JPH11329734A - Organic electroluminescence element - Google Patents

Organic electroluminescence element

Info

Publication number
JPH11329734A
JPH11329734A JP10139509A JP13950998A JPH11329734A JP H11329734 A JPH11329734 A JP H11329734A JP 10139509 A JP10139509 A JP 10139509A JP 13950998 A JP13950998 A JP 13950998A JP H11329734 A JPH11329734 A JP H11329734A
Authority
JP
Japan
Prior art keywords
group
light emitting
substituent
aromatic
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139509A
Other languages
Japanese (ja)
Inventor
Yoshiharu Sato
佳晴 佐藤
Tomoyuki Ogata
朋行 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10139509A priority Critical patent/JPH11329734A/en
Publication of JPH11329734A publication Critical patent/JPH11329734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a white organic electroluminescent element having high luminous efficiency and improved stability. SOLUTION: This light emitting element comprises at least: a hole transport layer sandwiched between a positive electrode and a negative electrode, a light emitting layer, and a hole blocking layer on a substrate, wherein the light emitting layer contains an aromatic amine compound having a maximum fluorescence wavelength in a range of 400 to 500 nm, the ionization potential of the hole transport layer is larger than that of the light emitting layer by 0.1 eV or more, the ionization potential, of the hole blocking layer is larger than that of the light emitting layer by 0.2 eV or more, and at least the light emitting layer contains a fluorochrome whose maximum fluorescent wavelength is in a range of 550 to 650 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電界発光素子
に関する。詳しくは、特定の芳香族アミンを含有する発
光層に特定の蛍光色素をドープした有機電界発光素子に
関する。本発明の有機電界発光素子は、高い発光効率の
白色発光が達成でき、また安定性が向上しているので、
フラットパネル・ディスプレイやマルチカラー表示素
子、或いは面発光体としての特徴を生かした光源等への
応用が期待される。
[0001] The present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent device in which a light emitting layer containing a specific aromatic amine is doped with a specific fluorescent dye. Since the organic electroluminescent device of the present invention can achieve white light emission with high luminous efficiency and has improved stability,
It is expected to be applied to a flat panel display, a multi-color display element, or a light source utilizing the characteristics of a surface light emitter.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と
しては、無機材料のII〜VI族化合物半導体であるZn
S、CaS、SrS等に、発光中心であるMnや希土類
元素(Eu、Ce、Tb、Sm等)をドープしたものが
一般的であるが、上記の無機材料から作製したEL素子
は、 1)交流駆動が必要(50〜1000Hz)、 2)駆動電圧が高い(〜200V)、 3)フルカラー化が困難(特に青色)、 4)周辺駆動回路のコストが高い、 という問題点を有している。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent (EL) element, Zn, which is a group II-VI compound semiconductor of an inorganic material, is used.
In general, S, CaS, SrS, and the like are doped with Mn or a rare earth element (Eu, Ce, Tb, Sm, or the like) which is a luminescence center. However, EL devices manufactured from the above inorganic materials include: 1) AC drive is required (50 to 1000 Hz), 2) High drive voltage (up to 200 V), 3) It is difficult to achieve full color (especially blue), and 4) Peripheral drive circuit is expensive. .

【0003】しかし、近年、上記問題点の改良のため、
有機薄膜を用いたEL素子の開発が行われるようになっ
た。特に、発光効率を高めるため、電極からのキャリア
ー注入の効率向上を目的として電極の種類の最適化を行
い、芳香族ジアミンから成る正孔輸送層と8−ヒドロキ
シキノリンのアルミニウム錯体から成る発光層とを設け
た有機電界発光素子の開発(Appl.Phys.Le
tt.,51巻,913頁,1987年)により、従来
のアントラセン等の単結晶を用いたEL素子と比較して
発光効率の大幅な改善がなされている。また、例えば、
8−ヒドロキシキノリンのアルミニウム錯体をホスト材
料として、クマリン等のレーザ用蛍光色素をドープする
こと(J.Appl.Phys.,65巻,3 610
頁、1989年)により、発光効率の向上や発光波長の
変換等も行われている。
However, in recent years, in order to improve the above problems,
Development of EL devices using organic thin films has been started. In particular, in order to enhance the luminous efficiency, the type of the electrode was optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transport layer composed of an aromatic diamine and a luminescent layer composed of an aluminum complex of 8-hydroxyquinoline were used. Of an organic electroluminescent device provided with a device (Appl. Phys. Le)
tt. , Vol. 51, p. 913, 1987), the luminous efficiency has been greatly improved as compared with a conventional EL device using a single crystal such as anthracene. Also, for example,
Doping with a fluorescent dye for laser such as coumarin using an aluminum complex of 8-hydroxyquinoline as a host material (J. Appl. Phys., 65, 3610).
1989), the emission efficiency has been improved, the emission wavelength has been converted, and the like.

【0004】上記の様な低分子材料を用いた電界発光素
子の他にも、発光層の材料として、ポリ(p−フェニレ
ンビニレン)(Nature,347巻,539頁,1
990年)、ポリ〔2−メトキシ−5−(2−エチルヘ
キシルオキシ)−1,4−フェニレンビニレン〕(Ap
pl.Phys.Lett.,58巻,1982頁,1
991年 他)、ポリ(3−アルキルチオフェン)(J
pn.J.Appl.Phys,30巻,L1938
頁,1991年)等の高分子材料を用いた電界発光素子
の開発や、ポリビニルカルバゾール等の高分子に低分子
の発光材料と電子移動材料を混合した素子(応用物理,
61巻,1044頁,1992年)の開発も行われてい
る。
In addition to the electroluminescent device using a low molecular material as described above, poly (p-phenylenevinylene) (Nature, 347, 539, 1) may be used as a material for the light emitting layer.
990), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (Ap
pl. Phys. Lett. 58, 1982, 1
991 et al.), Poly (3-alkylthiophene) (J
pn. J. Appl. Phys, Volume 30, L1938
1991), and the development of electroluminescent devices using polymer materials, and devices in which a low molecular light emitting material and an electron transfer material are mixed with a polymer such as polyvinyl carbazole (Applied Physics,
61, p. 1044, 1992).

【0005】[0005]

【発明が解決しようとする課題】有機電界発光素子を用
いて、多色又はフルカラー表示が可能な表示素子を作製
するためには、二つの方法が考えられている。一つは、
青色の光を発光させることのできる有機電界発光素子を
励起光源として、緑及び赤の蛍光材料による蛍光変換を
用いる方法である(Proc.15th Int.Di
splay Research Conferenc
e,269頁,1995年)。もう一つは、白色発光が
可能な有機電界発光素子とカラーフィルターを組み合わ
せる方式である(特開平7−142169号公報)。
To produce a display element capable of multicolor or full-color display using an organic electroluminescent element, two methods have been considered. one,
A method using fluorescence conversion with green and red fluorescent materials using an organic electroluminescent element capable of emitting blue light as an excitation light source (Proc. 15th Int. Di).
spray Research Conference
e, p. 269, 1995). The other is a method of combining an organic electroluminescent element capable of emitting white light and a color filter (Japanese Patent Application Laid-Open No. 7-142169).

