下に説明する例で使用された金属注入装填技術を示している。この 技術では、ピストンが引込み位置にある間に、充填室の頂部に備えられた充填開 口16を通して溶融アルミニウムを注入するためにトリベ15が使用される。製品 図2を参照すれば、本発明の好ましい金属地複合体製品30の斜視図が示され ている。留意すべきは、本発明はこの好ましい実施例または後述する他の好まし い実施例に限定されないということである。 金属地複合体製品30は基部プレート32を有し、この基部プレート32には 三つの一体形成されたモジュール34,36,38が備えられており、これらの モジュールは互いに、また基部プレート32から電気的に絶縁されている。金属 地複合体製品30は一回の鋳造作業で形成され、異なる材料で形成された幾つか の層を有している。基部プレート32の各隅の穴39は、金属地複合体製品30 をさらに大きな部材に対して容易に取付けできるようにしている。 図3および図4に見られるように基部プレート32は強化された金属層40で 形成され、その上に電気絶縁体42が配置されている。強化された金属層40は 上述形式の集合材を含んでいる。好ましい強化材料は炭化けい素である。 電気絶縁体42はセラミックである。電気絶縁体42として使用される好まし い材料は、窒化アルミニウムまたは窒化ほう素または酸化アルミニウムである。 電気絶縁体42は強化された金属層40の上面を横断して延在した単一層として 示されている。しかしながら、電気絶縁体42は単一片とされる必要はない。以 下の説明で明かとなるように、電気絶縁体42はそれぞれの露出された面積部分 で連続することだけを要求される。露出されない開離部(breaks)すなわち縁部 は金属地複合体製品30の電気的に絶縁される箇所に対する絶縁体としての能力 を妨害しない。電気絶縁体42は二つ以上の小片(図示せず)で形成されること ができ、各々の小片は電気的に絶縁されるモジュールよりも大きい面積部分を覆 うようにされる。好ましい実施例では、電気絶縁体42は多孔質の表面(図示せ ず)を有する。この多孔質表面は溶浸される金属に対する電気絶縁体の結合をさ らに向上させる。 モジュール34,36,38は強化されていない金属層46で形成される。保 守においてモジュール34,36,38は基部プレート32の電気絶縁体42と だけ接触するので、これらのモジュールは共通の基部プレート32から、また互 いから電気的に絶縁される。 以下に非常に詳細に説明するように、多孔質プリフォームおよび本質的に無孔 質の電気絶縁体42を含むユニットを収容したチャンバ内に強化されない溶融金 属を溶浸させることで金属地複合体製品30が形成される。好ましい溶融金属は アルミニウムまたはアルミニウム合金である。溶融金属は多孔質プリフォームを 充満して強化された金属層40を電気絶縁体42のまわりに形成する。強化され ていない金属層46はプリフォームまたは集合材を収容していないチャンバの内 部空間に形成されるのが好ましい。それ故に、強化された金属層40および強化 されていない金属層46はすべてが同じダイキャスト作動において同じ強化され ていない合金で形成される。電気絶縁体42は凝固金属で取り囲まれること以外 は溶浸時に本質的に変化されない。 次ぎに図5a〜図5dを参照すれば、これらの図は代替の好ましい金属地複合 体を製造するうえで必要とされる段階を示している。図5の製品は、第二プリフ ォーム54が電気絶縁体42上に配置された点で図2の製品とは相違する。図 5a〜図5dで形成される製品形状は図2で示されたものと同じである。図5a 〜図5dは鋳造チャンバ内に層の積み重ね体即ちスタック(stack)を形成し、モ ールド成形型に溶浸して金属地材を形成し、最終的に金属地複合体の複数部分を 電気的に絶縁するのに必要とされる段階を示している。 図5aから始まり、基部プリフォーム48がモールド型52のチャンバ50内 に配置される。基部プリフォーム48は約1.27mm厚(0.5インチ厚)で あり、溶浸されて図2〜図4に示されたモジュールの強化された層(基部プレー ト)32を形成する。基部プリフォーム48は穴39または他の通路を備えられ ており、金属地複合体製品30をさらに大きな部材に取付けることができるよう になされている。この代わりに、形成された金属地複合体製品30にドリル加工 して穴が形成され、これが図2に示されている穴39を形成することができる。 基部プリフォーム48は図5aでモールド型のチャンバ50の床面57上に係 止されて示されているが、望まれるならば図5bに示されるように持上げること ができる。基部プリフォーム48が持上げられるならば、溶融金属は基部プリフ ォーム48の下側のモールド型のチャンバ50の床面57との間の間隙に侵入し て、強化されない層をモジュール底部に沿って形成する。 電気絶縁体42は基部プリフォーム48の上面の上に直接に配置される。図5 aに示された設計では、電気絶縁体42は基部プリフォーム48の側壁53およ び55の間に嵌合する寸法とされている。溶融金属を溶浸した後、電気絶縁体4 2および基部プリフォーム48は凝固した金属と一緒に図2に示された製品の基 部プレート32を形成する。 第二プリフォーム54は電気絶縁体42の頂部の上に直接に配置される。溶浸 および電気的な絶縁の後でモジュールのプリフォーム54(第二プリフォーム) が、図5dに示すようにモジュール34,36,38の強化された金属層44を 形成する。図2に示された製品設計では、三つの分離されたモジュールのプリフ ォームが、各モジュールにつき一つずつ使用されるのが好ましい。分離されたモ ジュールは所定位置に機械的に固定されて、溶浸時に横方向に移動するのを防止 される。分離されたプリフォームの使用は、金属地複合体製品30のモジュール 34,36,38を電気的に分離するために金属地複合体の機械加工を少なくす るという必要性のもとで行われる。 図5bにおいて、モールド型キャップ56がモジュールプリフォーム54の上 に配置される。モールド型キャップ56は、空間58がモジュールプリフォーム 54の頂面、電気絶縁体42の覆われていない部分および基部プリフォーム48 、およびモールド型キャップ56の下面との間に保持されるように意図して形成 される。機械的固定装置および(または)空間(図示せず)が溶浸時のモジュー ルの移動を阻止するのに使用され得る。 次ぎに、チャンバは真空排気され、強化されていない溶融金属が圧力を作用さ れてモールド型のチャンバ50内に溶浸される。溶融金属は空間58を充満し、 基部プリフォーム48およびモジュールプリフォーム54の孔を充満して金属地 複合体製品30を形成する。溶浸時に、強化された金属層40,44が新たに形 成された強化された層を電気絶縁体の表面にほぼ同時に結合させて所定位置に形 成される。金属地複合体の所定位置での形成および新しく形成された強化された 層のほぼ同時の結合は、強化された金属層40,44と電気絶縁体42との間に 実質的に無孔質の境界面を形成する。この無孔質の境界面は、金属地複合体製品 30に所望される熱伝導特性を得るために重要である。 溶融金属が凝固した後、モールド型キャップ56は持上げられ、金属地複合体 製品30が単一ユニットとして図5cに示されるようにモールド型52から取出 される。