【0006】前者の青色発光と蛍光変換の組み合わせに
よる多色化、フルカラー化方式においては、青色有機電
界発光素子の性能、特に、駆動時の寿命が問題である。
これまでのところ、青色発光素子に関しては初期輝度1
00cd/m2 で、8000時間の寿命が報告されてい
るが(Inorganic and OrganicE
lectroluminescence/EL 96
Berlin.ed.R.H.Mauch and
H.E.Gumlich,p.95,Wissensc
haft und Technik Verlag,
Berlin)、蛍光変換によるロスや要求される実用
輝度300cd/m2 を考えると、寿命が不十分なのが
現状である。
In the former multi-color and full-color system using a combination of blue light emission and fluorescence conversion, the performance of the blue organic electroluminescent device, particularly, the life during driving is a problem.
So far, the initial luminance of the blue light emitting element is 1
A life of 8000 hours was reported at 00 cd / m 2 (Inorganic and Organic E).
electroluminescence / EL 96
Berlin. ed. R. H. Mauch and
H. E. FIG. Gumlich, p. 95, Wissensc
haft und Technik Verlag,
Berlin), considering the loss due to the fluorescence conversion and the required practical luminance of 300 cd / m 2 , the current life is insufficient.

【0007】後者の白色有機電界発光素子とカラーフィ
ルタを組み合わせる方式では、白色発光の発光効率が問
題であった(第55回応用物理学会学術講演会講演予稿
集、19p−H−6、992頁、1994年;第56回
応用物理学会学術講演会講演予稿集、28p−V−7、
1028頁、1995年)。白色発光に対しては、多色
化、フルカラー化への要求以外に、白色発光そのものを
表示光としたり、液晶ディスプレイ等のバックライトに
使用するニーズもあり、その波及効果は大きいと言え
る。従って、表示素子の基本とでも言うべき白色発光に
対しては、更なる改良検討が望まれている。
In the latter method of combining a white organic electroluminescent device and a color filter, the luminous efficiency of white light emission is a problem (Preprints of the 55th Annual Conference of the Japan Society of Applied Physics, 19p-H-6, p. 992). Proceedings of the 56th Japan Society of Applied Physics, 28p-V-7,
1028, 1995). With respect to white light emission, in addition to the demand for multicolor and full-color emission, there is also a need to use white light emission itself as display light or to use it for a backlight of a liquid crystal display or the like, and the ripple effect can be said to be great. Therefore, further improvement studies are desired for white light emission, which can be said to be the basis of a display element.

【0008】白色発光を達成するために、これまで、青
色発光層、緑色発光層及び赤色発光層を積層する方式
(特開平6−207170号公報;同平7−14216
9号公報)が開示されているが、駆動に伴う白色ELス
ペクトルの変化による色ずれや、再結晶ゾーンが複数の
層に跨がるために発光効率が低いという問題点があっ
た。この点を解決するために、青、緑、赤の各蛍光色素
を発光層中に同時にドープすることが考えられ、塗布型
ポリマーでは塗布液調整の段階で各色の蛍光色素を混合
することにより容易に白色が得られるが(Appl.P
hys.Lett.,64巻,815頁,1994
年)、ポリマーの場合、不純物の制御が困難なため発光
効率及び駆動安定性が実用には遠いのが現状である。低
分子を用いた真空蒸着法により各色の蛍光色素を発光層
ホスト中にドープすることは可能であるが、同時に多数
の蒸着源の蒸着速度を制御して各蛍光色素のドープ量を
調整するので、実際の生産を考えると非常に困難である
と言わざるを得ない。
In order to achieve white light emission, a system in which a blue light-emitting layer, a green light-emitting layer and a red light-emitting layer are stacked (JP-A-6-207170; JP-A-7-14216)
No. 9), there is a problem that the color shift due to a change in the white EL spectrum due to driving and the luminous efficiency is low because the recrystallization zone extends over a plurality of layers. In order to solve this problem, it is conceivable that blue, green, and red fluorescent dyes are simultaneously doped into the light-emitting layer. In the case of a coating type polymer, it is easy to mix the fluorescent dyes of each color at the stage of adjusting the coating liquid. Is obtained (Appl.P
hys. Lett. 64, 815, 1994.
In the case of a polymer, the luminous efficiency and the driving stability are far from practical use because it is difficult to control impurities. Although it is possible to dope the fluorescent dye of each color into the luminescent layer host by vacuum evaporation using a low molecule, the doping amount of each fluorescent dye is adjusted by controlling the deposition rate of many evaporation sources at the same time. I have to say that it is very difficult considering the actual production.

【0009】上述の様に、白色発光素子に対しては、出
来るだけ単純な層構成、例えば、発光層は単層で、且
つ、発光効率が高く、白色の色ずれが起きにくく、しか
も、駆動時に安定な特性が求められている。本発明は、
発光効率が高く、且つ安定性の向上した白色有機電界発
光素子を提供することを目的とする。
As described above, for a white light-emitting element, the layer structure is as simple as possible, for example, the light-emitting layer is a single layer, has high luminous efficiency, is unlikely to cause white color shift, and has a high driving efficiency. Sometimes stable characteristics are required. The present invention
An object of the present invention is to provide a white organic electroluminescent device having high luminous efficiency and improved stability.

【0010】[0010]

【発明が解決しようとする課題】本発明者らは、かかる
実状に鑑み鋭意検討した結果、特定の芳香族アミンを含
有する発光層に特定の蛍光色素をドープさせ、且つ正孔
輸送層、発光層及び正孔阻止層のイオン化ポテンシャル
の相対関係を特定することにより上記課題を解決し得る
ことを見い出し、本発明を完成するに至った。
SUMMARY OF THE INVENTION The present inventors have conducted intensive studies in view of the above situation, and as a result, doped a specific fluorescent dye into a light emitting layer containing a specific aromatic amine, The inventors have found that the above problem can be solved by specifying the relative relationship between the ionization potentials of the layer and the hole blocking layer, and have completed the present invention.

【0011】[0011]

【課題を解決するための手段】即ち、本発明の要旨は、
基板上に、陽極及び陰極により挟持された正孔輸送層、
発光層及び正孔阻止層を少なくとも含む有機電界発光素
子であって、該発光層が400〜500nmの範囲に蛍
光極大波長を有する芳香族アミン化合物を含有し、正孔
輸送層のイオン化ポテンシャルが発光層のイオン化ポテ
ンシャルより0.1eV以上大きく、正孔阻止層のイオ
ン化ポテンシャルが発光層のイオン化ポテンシャルより
0.2eV以上大きく、少なくとも発光層に蛍光極大波
長が550〜650nmの範囲にある蛍光色素を含有さ
せることを特徴とする有機電界発光素子にある。
That is, the gist of the present invention is as follows.
On the substrate, a hole transport layer sandwiched by an anode and a cathode,
An organic electroluminescent device including at least a light emitting layer and a hole blocking layer, wherein the light emitting layer contains an aromatic amine compound having a fluorescence maximum wavelength in a range of 400 to 500 nm, and the ionization potential of the hole transport layer is light emission. The ionization potential of the layer is 0.1 eV or more, the ionization potential of the hole blocking layer is 0.2 eV or more than the ionization potential of the light-emitting layer, and at least the light-emitting layer contains a fluorescent dye having a maximum fluorescence wavelength in the range of 550 to 650 nm. The organic electroluminescent device.

【0012】[0012]

【発明の実施の形態】以下、本発明の有機電界発光素子
について、図面を参照しながら説明する。図1は本発明
に用いられる一般的な有機電界発光素子の構造例を模式
的に示す断面図であり、1は基板、2は陽極、4は正孔
輸送層、5は発光層、6は正孔阻止層、8は陰極を各々
表わす。基板1は有機電界発光素子の支持体となるもの
であり、石英やガラスの板、金属板や金属箔、プラスチ
ックフィルムやシート等が用いられる。特にガラス板
や、ポリエステル、ポリメタクリレート、ポリカーボネ
ート、ポリスルホン等の透明な合成樹脂の板が好まし
い。合成樹脂基板を使用する場合にはガスバリア性に留
意する必要がある。基板のガスバリヤ性が小さすぎる
と、基板を通過した外気により有機電界発光素子が劣化
することがあるので好ましくない。このため、合成樹脂
基板の少なくとも片面に緻密なシリコン酸化膜等を設け
てガスバリア性を確保する方法も好ましい方法の一つで
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an organic electroluminescent device according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an example of the structure of a general organic electroluminescent device used in the present invention, wherein 1 is a substrate, 2 is an anode, 4 is a hole transport layer, 5 is a light emitting layer, and 6 is The hole blocking layers, 8 each represent a cathode. The substrate 1 serves as a support for the organic electroluminescent element, and is made of a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like. Particularly, a glass plate or a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent device may be deteriorated by the outside air passing through the substrate, which is not preferable. For this reason, a method of providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate to secure gas barrier properties is also a preferable method.

【0013】基板1上には陽極2が設けられるが、陽極
2は正孔輸送層への正孔注入の役割を果たすものであ
る。この陽極は、通常、アルミニウム、金、銀、ニッケ
ル、パラジウム、白金等の金属、インジウム及び/又は
スズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化
金属、カーボンブラック、或いは、ポリ(3−メチルチ
オフェン)、ポリピロール、ポリアニリン等の導電性高
分子等により構成される。陽極2の形成は通常、スパッ
タリング法、真空蒸着法等により行われることが多い。
また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボ
ンブラック、導電性の金属酸化物微粒子、導電性高分子
微粉末等の場合には、適当なバインダー樹脂溶液に分散
し、基板1上に塗布することにより陽極2を形成するこ
ともできる。更に、導電性高分子の場合は電解重合によ
り直接基板1上に薄膜を形成したり、基板1上に導電性
高分子を塗布して陽極2を形成することもできる(Ap
pl.Phys.Lett.,60巻,2711頁,1
992年)。陽極2は異なる物質で積層して形成するこ
とも可能である。陽極2の厚みは、必要とする透明性に
より異なる。透明性が必要とされる場合は、可視光の透
過率を、通常、60%以上、好ましくは80%以上とす
ることが望ましく、この場合、厚みは、通常、5〜10
00nm、好ましくは10〜500nm程度である。不
透明でよい場合は陽極2は基板1と同一でもよい。ま
た、更には上記の陽極2の上に異なる導電材料を積層す
ることも可能である。
An anode 2 is provided on a substrate 1. The anode 2 plays a role of injecting holes into a hole transport layer. This anode is usually made of a metal such as aluminum, gold, silver, nickel, palladium and platinum, a metal oxide such as an oxide of indium and / or tin, a metal halide such as copper iodide, carbon black, or poly. (3-methylthiophene), conductive polymers such as polypyrrole and polyaniline. Usually, the formation of the anode 2 is often performed by a sputtering method, a vacuum evaporation method, or the like.
In the case of fine particles of metal such as silver, fine particles of copper iodide or the like, carbon black, fine particles of conductive metal oxide, fine particles of conductive polymer, etc., they are dispersed in an appropriate binder resin solution and To form the anode 2. Further, in the case of a conductive polymer, a thin film can be formed directly on the substrate 1 by electrolytic polymerization, or the conductive polymer can be applied on the substrate 1 to form the anode 2 (Ap).
pl. Phys. Lett. 60, 2711, 1
992). The anode 2 can be formed by laminating different materials. The thickness of the anode 2 depends on the required transparency. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 5 to 10%.
00 nm, preferably about 10 to 500 nm. If opaque, the anode 2 may be the same as the substrate 1. Further, it is also possible to laminate a different conductive material on the anode 2.

【0014】陽極2の上には正孔輸送層4が設けられ
る。正孔輸送層の材料に要求される条件としては、陽極
からの正孔注入効率が高く、且つ、注入された正孔を効
率よく輸送することができる材料であることが必要であ
る。そのためには、イオン化ポテンシャルが小さく、可
視光の光に対して透明性が高く、しかも正孔移動度が大
きく、更に安定性に優れ、トラップとなる不純物が製造
時や使用時に発生しにくいことが要求される。上記の一
般的要求以外に、車載表示用の応用を考えた場合、素子
には更に耐熱性が要求される。従って、Tgとして85
℃以上の値を有する材料が望ましい。
On the anode 2, a hole transport layer 4 is provided. As a condition required for the material of the hole transport layer, it is necessary that the material has a high hole injection efficiency from the anode and can efficiently transport the injected holes. Therefore, the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is further improved, and impurities serving as traps are hardly generated at the time of manufacture or use. Required. In addition to the above general requirements, when considering applications for in-vehicle display, the element is required to have further heat resistance. Therefore, Tg is 85
A material having a value of at least C is desirable.