図5bに示されたモジュールプリフォーム54はこの時点で強化された 金属層44であり、図5bに示された基部プリフォーム48はこの時点で強化さ れた金属層40である。以下の説明から明らかになるように、電気絶縁体42お よび強化された金属層44,40は図2の基部プレート32を形成する。溶浸の 前に図5bの空間58を形成した面積部分はこの時点で強化されていない金属層 46である。この例では、強化されていない金属層46は金属地複合体製品30 の上面全体を横断して延在する。金属は導電性であるので、強化されていない金 属層46は金属地複合体製品30の全面に電気的に連結される。図5cの金属地 複合体製品30は、その製品の複数部分が互いに電気的に絶縁されねばならない ことを要求することのない応用例に好適である。 図5dにおいて、溝60,62,64,66が強化されていない金属層46を 通して電気絶縁体の層42まで形成されている。これらの溝が形成された後は、 図5dは図3と本質的に同じである。溝60,62,64,66は電気絶縁体4 2の頂面43を露出させ、また金属地複合体製品30の長さを延在して(図2参 照)、モジュール34,36,38を形成している。図2に示された特定の設計 では、すべての溝60,62,64,66はすべてが平行である。しかしながら これらの溝は互いに平行であることを必要とされるわけではない。 図2に68および70で示された付加的な溝が製品の内部の幅を横断して延在 している。図4は溝が電気絶縁体42の頂面43を露出させることを示している 。これらの付加的な溝は平行な溝60,62,64,66と交差して、モジュー ル34,36,38を完全に取り囲んでそれらのモジュールを電気的に完全に絶 縁する溝(トレンチ)を形成している。 溝の幅は本発明では特別に重要であるとは考えられない。それらは製品設計に 応じて狭い幅または広い幅とされることができる。溝の重要な特徴は、それらの 溝が一緒になって意図された電気的応用例において面積部分すなわちモジュール 34,36,38を互いに電気的に絶縁することである。典型的な電気的応用例 においてモジュールを絶縁するには0.203mm(0.008インチ)の溝幅 が適当であると見出されている。 溝は機械加工または化学的手段によって形成される。アルミニウム基合金に溝 を切削するには、ダイヤモンド切削ホイールが速く費用効果の良好な手段である と見出されている。さらに、電気的な放電機械およびエクサイマーレーザーのよ うなレーザーもまた金属46を除去して溝を形成するのに使用できる。 溝をエッチング形成するのに必要な化学溶液は溶浸に使用される合金の化学組 成によって異なる。化学溶液が使用されるならば、エッチングされるべきでない 金属層46の部分はその化学溶液に実質的に影響されない材料でマスクされる必 要がある。このようなマスキング材料は電子技術分野で周知である。 面すなわち金属層46はアルミニウム合金の本質的に平坦な面積部分であり、 マスクおよびエッチング溶液は各モジュールの各部分を互いに電気的に絶縁する ように、絶縁されているモジュールの表面上に複雑な回路パターンを形成するこ とにも使用できる。機能的な電子要素を形成するために電子デバイスおよびコネ クタを回路パターンに取付けることができる。強化された金属層40および44 と電気絶縁体42との間の無孔質境界面は、表面(溝)68,70から基部プレ ート32に対する理論的な熱伝導に近いものを生じる。 図5dは、電気絶縁体42を横断して電圧を印加し、したがって三つの電気キ ャパシタを形成するようになす電源(図示せず)に連結された電気リード線を含 む。 次ぎに図6a〜図6dを参照すれば、これらの図は本発明の好ましい代替形態 による図2の金属地複合体の製造に必要な段階を示している。図6a〜図6dは 、電気絶縁体を含んだモールド型を準備し、特定の強化された溶融金属をモール ド型に溶浸し、断続的に強化された金属地複合体を形成し、最終的にその金属地 複合体の各部を電気的に絶縁するのに必要な段階を示している。 図6aから始まって、電気絶縁体42’がモールド型52’のチャンバ50’ 内に配置される。電気絶縁体42’は支持部80の上に係止されて、電気絶縁体 42’の容積部がモールド型52’の床面から持上げられる。溶融金属を溶浸さ せた後、電気絶縁体42’の下側の空間82’が図2に示された製品の基部プレ ート32’を形成する。 図6bにおいて、モールド型キャップ56’がモジュール電気絶縁体42’の 上に配置される。モールド型キャップ56’は、電気絶縁体42’の頂面とモー ルド型キャップ56’の下面との間に空間が残されるように意図して形成される 。次ぎに、モールド型チャンバが真空排気され、強化された溶融金属が圧力作用 のもとでモールド型のチャンバ50’内に溶浸される。溶融金属はアルミニウム であるのが好ましく、強化材料は特定の炭化けい素であるのが好ましい。 溶融金属は空間82および空間58’を充填して金属地複合体製品30’を形 成するようになされる。溶浸時に、強化された金属は電気絶縁体42’を取囲む 。この強化された金属による金属地複合体の所定位置での形成、および実質的に 同時な電気絶縁体42’に対する強化された金属の結合は、強化された材料と電 気絶縁体との間に無孔質の境界面を形成する。この無孔質の境界面は金属地複合 体製品30’に所望される熱伝導特性を得るために重要である。 溶融金属が凝固した後、モールド型キャップ56’は持上げられ、金属地複合 体製品30’が単一ユニットとして図6cに示されるようにモールド型52’か ら取出される。空間58’,82(図6bに示されている)はこの時点で強化さ れた金属84である。金属は導電性であるので、強化された金属84は金属地複 合体製品30’の全面に電気的に連結される。図6cの金属地複合体製品30’ は、その製品の複数部分が互いに電気的に絶縁されねばならないことを要求する ことのない応用例に好適である。 図6dにおいて、溝60’,62’,64’,66’が強化された金属84を 通して電気絶縁体の層42’まで形成されている。溝60’,62’,64’, 66’は電気絶縁体42’の頂面43’を露出させ、また金属地複合体製品30 の長さを延在して(図2参照)、面積部分(モジュール)34,36,38を形 成している。 図6eにおいて、面積部分(モジュール)34,36,38は金属層46’で 金属被覆を形成されている。これらのモジュールの金属被覆は金属地複合体の形 成に続いて形成されるので、金属層46’は溶浸に使用された金属と同じ合金で ある必要はない。したがって、例えばアルミニウム合金が強化された層84の形 成に使用されるならば、この金属層強化されない金属層46’は銅、ニッケル、 銀、金またはそれらの組合わせのような合金で形成することができる。 金属層46’は電気絶縁体42’の表面に電子技術分野で周知の方法によりプ リント形成されることもできる。この方法は、電気絶縁体42’の金属被覆の形 成されない各部にマスクを付与した後で露出面に金属被覆を形成し、そして付与 した金属層を除去せずにマスクを取除くことを含む。 次ぎに図7を参照すれば、図6の線VII−VIIにおける金属被覆の形成さ れたパターンの平面図が示されている。金属層46’は導電回路86およびパッ ド88を形成する。