【0015】このような正孔輸送材料としては、例え
ば、1,1−ビス(4−ジ−p−トリルアミノフェニ
ル)シクロヘキサン等の第三級芳香族アミン単位を連結
した芳香族ジアミン化合物(特開昭59−194393
号公報)、4,4′−ビス〔N−(1−ナフチル)−N
−フェニルアミノ〕ビフェニルで代表される二個以上の
第三級アミンを含み二個以上の縮合芳香族環が窒素原子
に置換した芳香族アミン(特開平5−234681号公
報)、トリフェニルベンゼンの誘導体でスターバースト
構造を有する芳香族トリアミン(米国特許第4,92
3,774号明細書)、N,N′−ジフェニル−N,
N′−ビス(3−メチルフェニル)ビフェニル−4,
4′−ジアミン等の芳香族ジアミン(米国特許第4,7
64,625号明細書)、分子全体として立体的に非対
称なトリフェニルアミン誘導体(特開平4−12927
1号公報)、ピレニル基に芳香族ジアミノ基が複数個置
換した化合物(特開平4−175395号公報)、エチ
レン基で第三級芳香族アミン単位を連結した芳香族ジア
ミン(特開平4−264189号公報)、スチリル構造
を有する芳香族ジアミン(特開平4−290851号公
報)、チオフェン基で芳香族第三級アミン単位を連結し
たもの(特開平4−304466号公報)、スターバー
スト型芳香族トリアミン(特開平4−308688号公
報)、ベンジルフェニル化合物(特開平4−36415
3号公報)、フルオレン基で第三級アミンを連結したも
の(特開平5−25473号公報)、トリアミン化合物
(特開平5−239455号公報)、ビスジピリジルア
ミノビフェニル(特開平5−320634号公報)、
N,N,N−トリフェニルアミン誘導体(特開平6−1
972号公報)、フェノキサジン構造を有する芳香族ジ
アミン(特開平7−138562号公報)、ジアミノフ
ェニルフェナントリジン誘導体(特開平7−25247
4号公報)、シラザン化合物(米国特許第4,950,
950号明細書)、シラナミン誘導体(特開平6−49
079号公報)、ホスファミン誘導体(特開平6−25
659号公報)、キナクリドン化合物等が挙げられる。
これらの化合物は、単独で用いてもよいし、必要に応じ
て、各々、混合して用いてもよい。
As such a hole transport material, for example, an aromatic diamine compound having a tertiary aromatic amine unit linked thereto such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane (particularly, Kaisho 59-194393
Publication), 4,4'-bis [N- (1-naphthyl) -N
[Phenylamino] biphenyl, aromatic amines containing two or more tertiary amines and two or more condensed aromatic rings substituted with nitrogen atoms (JP-A-5-234681); Aromatic triamines having a starburst structure in derivatives (US Pat. No. 4,92
3,774), N, N'-diphenyl-N,
N'-bis (3-methylphenyl) biphenyl-4,
Aromatic diamines such as 4'-diamine (U.S. Pat.
No. 64,625), a triphenylamine derivative which is sterically asymmetric as a whole molecule (JP-A-4-12927).
No. 1), a compound in which a pyrenyl group is substituted with a plurality of aromatic diamino groups (JP-A-4-175395), and an aromatic diamine in which a tertiary aromatic amine unit is linked by an ethylene group (JP-A-4-264189). Japanese Patent Application Laid-Open No. 4-290466), aromatic diamines having a styryl structure (Japanese Patent Application Laid-Open No. Hei 4-290851), those obtained by linking aromatic tertiary amine units with thiophene groups (Japanese Patent Application Laid-Open No. 4-304466), starburst type aromatics Triamines (JP-A-4-308688) and benzylphenyl compounds (JP-A-4-36415)
No. 3), a compound in which a tertiary amine is linked by a fluorene group (Japanese Patent Application Laid-Open No. 5-25473), a triamine compound (Japanese Patent Application Laid-Open No. 5-239455), and a bisdipyridylaminobiphenyl (Japanese Patent Application Laid-Open No. 5-320634). ),
N, N, N-triphenylamine derivatives (Japanese Unexamined Patent Publication No.
No. 972), aromatic diamines having a phenoxazine structure (JP-A-7-138562), diaminophenylphenanthridine derivatives (JP-A-7-25247).
No. 4), silazane compounds (US Pat. No. 4,950,
950), silanamine derivatives (JP-A-6-49)
079), phosphamine derivatives (JP-A-6-25)
659) and quinacridone compounds.
These compounds may be used alone, or may be used as a mixture as necessary.

【0016】上記の化合物以外に、正孔輸送層の材料と
して、ポリビニルカルバゾールやポリシラン(App
l.Phys.Lett.,59巻,2760頁,19
91年)、ポリフォスファゼン(特開平5−31094
9号公報)、ポリアミド(特開平5−310949号公
報)、ポリビニルトリフェニルアミン(特開平7−53
953号公報)、トリフェニルアミン骨格を有する高分
子(特開平4−133065号公報)、トリフェニルア
ミン単位をメチレン基等で連結した高分子(Synth
etic Metals,55〜57巻、4163頁,
1993年)、芳香族アミンを含有するポリメタクリレ
ート(J.Polym.Sci.,Polym.Che
m.Ed.,21巻,969頁,1983年)等の高分
子材料が挙げられる。
In addition to the above compounds, as a material of the hole transport layer, polyvinyl carbazole or polysilane (App
l. Phys. Lett. 59, 2760, 19
1991), polyphosphazene (JP-A-5-31094)
No. 9), polyamide (JP-A-5-310949), polyvinyl triphenylamine (JP-A-7-53).
No. 953), a polymer having a triphenylamine skeleton (Japanese Patent Laid-Open No. 4-133065), and a polymer in which triphenylamine units are linked by a methylene group (Synth
etic Metals, 55-57, 4163,
1993), polymethacrylates containing aromatic amines (J. Polym. Sci., Polym. Che.
m. Ed. , 21, 969, 1983).

【0017】上記の正孔輸送材料を塗布法或いは真空蒸
着法により前記陽極2上に積層することにより正孔輸送
層4を形成する。塗布法の場合は、正孔輸送材料を一種
又は二種以上と、必要により正孔のトラップにならない
バインダー樹脂や塗布性改良剤等の添加剤とを添加し、
溶解して塗布溶液を調製し、スピンコート法等の方法に
より陽極2上に塗布し、乾燥して正孔輸送層4を形成す
る。バインダー樹脂としては、ポリカーボネート、ポリ
アリレート、ポリエステル等が挙げられる。バインダー
樹脂は添加量が多いと正孔移動度を低下させるので、少
ない方が望ましく、通常、50重量%以下が好ましい。
The hole transport layer 4 is formed by laminating the above hole transport material on the anode 2 by a coating method or a vacuum evaporation method. In the case of the coating method, one or two or more hole transport materials and, if necessary, an additive such as a binder resin or a coatability improver that does not trap holes are added,
The solution is dissolved to prepare a coating solution, applied to the anode 2 by a method such as spin coating, and dried to form the hole transport layer 4. Examples of the binder resin include polycarbonate, polyarylate, and polyester. If the amount of the binder resin is large, the hole mobility is reduced, so that a small amount is desirable, and usually 50% by weight or less is preferable.

【0018】真空蒸着法の場合には、正孔輸送材料を真
空容器内に設置されたルツボに入れ、真空容器内を適当
な真空ポンプで10-4Pa程度にまで排気した後、ルツ
ボを加熱して、正孔輸送材料を蒸発させ、ルツボと向き
合って置かれた基板1上の陽極2上に正孔輸送層4を形
成させる。正孔輸送層4を形成する場合、更に、アクセ
プターとして、芳香族カルボン酸の金属錯体及び/又は
金属塩(特開平4−320484号公報)、ベンゾフェ
ノン誘導体及びチオベンゾフェノン誘導体(特開平5−
295361号公報)、フラーレン類(特開平5−33
1458号公報)等を10-3〜10重量%の濃度でドー
プして、フリーキャリアとしての正孔を生成させること
により、低電圧駆動を可能にすることができる。正孔輸
送層4の膜厚は、通常、10〜300nm、好ましくは
30〜100nmである。この様に薄い膜を一様に形成
するためには、一般に真空蒸着法がよく用いられる。
In the case of the vacuum evaporation method, the hole transporting material is put into a crucible placed in a vacuum vessel, and the inside of the vacuum vessel is evacuated to about 10 -4 Pa by a suitable vacuum pump, and then the crucible is heated. Then, the hole transport material is evaporated to form the hole transport layer 4 on the anode 2 on the substrate 1 placed facing the crucible. When the hole transport layer 4 is formed, a metal complex and / or a metal salt of an aromatic carboxylic acid (JP-A-4-320484), a benzophenone derivative, and a thiobenzophenone derivative (JP-A-Hei.
295361), fullerenes (JP-A-5-33)
1458) or the like at a concentration of 10 −3 to 10% by weight to generate holes as free carriers, thereby enabling low-voltage driving. The thickness of the hole transport layer 4 is usually 10 to 300 nm, preferably 30 to 100 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.

【0019】陽極2と正孔輸送層4のコンタクトを向上
させるために、図3に示す様に、陽極バッファ層3を設
けることが考えられる。陽極バッファ層に用いられる材
料に要求される条件としては、陽極とのコンタクトがよ
く均一な薄膜が形成でき、熱的に安定、即ち、融点及び
ガラス転移温度が高く、融点としては300℃以上、ガ
ラス転移温度としては100℃以上が要求される。更
に、イオン化ポテンシャルが低く陽極からの正孔注入が
容易なこと、正孔移動度が大きいことが挙げられる。こ
の目的のために、これまでにポルフィリン誘導体やフタ
ロシアニン化合物(特開昭63−295695号公
報)、スターバースト型芳香族トリアミン(特開平4−
308688号公報)、ヒドラゾン化合物(特開平4−
320483号公報)、アルコキシ置換の芳香族ジアミ
ン誘導体(特開平4−220995号公報)、p−(9
−アントリル)−N,N−ジ−p−トリルアニリン(特
開平3−111485号公報)、ポリチエニレンビニレ
ンやポリ−p−フェニレンビニレン(特開平4−145
192号公報)、ポリアニリン(Appl.Phys.
Lett.,64巻,1245頁,1994年参照)等
の有機化合物や、スパッタ・カーボン膜(特開平8−3
1573号公報)や、バナジウム酸化物、ルテニウム酸
化物、モリブデン酸化物等の金属酸化物(第43回応用
物理学関係連合講演会,27a−SY−9,1996
年)が報告されている。
In order to improve the contact between the anode 2 and the hole transport layer 4, it is conceivable to provide an anode buffer layer 3 as shown in FIG. The conditions required for the material used for the anode buffer layer are that a uniform thin film can be formed with good contact with the anode and thermally stable, that is, the melting point and the glass transition temperature are high, and the melting point is 300 ° C. or more, A glass transition temperature of 100 ° C. or higher is required. In addition, the ionization potential is low, holes can be easily injected from the anode, and the hole mobility is high. To this end, porphyrin derivatives and phthalocyanine compounds (JP-A-63-29569) and star-burst-type aromatic triamines (JP-A-Hei.
308688), hydrazone compounds (Japanese Unexamined Patent Publication No.
No. 320483), an alkoxy-substituted aromatic diamine derivative (Japanese Patent Application Laid-Open No. 4-220995), p- (9
-Anthryl) -N, N-di-p-tolylaniline (JP-A-3-111485), polythienylenevinylene and poly-p-phenylenevinylene (JP-A-4-145)
192), polyaniline (Appl. Phys.
Lett. 64, p. 1245, 1994), and sputtered carbon films (JP-A-8-3).
No. 1573) and metal oxides such as vanadium oxide, ruthenium oxide and molybdenum oxide (the 43rd Joint Lecture on Applied Physics, 27a-SY-9, 1996).
Year) has been reported.

【0020】上記陽極バッファ層材料としてよく使用さ
れる化合物としては、ポルフィリン化合物又はフタロシ
アニン化合物が挙げられる。これらの化合物は中心金属
を有していてもよいし、無金属のものでもよい。好まし
いこれらの化合物の具体例としては、以下の化合物が挙
げられる: ポルフィン 5,10,15,20−テトラフェニル− 21H,23H−ポルフィン 5,10,15,20−テトラフェニル− 21H,23H−ポルフィンコ
バルト(II) 5,10,15,20−テトラフェニル− 21H,23H−ポルフィン銅
(II) 5,10,15,20−テトラフェニル− 21H,23H−ポルフィン亜
鉛(II) 5,10,15,20−テトラフェニル− 21H,23H−ポルフィンバ
ナジウム(IV)オキシド 5,10,15,20−テトラ(4−ピリジル)− 21H,23H−ポル
フィン 29H,31H −フタロシアニン 銅(II)フタロシアニン 亜鉛(II)フタロシアニン チタンフタロシアニンオキシド マグネシウムフタロシアニン 鉛フタロシアニン 銅(II)4,4′,4″,4′′′−テトラアザ−29H,
31H −フタロシアニン
Examples of the compound often used as the material of the anode buffer layer include a porphyrin compound and a phthalocyanine compound. These compounds may have a central metal or may be non-metallic. Specific examples of preferred such compounds include the following compounds: porphine 5,10,15,20-tetraphenyl-21H, 23H-porphine 5,10,15,20-tetraphenyl-21H, 23H-porphine Cobalt (II) 5,10,15,20-Tetraphenyl-21H, 23H-porphine Copper (II) 5,10,15,20-Tetraphenyl-21H, 23H-porphine Zinc (II) 5,10,15, 20-tetraphenyl-21H, 23H-porphine vanadium (IV) oxide 5,10,15,20-tetra (4-pyridyl) -21H, 23H-porphine 29H, 31H-phthalocyanine Copper (II) phthalocyanine Zinc (II) phthalocyanine Titanium phthalocyanine oxide Magnesium phthalocyanine Lead phthalocyanine Copper (II) 4,4 ', 4 ", 4"'-tetraaza-29H,
31H-phthalocyanine

【0021】陽極バッファ層の場合も、正孔輸送層と同
様にして薄膜形成可能であるが、無機物の場合には、更
に、スパッタ法や電子ビーム蒸着法、プラズマCVD法
が用いられる。以上の様にして形成される陽極バッファ
層3の膜厚は、通常、3〜100nm、好ましくは10
〜50nmである。
In the case of the anode buffer layer, a thin film can be formed in the same manner as in the case of the hole transport layer. However, in the case of an inorganic substance, a sputtering method, an electron beam evaporation method, or a plasma CVD method is used. The thickness of the anode buffer layer 3 formed as described above is usually 3 to 100 nm, preferably 10 to 100 nm.
5050 nm.