パッド88は半導体チップのような電子デバイスを取付ける ためのものである。導電回路86は電気絶縁体の層42’の上に櫛形に形成され て電気チェーン(electrical chain)のリンクを形成するようになされており、 このチェーンはパッド88上の電子デバイスを他のデバイスへ連結する。導電回 路86は互いに、またパッド88から電気的に絶縁されている。 図8は図7の線VIII−VIIIに沿った図7の横断面図であり、パッド8 8上での半導体チップ90の配置を示している。ボンディングワイヤー92が半 導体チップ90の各部分を導電回路に電気的に連結している。導電回路86はそ の後にいずれも図示していないがガイドピン、ワイヤー、リードフレームなどの リンクコネクタを経て他の要素に対して電気的に連結されることができる。 図9は、複数製品に分割するように形成された鋳造製品94を得るような代替 設計の横断面図を示す。図9の製品は上述した図5cに示したものと同様である 。図9には、図5cに示した製品に似た製品の要素を識別するために、記号''が 付されている。 鋳造製品94は一回鋳造によって形成される。強化された金属40''は狭い中 央部分96を有し、この中央部分は鋳造製品の長さ部分を通っている。狭い中央 部分96は薄い部分を形成して、鋳造製品を二つの独立した部分(AおよびB) に容易に分割できるようにしており、各部分は自体の電気絶縁体(42a''およ び42b'')と、強化された金属部分(44a''および44b'')とを有してい る。鋳造製品は一つの狭い中央部分96だけを有して示されているが、複数の狭 い部分を有する設計も使用できることが予想できる。複数の狭い部分は一回の鋳 造作動で2,3,4またはそれ以上の部品を鋳造できるようにする。さらに、独 立した部分AおよびBが同じものとして示されているが、これらは異なる寸法お よび形状を有して設計されることができる。 次ぎに図10を参照すれば、本発明の好ましい代替実施例が示されている。製 品130は図2および図3に示されたものと似ており、一回の鋳造作動で形成さ れる。しかしながら製品130は電気的に絶縁されたモジュールを有しており、 金属被覆層146が製品の反対両側に形成されている。製品130は、片側に形 成されている一体形成されたモジュール134,136,138と、反対側に形 成されているモジュール135,137,139とを有している。 製品130を形成する方法は、上述で説明し、図5a〜図5dに示した方法と 似ている。しかしながら製品130は二つの電気絶縁体142a,142bを使 用して形成されている。溝160,162,164,166が強化されていない 金属層146を通して電気絶縁体の層142aまで形成されて、モジュール13 4,136,138を形成している。溝161,163,165,167が電気 絶縁体の層I42bまで形成されて、モジュール134,136,138を形成 している。これらのモジュールは電気絶縁体の層142aまたは142bいずれ か一方に接触されるので、モジュールは共通の基部プレート132から、および 互いから電気的に絶縁される。 図2に示された製品によれば、基部プレート132の各隅に形成された穴(図 2だけに示されている)は大きな部材に対する製品の取付けを容易にする。鋳造 製品132は二つの別々の電気絶縁体の層142a,142bを有して示されて いるが、製品(図示せず)はただ一つの電気絶縁体の層を使用して反対側にモジ ュールを有する製品を作るように鋳造できることは予想できる。二面製品のよう なこの場合には、電気絶縁体の層はモールド型内でプリフォームの形成する基部 プレート132によって機械的に支持される。さらに、鋳造製品は図9および図 10の新しい特徴を含むように設計できることが予想できる。このような製品は 反対両側にモジュールを有し、また一回の鋳造で独立した複数の部分を形成でき るようにするために少なくとも一つの狭い部分を有する。 本発明の利点は以下の例に示されている。 本発明を試験するために、可能性の大きな電子応用例のための金属地複合体材 料が製造された。これらの応用例の目標は、半導体デバイスが発生する熱を除去 するために高熱伝導率を有し、互いに電気的に絶縁される複数部分を有する材料 を製造することである。この製品の設計は図2に示されたものと似ていた。 アルミニウム金属が溶浸材料の基材として選択された。アルミニウムおよびそ の合金は本発明の適用例にとって適当な熱伝導率を有している。SiCがプリフ ォームの材料として選択された。SiCの熱伝導率は、例えば純度によって変化 できる。純度は、SiCの体積熱伝導率の変化によるというよりも金属地複合体 における界面作用によって、基本的に熱伝導率に影響を及ぼす。とにかくアルミ ニウム地材と異なる品質のSiCとの組合わせが高熱伝導率を達成するうえでか なりの自由度(latitude)を可能にする。使用されたSiCは米国ニュージャー ジー州フェアロウンに所在のロンザ・インコーポレーテッド(Lonza,Inc.)で製 造された。 窒化アルミニウム(AlN)が電気絶縁体の材料として選択された。何故なら 、これは処理温度で金属と反応しないからである。AlNはSiCで強化された アルミニウム地材と一致するか近い熱膨張係数も有している。さらに、AlNは 高熱伝導率と、低導電率と、適度に低い誘電率および誘導損とを有している。A lNの電気絶縁体は約0.635mm(0.025インチ)の厚さであった。 プリフォームおよび電気絶縁体のスタックは黒鉛モールド型内にパックされ、 組立体は約720°C(1328°Fは)まで電気炉内で加熱され、15分間以 上にわたって保持された。加熱されたモールド型は次ぎに250°Cに予熱され ている真空ダイキャスト機の型キャビティへ素早く移された。モールド型を保持 したこのキャビティは次ぎに真空排気されてモールド型およびプリフォームの内 部の空気を排除された。 真空排気の完了により、溶融金属はキャビティへ導入され、加圧されてモール ド型内のSiC層に溶浸するようになされた。強化された金属層は所定位置にて 形成され、ほぼ同時にこの強化された金属層は絶縁体に対して結合された。 溶融金属が凝固した後、組立体はモールド型から取出された。モジュールを互 いに、また基部プレートから電気的に絶縁するために、モジュールの縁部の金属 はダイヤモンド切削ホイールを使用してモジュールの全幅を横断する溝を形成す ることで除去された。 形成された製品は試験され、またその製品が応用例の要求条件に合致するかを 判定された。特に、その製品は十分に高い熱伝導率を示し、モジュールは互いに 電気的に絶縁された。製品の熱伝導率に関しては、電気絶縁体と強化された層と の間の界面結合は本質的に無孔であった。これらの界面における低い有孔率は、 一部はダイキャストに使用された真空の作用によるものであるが、所望される熱 伝導率を得るための鍵であった。 得られた金属地複合体は、互いに電気的に絶縁される部分を必要とする電子デ バイスおよびコネクタ用の基体としての使用が見出された。 本発明の好ましい実施例が、特にアルミニウム合金地材を有する金属地複合体 の形成が貴重であるとして上述されたが、当業者には本発明が他の材料で形成さ れる金属地複合体も貴重であることは明白である。本発明に使用するのが適当な 材料はアルミニウムおよびアルミニウム合金に限られない。マグネシウム、銅、 鉄、亜鉛、ニッケル、コバルトチタン、ベリリウム、タングステン、金、銀およ びそれらの合金のような他の金属で形成された金属地複合体も本発明によって利 益を得られる。 本発明の好ましい実施例は強化段階(reinforcement phase)にSiCを使用し て金属地複合体を形成するのが特に貴重であるとして上述されたが、当業者には 他の強化材料が使用できることは明白となる。この分野で周知の他の強化材料も また使用できることは予想できる。特に、炭化チタン、炭化ほう素、黒鉛、炭素 、アルミナ、窒化けい素、窒化アルミニウム、ムライト、ほう化チタン、ほう化 ジルコニウム、シリコンアルミニウムオキシニトライド(SiAlON)、およ びそれらの組合わせが強化材料として使用できる。 本発明の好ましい実施例は、液相金属により溶浸される前に、寸法適合性を与 えるのに十分な形状の完全性即ち一体性および強度を保持することでモールド型 内に配置できるプリフォームを使用した金属地複合体が特に貴重であるとして上 述されたが、当業者には本発明はそのように限定されないことが明白となろう。 基部プレートを形成するのに使用される強化材料を作るために、バラバラの(loo se)強化材料をモールド型内にパックすることができる。導電体を次にそのバラ バラのパックされた材料の上に配置されることができる。 本発明は窒化アルミニウム製の電気絶縁体に関して記載したが、これに限定す ることは意図されない。限定するわけでなく窒化ほう素を含有する他の周知のセ ラミック製の電気絶縁体もまた本発明を実施するのに使用できる。 本発明の好ましい実施例が液相金属を凝固させるように記載したが、当業者に は本発明がこれに限定されないことが明白となろう。液相金属の凝固は冷却技術 によって加速されることが予測され、このような冷却技術にはモールド型および (または)形成された製品の表面上に冷気を循環させることが含まれる。「冷却 」の用語は金属を凝固させることに関連するように意図される。この点に関して 、冷気は凝固金属の温度よりも低い温度を有する。冷気は通常の大気温度(20 °C(68°F))よりもかなり暖かいものとされ得る。 さらに、液相金属を凝固させるために必要な時間は、その工程を完全に遂行す るのに必要な温度よりも高い温度までモールド型が予熱されることで長くなり得 ると予測される。プリフォームの温度が高まるほど、プリフォームを室温まで冷 却するのに要する時間が長くなり、また高い温度に製品が保持される時間は長く なる。 形成された金属地材は再結晶化および(または)金属相での再結晶化を生じる のに十分高い温度まで加熱または再加熱される。形成後の加熱処理に使用される 時間および温度は、結晶粒の成長量、および得られた結晶粒の寸法に対して強い 影響を及ぼすことができる。 本発明は溶浸を補助するためにモールド型チャンバに真空を与えるダイキャス ト機を使用するものとして説明したが、本発明はこれに限定されない。金属は型 キャビティの一端から溶浸をはじめて液相金属の前端面を移動させ、モールド型 の一端からその他端へ向かってプリフォーム内部に孔の形態でガスを捕捉するこ となく、プリフォームの孔内に存在しているガスを掃出できることも予想される 。例えばTiB2のような濡れを生じる薬剤がプリフォームおよび(または)電 気絶縁体の表面に形成されて、有孔プリフォームに対する溶融金属の濡れ性を高 め、プリフォームにガスが捕捉される可能性を減少させることができると予想さ れる。 本発明は別々に加熱される型を使用するとして説明されたが、本発明はこれに 限定されることを意図していない。型はダイキャスト設備に永久的に取付けられ 、プリフォームは別々に、すなわち所定位置で加熱されることができる。 本発明は個々のプリフォームおよび電気絶縁体を型内に別々に配置するものと して記載されたが、本発明がこれに限定されることは意図していない。当業者に はプリフォームおよび電気絶縁体がモールド型内に配置されるより前に、焼結さ れ、接着され、または他の方法で互いに結合されてユニットとされることができ る。個々の部品をユニットとして結合することは取扱いを容易化し、また溶浸の 前のモールド型を準備するのに必要な時間を減少させる。 本発明の最良態様と考えられるものが上述された。しかしながら、当業者には 記載された形式の多数の変形例が本発明の精神から逸脱せずに本発明においてな し得ることが明白となろう。本発明の範囲は、請求の範囲に記載の用語の一般的 に広義の意味によって定められる。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),OA(BF,BJ,CF ,CG,CI,CM,GA,GN,ML,MR,NE, SN,TD,TG),AP(KE,LS,MW,SD,S Z,UG),UA(AM,AZ,BY,KG,KZ,MD ,RU,TJ,TM),AL,AM,AT,AU,AZ ,BB,BG,BR,BY,CA,CH,CN,CZ, DE,DK,EE,ES,FI,GB,GE,HU,I S,JP,KE,KG,KP,KR,KZ,LK,LR ,LS,LT,LU,LV,MD,MG,MK,MN, MW,MX,NO,NZ,PL,PT,RO,RU,S D,SE,SG,SI,SK,TJ,TM,TR,TT ,UA,UG,US,UZ,VN (72)発明者 プレムクマル,エム.ケイ. アメリカ合衆国15069−0001 ペンシルバ ニア州,アルコア センター,テクニカル ドライブ 100,アルコア テクニカル センター (72)発明者 ユン,デビッド アイ. アメリカ合衆国15069−0001 ペンシルバ ニア州,アルコア センター,テクニカル ドライブ 100,アルコア テクニカル センター

Claims (1)

  1. 【特許請求の範囲】 1.金属地複合体を製造する方法であって、 (a)成形室内に絶縁基体を配置し、 (b)前記成形室を真空排気し、 (c)前記液相金属で成形室を溶浸し、 (d)前記液相金属を凝固させ、前記絶縁基体の少なくとも一つの面の上に金 属層を形成させ、 (e)前記金属層の表面の少なくとも一つの領域をその表面上の他の領域から 、両領域の間の凝固した金属の一部分を除去することで電気的に絶縁する、 ことを含む方法。 2.請求の範囲第1項に記載された方法であって、前記絶縁基体がプリフォー ムに配置され、前記液相金属が(c)において前記プリフォームを溶浸し、前記 溶浸されたプリフォームが(d)において金属地複合体を形成するようになされ る方法。 3.請求の範囲第1項に記載された方法であって、前記絶縁基体が窒化アルミ ニウムである方法。 4.請求の範囲第1項に記載された方法であって、前記液相金属が強化されて いない金属であり、前記金属層が強化されていない金属の層である方法。 5.請求の範囲第1項に記載されたの方法であって、前記液相金属が強化され た金属であり、前記金属層が強化された金属の層である方法。 6.請求の範囲第1項に記載された方法であって、前記液相金属が50ミクロ ン未満の寸法の粒体を有する圧密されていないセラミック粒体を含む方法。 7.