【0022】正孔輸送層4の上には発光層5が設けられ
る。発光層5は、電界を与えられた電極間において、陽
極2から注入された正孔輸送層を通過して輸送された正
孔と、陰極8から注入された正孔阻止層6を通過して輸
送された電子を効率よく再結合させることにより白色発
光する化合物より形成される。そのためには、正孔輸送
性と電子輸送性の両方を兼ね備え、しかも正孔移動度及
び電子移動度が大きく、更に安定性に優れトラップとな
る不純物が製造時や使用時に発生しにくい化合物である
ことが要求される。
The light emitting layer 5 is provided on the hole transport layer 4. The light-emitting layer 5 passes between the electrodes to which an electric field is applied, holes transported through the hole transport layer injected from the anode 2, and holes transported through the hole blocking layer 6 injected from the cathode 8. It is formed from a compound that emits white light by efficiently recombining the transported electrons. Therefore, it is a compound that has both hole transporting properties and electron transporting properties, has high hole mobility and electron mobility, and has excellent stability and is less likely to generate impurities that become traps during production or use. Is required.

【0023】本発明においては、発光層は、薄膜状態で
の蛍光極大波長が400〜500nmの範囲にある芳香
族アミン化合物をホスト材料として、分散状態又は希薄
溶液状態における蛍光極大波長が550〜650nmの
範囲にある蛍光色素を、上記ホスト材料に対して0.1
〜10重量%含有させることにより、高効率の白色発光
を可能とすることができる。このことを図4に示すCI
E色度座標図(JISZ8701)を用いて説明する。
白色発光は図中のWで示す白色点(x=y=1/3)を
中心とする領域で表わされる。400〜500nmに蛍
光極大波長を有する青色ホスト材料の発光は、図4では
青緑、青、青紫の領域に位置する。一方、蛍光極大波長
が550〜650nmのドーピング用蛍光色素の発光
は、図中の黄緑、黄、橙、赤の領域に対応する。例え
ば、青紫色発光のホスト材料としてa点のものを使う場
合、ドープ色素としてb点のものを組み合わせると、加
法混色によりab線で表わされる色が達成され、ドープ
量を調整することで白色領域の発光が得られる。同様
に、青色ホスト材料としてc点のものとドープ色素とし
てd点のものを選べば、白色領域を幅広く横切るcd線
が得られ、ドーピング濃度依存に緩やかに依存する白色
発光素子が達成される。ef線、ef′線についても同
様である。
In the present invention, the light-emitting layer is formed by using an aromatic amine compound having a fluorescent maximum wavelength in a thin film state in the range of 400 to 500 nm as a host material and having a fluorescent maximum wavelength in a dispersed state or a dilute solution state of 550 to 650 nm. In the range of 0.1 to 0.1 with respect to the host material.
By containing 10 to 10% by weight, highly efficient white light emission can be achieved. This is shown in FIG.
This will be described with reference to an E chromaticity coordinate diagram (JISZ8701).
White light emission is represented by a region centered on a white point (x = y = 1/3) indicated by W in the figure. The emission of the blue host material having the maximum fluorescence wavelength at 400 to 500 nm is located in the blue-green, blue, and blue-violet regions in FIG. On the other hand, the emission of the fluorescent dye for doping having a maximum fluorescence wavelength of 550 to 650 nm corresponds to the yellow-green, yellow, orange, and red regions in the figure. For example, when a point a is used as a host material for blue-violet emission, when a point b is combined as a doping dye, a color represented by the ab line is achieved by additive color mixing, and the white region can be adjusted by adjusting the doping amount. Is obtained. Similarly, by selecting a blue host material having a point c and a doping dye having a point d, a cd line which widely crosses a white region can be obtained, and a white light emitting element which is gently dependent on the doping concentration can be achieved. The same applies to the ef line and the ef 'line.

【0024】本発明においては、上記の条件を満たす青
色ホスト材料として蛍光性芳香族アミン化合物を用い
る。従来も、芳香族アミン化合物を正孔輸送性の発光層
として用いる試みはなされているが、正孔輸送層を陽極
との間に設けなかったり(Jpn.J.Appl.Ph
ys.,32巻,L917頁,1993年)、発光層の
イオン化ポテンシャルが正孔輸送層のイオン化ポテンシ
ャルより高かったり(Jpn.J.Appl.Phy
s.,35巻,4819頁,1996年)したために、
素子の発光効率も低く、また、安定性の低い青色発光素
子しか得られていなかった。本発明においては、正孔輸
送性の芳香族アミン化合物を発光層として有効に用いる
ために、正孔輸送層のイオン化ポテンシャルより0.1
eV以上小さいイオン化ポテンシャルを有する蛍光性芳
香族アミンを用いることが好適であることを見出した。
この素子構造により、素子通電時の発光層における正孔
濃度を高めることと、発光層内での再結合によるエキシ
トンの陽極での消光を防止することが同時に達成され
る。
In the present invention, a fluorescent aromatic amine compound is used as a blue host material satisfying the above conditions. Conventionally, attempts have been made to use an aromatic amine compound as a light-emitting layer having a hole-transport property. However, a hole-transport layer is not provided between the anode and the anode (Jpn. J. Appl. Ph.
ys. 32, L917, 1993), the ionization potential of the light emitting layer is higher than the ionization potential of the hole transport layer (Jpn. J. Appl. Phy.
s. 35, 4819, 1996).
The light emitting efficiency of the device was low, and only a blue light emitting device with low stability was obtained. In the present invention, in order to effectively use a hole transporting aromatic amine compound as a light emitting layer, the ionization potential of the hole transporting layer is 0.1%.
It has been found that it is preferable to use a fluorescent aromatic amine having an ionization potential smaller than eV.
With this element structure, it is possible to simultaneously increase the hole concentration in the light emitting layer when the element is energized, and to prevent extinction of the exciton at the anode due to recombination in the light emitting layer.