請求の範囲第1項に記載された方法であって、前記液相金属が固めていな いセラミック粒体を含むアルミニウム合金である方法。 8.請求の範囲第1項に記載された方法であって、前記液相金属が炭化けい素 、炭化ほう素、窒化けい素、窒化アルミニウム、ムライト、ほう化チタン、ほう 化ジルコニウム、シリコンアルミニウムオキシニトライド(SiAlON)およ びそれらの組合せよりなる群から選ばれた固めていないセラミック粒体を含む方 法。 9.請求の範囲第1項に記載された方法であって、前記液相金属が5〜55重 量%の炭化けい素粒を含むアルミニウム合金である方法。 10.請求の範囲第1項に記載された方法であって、(e)が前記表面の選定さ れた部分にマスクを付与し、マスクで覆われていない前記表面の部分をエッチン グすることを含む方法。 11.請求の範囲第1項に記載された方法であって、(e)が前記金属複合体の 表面に溝を形成するために前記金属を機械的に除去することを含む方法。 12.請求の範囲第1項に記載された方法であって、(e)が前記金属複合体の 表面に溝を形成するためにレーザーを使用することを含む方法。 13.請求の範囲第1項に記載された方法であって、(e)が前記金属複合体の 表面に溝を形成するために放電機械を使用することを含む方法。 14.請求の範囲第1項に記載された方法であって、(e)が、 前記金属複合体の表面の少なくとも一つの領域を電気的に絶縁する閉じた連続 溝を形成することを含む方法。 15.請求の範囲第1項に記載された方法であって、(e)が、 前記金属複合体の表面の三つの領域を電気的に絶縁する少なくとも二つの連続 溝を形成することを含む方法。 16.金属地複合体を製造する方法であって、 (a)成形室内に、第一および第二の強化材料と、前記第一および第二の強化 材料の間に配置された電気絶縁体とを含むスタック即ち積み重ね体を形成し、 (b)成形室を真空排気し、 (c)液相金属を前記スタックに溶浸させ、 (d)液相金属を凝固させて金属地複合体を形成し、 (e)前記金属地複合体および前記多孔質プリフォームに少なくとも一つの溝 を形成し、前記溝は前記絶縁基体へ向かって内方へ延在されて前記金属地複合体 の表面の少なくとも一つの領域を電気的に絶縁するようにさせる、 ことを含む方法。 17.請求の範囲第16項に記載された方法であって、前記強化材料はSiCで 形成され、前記電気絶縁体は窒化アルミニウムで形成されている方法。 18.請求の範囲第16項に記載された方法であって、前記強化材料はSiCで 形成されたプリフォームである方法。 19.請求の範囲第16項に記載された方法であって、前記液相金属がアルミニ ウム合金である方法。 20.請求の範囲第16項に記載された方法であって、開放面積部分が前記スタ ックの上方で前記形成室内に備えられ、前記開放面積部分が溶浸時に金属層を形 成する方法。 21.金属地複合体を形成する方法であって、 (a)液相アルミニウム合金の溜りを備え、 (b)前記液相アルミニウム合金を上側および下側の多孔質プリフォームと、 前記プリフォームの間に配置された電気絶縁体とを含んでなるスタックに溶浸さ せ、 (c)前記液相金属を凝固させて金属地複合体を形成させる、 ことを含む方法。 22.請求の範囲第21項に記載された方法であって、絶縁層金属がアルミニウ ム合金である方法。 23.請求の範囲第21項に記載された方法であって、前記上側のプリフォーム が少なくとも二つの間隔を隔てられた部分を含む方法。 24.互いに電気的に絶縁された面積部分を有する金属地複合体であって、 (a)成形室内に絶縁基体を配置し、 (b)前記成形室を真空排気し、 (c)液相金属を前記成形室に溶浸させ、 (d)前記液相金属を凝固させて前記絶縁基体のまわりに金属地複合体を形成 し、 (e)前記凝固した金属に少なくとも一つの溝を形成し、前記溝は前記金属地 複合体の表面の少なくとも一つの領域を電気的に絶縁するように、前記絶縁基体 へ向かって内方へ延在される、 ことを含む方法によって形成された金属地複合体。 25.強化されていない面積部分および互いに電気的に絶縁された面積部分を有 する金属地複合体であって、 (a)強化されていないアルミニウム合金の溜りを備え、 (b)前記強化されていないアルミニウム合金を少なくとも一つの多孔質プリ フォームと電気絶縁体とを含んでなるスタックに溶浸させ、 (c)前記液相金属を凝固させて前記スタックを完全に取巻く金属地複合体製 品を形成し、前記金属地複合体は強化されていないアルミニウム合金の層を前記 製品の少なくとも一つの面上に有しており、 (d)前記強化されていないアルミニウム合金の前記層に少なくとも一つの溝 を形成し、前記溝は前記絶縁基体へ向かって内方へ延在して、前記金属地複合体 の表面に少なくとも一つの電気的に絶縁された領域を形成するようになされる、 ことを含む方法で形成された金属地複合体。 26.電気絶縁体の層を含む金属地複合体。 27.請求の範囲第26項に記載された金属地複合体であって、その少なくとも 一つの面積部分が互いに電気的に絶縁されている金属地複合体。 28.請求の範囲第26項に記載された金属地複合体であって、前記電気絶縁体 が窒化アルミニウムで形成された金属地複合体。 29.請求の範囲第26項に記載された金属地複合体であって、前記金属地材が アルミニウム合金で形成された金属地複合体。 30.請求の範囲第26項に記載された金属地複合体であって、前記金属地材が 炭化けい素で強化された金属地複合体。 31.請求の範囲第26項に記載された金属地複合体であって、前記電気絶縁体 の層がユニ・キャストすなわち一回鋳造によって金属地材に鋳造される金属地複 合体。
JP8534962A 1995-05-18 1996-05-13 電気絶縁体を含む金属地複合体の製造方法 Abandoned JPH11505177A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/444,171 US5616421A (en) 1991-04-08 1995-05-18 Metal matrix composites containing electrical insulators
US08/444,171 1995-05-18
PCT/US1996/006824 WO1996036450A2 (en) 1995-05-18 1996-05-13 Fabricating metal matrix composites containing electrical insulators

Publications (1)

Publication Number Publication Date
JPH11505177A true JPH11505177A (ja) 1999-05-18

Family

ID=23763791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8534962A Abandoned JPH11505177A (ja) 1995-05-18 1996-05-13 電気絶縁体を含む金属地複合体の製造方法

Country Status (5)

Country Link
US (1) US5616421A (ja)
JP (1) JPH11505177A (ja)
AU (1) AU5745396A (ja)
DE (1) DE19681390T1 (ja)
WO (1) WO1996036450A2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391636B2 (ja) * 1996-07-23 2003-03-31 明久 井上 高耐摩耗性アルミニウム基複合合金
US6033787A (en) * 1996-08-22 2000-03-07 Mitsubishi Materials Corporation Ceramic circuit board with heat sink
US6018188A (en) * 1997-03-28 2000-01-25 Nec Corporation Semiconductor device
US6245442B1 (en) 1997-05-28 2001-06-12 Kabushiki Kaisha Toyota Chuo Metal matrix composite casting and manufacturing method thereof
US6255671B1 (en) * 1998-01-05 2001-07-03 International Business Machines Corporation Metal embedded passivation layer structure for microelectronic interconnect formation, customization and repair
US6137237A (en) 1998-01-13 2000-10-24 Fusion Lighting, Inc. High frequency inductive lamp and power oscillator
US6313587B1 (en) 1998-01-13 2001-11-06 Fusion Lighting, Inc. High frequency inductive lamp and power oscillator
JP4304749B2 (ja) * 1998-02-24 2009-07-29 住友電気工業株式会社 半導体装置用部材の製造方法
DE19814018A1 (de) * 1998-03-28 1999-09-30 Andreas Roosen Verfahren zur Herstellung von Verbundwerkstoffen mit mindestens einer keramischen Komponente
AT408153B (de) 1998-09-02 2001-09-25 Electrovac Metall-matrix-composite- (mmc-) bauteil
US6355362B1 (en) * 1999-04-30 2002-03-12 Pacific Aerospace & Electronics, Inc. Electronics packages having a composite structure and methods for manufacturing such electronics packages
US6284389B1 (en) * 1999-04-30 2001-09-04 Pacific Aerospace & Electronics, Inc. Composite materials and methods for manufacturing composite materials
AU2002218493A1 (en) * 2000-11-29 2002-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
JP3869255B2 (ja) * 2001-06-14 2007-01-17 富士通株式会社 金属成形体製造方法およびこれにより製造される金属成形体
US20040065432A1 (en) * 2002-10-02 2004-04-08 Smith John R. High performance thermal stack for electrical components
SE526366C3 (sv) * 2003-03-21 2005-10-26 Silex Microsystems Ab Elektriska anslutningar i substrat
US8091455B2 (en) 2008-01-30 2012-01-10 Cummins Filtration Ip, Inc. Apparatus, system, and method for cutting tubes
DE102008035974B4 (de) * 2008-07-31 2010-07-08 Ami Doduco Gmbh Löschplatte für eine Lichtbogen-Löschkammer
KR101003591B1 (ko) * 2009-05-28 2010-12-22 삼성전기주식회사 메탈 적층판 및 이를 이용한 발광 다이오드 패키지의 제조 방법
US9375783B2 (en) 2010-06-04 2016-06-28 Triton Systems, Inc. Discontinuous short fiber preform and fiber-reinforced aluminum billet and methods of manufacturing the same
US9415440B2 (en) 2010-11-17 2016-08-16 Alcoa Inc. Methods of making a reinforced composite and reinforced composite products
US8564968B1 (en) * 2011-05-10 2013-10-22 Triquint Semiconductor, Inc. Air cavity package including a package lid having at least one protrusion configured to facilitate coupling of the package lid with a package wall
DE102012015944A1 (de) * 2012-08-10 2014-02-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Bauteils mit einer Verbundstruktur sowie mit dem Verfahren herstellbares Bauteil
CN104119095B (zh) * 2013-04-27 2016-04-27 比亚迪股份有限公司 一种金属陶瓷复合制品及其制备方法
US9826662B2 (en) * 2013-12-12 2017-11-21 General Electric Company Reusable phase-change thermal interface structures