【0025】本発明の有機電界発光素子における発光層
材料として、正孔輸送層とのイオン化ポテンシャルの関
係を満たす限りにおいて芳香族アミン化合物に更なる制
限はないが、発光層の結晶化防止、熱安定性を考慮する
と高いガラス転移温度(Tg)を有することが望まし
い。高いTgを有する芳香族アミン化合物として、少な
くとも一つの縮合芳香族環基を置換基として有する第三
級窒素原子を含有することが有用である。このことか
ら、発光層に含まれる芳香族アミンが下記一般式(I)
又は(II)で表わされる芳香族アミン化合物から選ばれ
ることが更に好ましい。
As the material of the light emitting layer in the organic electroluminescent device of the present invention, there is no further limitation on the aromatic amine compound as long as it satisfies the relation of ionization potential with the hole transport layer. Considering stability, it is desirable to have a high glass transition temperature (Tg). As an aromatic amine compound having a high Tg, it is useful to contain a tertiary nitrogen atom having at least one fused aromatic ring group as a substituent. From this, the aromatic amine contained in the light emitting layer is represented by the following general formula (I)
Alternatively, it is more preferable to be selected from the aromatic amine compounds represented by (II).

【0026】[0026]

【化8】 Embedded image

【0027】前記一般式(I)において、好ましくは、
Xは、各々置換基を有していてもよい二価の、ベンゼン
環、ナフタレン環、アントラセン環、ビナフチル、フル
オレン環、フェナントレン環、ピレン環、アクリジン
環、フェナジン環、フェナントリジン環、フェナントロ
リン環、ビピリジル環、ビフェニルを示し、前記置換基
としてはハロゲン原子;メチル基、エチル基等の炭素数
1〜6のアルキル基;ビニル基等のアルケニル基;メト
キシカルボニル基、エトキシカルボニル基等の炭素数1
〜6のアルコキシカルボニル基;メトキシ基、エトキシ
基等の炭素数1〜6のアルコキシ基;フェノキシ基、ベ
ンジルオキシ基等のアリールオキシ基;ジエチルアミノ
基、ジイソプロピルアミノ基等のジアルキルアミノ基を
示す。前記置換基としては、特に好ましくは、メチル
基、フェニル基、メトキシ基が挙げられる。
In the general formula (I), preferably,
X is a divalent optionally substituted benzene ring, naphthalene ring, anthracene ring, binaphthyl, fluorene ring, phenanthrene ring, pyrene ring, acridine ring, phenazine ring, phenanthridine ring, phenanthroline ring , A bipyridyl ring or a biphenyl, wherein the substituent is a halogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; and a carbon number such as a methoxycarbonyl group and an ethoxycarbonyl group. 1
6 to 6 alkoxycarbonyl groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group and benzyloxy group; and dialkylamino groups such as diethylamino group and diisopropylamino group. Particularly preferred examples of the substituent include a methyl group, a phenyl group and a methoxy group.

【0028】Ar1 ないしAr4 は、好ましくは、各々
独立して、各々置換基を有していてもよい、フェニル
基、ビフェニル基、ナフチル基、アントリル基、フェナ
ントリル基、ピレニル基、ビリジル基、トリアジル基、
ピラジル基、キノキサリル基、チエニル基を示し、前記
置換基としてはハロゲン原子;メチル基、エチル基等の
炭素数1〜6のアルキル基;ビニル基等のアルケニル
基;メトキシカルボニル基、エトキシカルボニル基等の
炭素数1〜6のアルコキシカルボニル基;メトキシ基、
エトキシ基等の炭素数1〜6のアルコキシ基;フェノキ
シ基、ベンジルオキシ基等のアリールオキシ基;ジエチ
ルアミノ基、ジイソプロピルアミノ基等のジアルキルア
ミノ基を示す。前記置換基としては、特に好ましくは、
メチル基、フェニル基、メトキシ基が挙げられる。
Ar 1 to Ar 4 are preferably each independently a phenyl group, a biphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a viridyl group, each of which may have a substituent. Triazyl group,
A pyrazyl group, a quinoxalyl group or a thienyl group, wherein the substituent is a halogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; an alkenyl group such as a vinyl group; a methoxycarbonyl group or an ethoxycarbonyl group A methoxy group having 1 to 6 carbon atoms;
An alkoxy group having 1 to 6 carbon atoms such as an ethoxy group; an aryloxy group such as a phenoxy group and a benzyloxy group; a dialkylamino group such as a diethylamino group and a diisopropylamino group. As the substituent, particularly preferably,
Examples include a methyl group, a phenyl group, and a methoxy group.

【0029】[0029]

【化9】 Embedded image

【0030】前記一般式(II)において、Yは窒素原子
又は1,3,5−位に置換する三価のベンゼン環から選
ばれる。Ar5 及びAr6 は、好ましくは、各々独立し
て、各々置換基を有していてもよい、フェニル基、ビフ
ェニル基、ナフチル基、アントリル基、フェナントリル
基、ピレニル基、ピリジル基、トリアジル基、ピラジル
基、キノキサリル基、チエニル基を示し、前記置換基と
してはハロゲン原子;メチル基、エチル基等の炭素数1
〜6のアルキル基;ビニル基等のアルケニル基;メトキ
シカルボニル基、エトキシカルボニル基等の炭素数1〜
6のアルコキシカルボニル基;メトキシ基、エトキシ基
等の炭素数1〜6のアルコキシ基;フェノキシ基、ベン
ジルオキシ基等のアリールオキシ基;ジエチルアミノ
基;ジイソプロピルアミノ基等のジアルキルアミノ基を
示す。前記置換基としては、特に好ましくは、メチル
基、フェニル基、メトキシ基が挙げられる。
In the general formula (II), Y is selected from a nitrogen atom or a trivalent benzene ring substituted at the 1,3,5-position. Ar 5 and Ar 6 are preferably each independently a phenyl group, a biphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a pyridyl group, a triazyl group, each of which may have a substituent. A pyrazyl group, a quinoxalyl group, or a thienyl group, wherein the substituent is a halogen atom;
Alkyl groups of 6 to 6; alkenyl groups such as vinyl groups; and 1 to 1 carbon atoms such as methoxycarbonyl groups and ethoxycarbonyl groups.
6 alkoxycarbonyl group; C1-C6 alkoxy group such as methoxy group and ethoxy group; aryloxy group such as phenoxy group and benzyloxy group; diethylamino group; dialkylamino group such as diisopropylamino group. Particularly preferred examples of the substituent include a methyl group, a phenyl group and a methoxy group.