US20160373154A1 (en) * 2015-06-16 2016-12-22 Ii-Vi Incorporated Electronic Device Housing Utilizing A Metal Matrix Composite
CN107470588B (zh) * 2017-09-18 2019-05-10 上海开朋科技有限公司 在铝金刚石复合材料表面覆盖铜箔的方法
CN107611040B (zh) * 2017-09-18 2019-06-14 上海开朋科技有限公司 铝金刚石复合材料表面覆盖铜箔同时镶嵌陶瓷材料的工艺
GB202005524D0 (en) * 2020-04-16 2020-06-03 Global Skyware Ltd Improving cooling of data signal processing apparatus

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350763A (en) * 1965-10-21 1967-11-07 Clevite Corp Method of making dual-material flange bearings
US3547180A (en) * 1968-08-26 1970-12-15 Aluminum Co Of America Production of reinforced composites
US3874855A (en) * 1969-07-22 1975-04-01 Cegedur Gp Composite shock resisting bodies
US3721841A (en) * 1971-06-16 1973-03-20 Motorola Inc Contact for piezoelectric crystals
JPS54141209U (ja) * 1978-03-27 1979-10-01
US4205418A (en) * 1978-07-28 1980-06-03 Burroughs Corporation Method of making a curved electrode plate
US4340109A (en) * 1980-02-25 1982-07-20 Emerson Electric Co. Process of die casting with a particulate inert filler uniformly dispersed through the casting
US4376804A (en) * 1981-08-26 1983-03-15 The Aerospace Corporation Pyrolyzed pitch coatings for carbon fiber
GB2115327B (en) * 1982-02-08 1985-10-09 Secr Defence Casting fibre reinforced metals
JPS58215263A (ja) * 1982-06-07 1983-12-14 Toyota Motor Corp 複合材料の製造方法
US4554613A (en) * 1983-10-31 1985-11-19 Kaufman Lance R Multiple substrate circuit package
JPS60223655A (ja) * 1984-04-23 1985-11-08 Daido Steel Co Ltd セラミクス−金属複合体の製造方法
JPS60240365A (ja) * 1984-05-15 1985-11-29 Toyota Motor Corp セラミツクス体の鋳ぐるみ方法
JPS60240366A (ja) * 1984-05-15 1985-11-29 Toyota Motor Corp セラミツクス体の鋳ぐるみ方法
US4589057A (en) * 1984-07-23 1986-05-13 Rogers Corporation Cooling and power and/or ground distribution system for integrated circuits
JPS60145340A (ja) * 1984-08-06 1985-07-31 Res Inst Iron Steel Tohoku Univ シリコンカ−バイド繊維強化アルミニウム複合材料の製造方法
GB8500856D0 (en) * 1985-01-12 1985-02-20 Gkn Technology Ltd Metal matrix composite
JPS62197379A (ja) * 1986-02-20 1987-09-01 株式会社東芝 窒化アルミニウム基板
US4770953A (en) * 1986-02-20 1988-09-13 Kabushiki Kaisha Toshiba Aluminum nitride sintered body having conductive metallized layer
JPS62238063A (ja) * 1986-04-09 1987-10-19 Mitsubishi Heavy Ind Ltd 溶湯加圧含浸装置
JPS62240152A (ja) * 1986-04-12 1987-10-20 Mitsubishi Heavy Ind Ltd 溶湯加圧含浸装置の型締めヘツド
FR2605913A1 (fr) * 1986-10-31 1988-05-06 Pechiney Aluminium Procede de moulage sous pression de pieces metalliques contenant eventuellement des fibres en ceramiques
FR2608476B1 (fr) * 1986-12-18 1989-05-12 Peugeot Procede de fabrication de pieces metalliques coulees comportant un insert en matiere ceramique
US4906511A (en) * 1987-02-12 1990-03-06 Kabushiki Kaisha Toshiba Aluminum nitride circuit board
US4828008A (en) * 1987-05-13 1989-05-09 Lanxide Technology Company, Lp Metal matrix composites
US4806704A (en) * 1987-06-08 1989-02-21 General Electric Company Metal matrix composite and structure using metal matrix composites for electronic applications
FR2616363B1 (fr) * 1987-06-11 1991-04-19 Cegedur Procede et dispositif de moulage en sable de pieces composites a matrice en alliage leger et insert fibreux
JPS6431565A (en) * 1987-07-28 1989-02-01 Atsugi Motor Parts Co Ltd Production of fiber reinforced composite material
US4961461A (en) * 1988-06-16 1990-10-09 Massachusetts Institute Of Technology Method and apparatus for continuous casting of composites
US4901781A (en) * 1988-08-30 1990-02-20 General Motors Corporation Method of casting a metal matrix composite
US5111871B1 (en) * 1989-03-17 1993-12-28 J. Cook Arnold Method of vacuum casting
US4920864A (en) * 1989-04-14 1990-05-01 Jpi Transportation Products, Inc. Reinforced piston
US5361678A (en) * 1989-09-21 1994-11-08 Aluminum Company Of America Coated ceramic bodies in composite armor
DE69033718T2 (de) * 1989-10-09 2001-11-15 Mitsubishi Materials Corp Keramisches Substrat angewendet zum Herstellen einer elektrischen oder elektronischen Schaltung
US5039577A (en) * 1990-05-31 1991-08-13 Hughes Aircraft Company Hybrid metal matrix composite chassis structure for electronic circuits
JP2504610B2 (ja) * 1990-07-26 1996-06-05 株式会社東芝 電力用半導体装置
US5259436A (en) * 1991-04-08 1993-11-09 Aluminum Company Of America Fabrication of metal matrix composites by vacuum die casting
US5311920A (en) * 1991-07-29 1994-05-17 Cook Arnold J Method of forming a metal matrix component with internal and external structures
US5306571A (en) * 1992-03-06 1994-04-26 Bp Chemicals Inc., Advanced Materials Division Metal-matrix-composite
EP0665591A1 (en) * 1992-11-06 1995-08-02 Motorola, Inc. Method for forming a power circuit package

Also Published As

Publication number Publication date
AU5745396A (en) 1996-11-29
US5616421A (en) 1997-04-01
WO1996036450A2 (en) 1996-11-21
DE19681390T1 (de) 1998-07-02
WO1996036450A3 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
JPH11505177A (ja) 電気絶縁体を含む金属地複合体の製造方法
US5570502A (en) Fabricating metal matrix composites containing electrical insulators
EP0538457B1 (en) Fabrication of metal matrix composites by vacuum die casting
US5775403A (en) Incorporating partially sintered preforms in metal matrix composites
EP0365978B1 (en) A method of producing a ceramic reinforced composite material
JP2000077584A (ja) 金属マトリックスコンポジットボデ―
US6003221A (en) Metal matrix composites containing electrical insulators
US20120063071A1 (en) Machinable metal/diamond metal matrix composite compound structure and method of making same
IL168429A (en) A semiconductor substrate with a diamond / copper composite material and a method for its production
JPH11277217A (ja) 放熱用基板およびその製造方法
KR19990001422A (ko) 구리 용침용 텅스텐 골격 구조 제조 방법 및 이를 이용한 텅스텐-구리 복합재료 제조 방법
US6174481B1 (en) Method for forming cast tooling for polymer molding
JP4154861B2 (ja) 複合材料の製造方法
EP2429742B1 (en) Method for the manufacturing of a component for a braking system
JPH01212283A (ja) セラミックスと金属の接合体の製法
JPH11269577A (ja) 金属基複合鋳造品及びその製造方法
JP3458832B2 (ja) 複合材料の製造方法
JP4239047B2 (ja) マグネシウム基複合材料の製造方法及びマグネシウム基複合材料
WO1990015681A1 (en) Metal infiltration apparatus, methods and composites obtained thereby
JP2000095586A (ja) 複合材料及びその製造方法
JPH04198407A (ja) 焼結金型及びその製造方法
JP2003300788A (ja) アルミニウム合金−炭化珪素質複合体の製造方法及びそれに用いる構造体
JPH11269578A (ja) 複合体の製造方法
JP2000174183A (ja) 複合材料
JP2002226925A (ja) 複合材料の製造方法

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040107