【0031】本発明においては、前記一般式(I)又は
一般式(II)に示す分子構造により、Tgを85℃以上
とすることができ、この耐熱性の向上により容易には結
晶化しない非晶質薄膜を与えることが可能であり、正孔
輸送層や電子輸送層等との間における分子の相互拡散を
85℃以上の高温下でも十分に抑制することが出来る。
また、イオン化ポテンシャルも正孔輸送層のそれより
0.1eV以上小さくすることができ、また、400〜
500nmの波長領域に蛍光極大を有する発光層が設計
できる。前記一般式(I)及び(II)で表わされる芳香
族アミン化合物の好ましい具体例を表1ないし表5に示
すが、これらに限定されるものではない。
In the present invention, the molecular structure represented by the general formula (I) or the general formula (II) allows the Tg to be 85 ° C. or higher, and the improved heat resistance makes it difficult to crystallize easily. It is possible to provide a crystalline thin film, and it is possible to sufficiently suppress the interdiffusion of molecules between a hole transport layer, an electron transport layer, and the like even at a high temperature of 85 ° C. or higher.
Further, the ionization potential can be made 0.1 eV or more lower than that of the hole transport layer.
A light emitting layer having a fluorescence maximum in a wavelength region of 500 nm can be designed. Preferred specific examples of the aromatic amine compounds represented by the general formulas (I) and (II) are shown in Tables 1 to 5, but are not limited thereto.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】これらの化合物は、単独で用いてもよい
し、必要に応じて、各々、混合して用いてもよい。前記
芳香族アミン化合物をホスト材料として、発光層にドー
プされる蛍光色素としては、分散状態又は希薄溶液状態
における蛍光極大波長が550〜650nmの範囲にあ
る蛍光色素であればよい。ここで分散状態又は希薄溶液
状態は蛍光色素の濃度消光が起こらない濃度範囲を意味
し、通常は10重量%以下である。黄緑から黄色の蛍光
を有する色素としては、例えば、ルブレンを代表とする
ナフタセン誘導体(特開平4−335087号公報)、
ペリミドン誘導体(特開平4−320485号公報)、
橙色蛍光色素としては、ベンゾチオキサンテン誘導体
(特開平5−222362号公報)、DCM色素(特開
昭63−264692号公報)、ローダミン色素等が、
赤色蛍光色素としては、アザベンゾチオキサンテン誘導
体(特願平9−88172号明細書)、フェノキサゾ
ン、DCJ色素(Chem.Funct.Dyes,P
roc.Int.Symp.,2nd 1992年,5
36頁)、ルモゲンFレッド等のペリレン顔料等が挙げ
られる。上記の蛍光色素を青色ホスト材料に0.1〜1
0重量%の濃度範囲においてドープすることで、ホスト
材料からの発光にドープ色素からの発光を加えることに
より所望の白色発光を得ることができる。
These compounds may be used alone or, if necessary, in combination. The fluorescent dye doped into the light emitting layer using the aromatic amine compound as a host material may be a fluorescent dye having a maximum fluorescence wavelength in a dispersion state or a dilute solution state in a range of 550 to 650 nm. Here, the dispersed state or the dilute solution state means a concentration range in which concentration quenching of the fluorescent dye does not occur, and is usually 10% by weight or less. Examples of dyes having yellow-green to yellow fluorescence include naphthacene derivatives represented by rubrene (JP-A-4-335087).
Perimidone derivatives (JP-A-4-320485),
Examples of orange fluorescent dyes include benzothioxanthene derivatives (JP-A-5-222362), DCM dyes (JP-A-63-264892), rhodamine dyes, and the like.
Examples of red fluorescent dyes include azabenzothioxanthene derivatives (Japanese Patent Application No. 9-88172), phenoxazone, and DCJ dyes (Chem. Funct.
rc. Int. Symp. , 2nd 1992, 5
36) and perylene pigments such as Lumogen F Red. 0.1 to 1 of the above fluorescent dye is added to the blue host material.
By doping in a concentration range of 0% by weight, desired white light emission can be obtained by adding light emission from the doped dye to light emission from the host material.

【0038】白色のバランスを採るために、また、発光
効率を向上させるために、400〜500nmに蛍光極
大波長を希薄状態で有する蛍光色素を更にドープして加
えることも有効である。この目的に用いられるドープ色
素としては、例えば、ペリレン等の縮合多環芳香族環
(特開平5−198377号公報)、クマリン誘導体、
ナフタル酸イミド誘導体(特開平4−320486号公
報)、芳香族アミン誘導体(特開平8−199162号
公報)等が挙げられる。これらのドープ色素が、ホスト
材料に含有される割合は0.1〜10重量%の範囲にあ
ることが好ましい。上記400〜500nmの蛍光色素
は発光層中に均一にドープされてもよいし、部分的にド
ープされてもよい。真空蒸着法で上記のドーピングを行
う方法としては、共蒸着による方法と蒸着源を予め所定
の濃度で混合しておく方法がある。尚、上記のドーピン
グ濃度範囲内であれば、ホスト材料のイオン化ポテンシ
ャルがドーピングにより変化することはない。
It is also effective to further dope and add a fluorescent dye having a fluorescent maximum wavelength in a dilute state at 400 to 500 nm in order to balance the white color and improve the luminous efficiency. Examples of the doped dye used for this purpose include condensed polycyclic aromatic rings such as perylene (JP-A-5-198377), coumarin derivatives,
Examples thereof include naphthalic acid imide derivatives (JP-A-4-320486) and aromatic amine derivatives (JP-A-8-199162). The content of these doped dyes in the host material is preferably in the range of 0.1 to 10% by weight. The 400 to 500 nm fluorescent dye may be uniformly doped in the light emitting layer or may be partially doped. As a method of performing the above-mentioned doping by a vacuum evaporation method, there are a method of co-evaporation and a method of previously mixing an evaporation source at a predetermined concentration. Note that the ionization potential of the host material does not change due to doping within the above doping concentration range.

【0039】上記各ドーパントが発光層中にドープされ
る場合、発光層の膜厚方向において均一にドープされる
が、膜厚方向において濃度分布があったり、発光層に部
分的にドープされても構わない。例えば、正孔輸送層と
の界面近傍にのみドープしたり、逆に、正孔阻止層界面
近傍にドープしてもよい。発光層5は、正孔輸送層4と
同様にして塗布法或いは真空蒸着法により正孔輸送層4
上に積層することにより形成される。但し、塗布法の場
合には既に薄膜形成されている正孔輸送層を溶解させな
い溶媒を使用する必要がある。発光層5の膜厚は、通
常、5〜300nm、好ましくは10〜100nmであ
る。この様に薄い膜を一様に形成するためには、一般に
真空蒸着法がよく用いられる。
When the above dopants are doped in the light emitting layer, they are uniformly doped in the thickness direction of the light emitting layer. However, even if there is a concentration distribution in the thickness direction or the light emitting layer is partially doped. I do not care. For example, doping may be performed only near the interface with the hole transport layer, or conversely, near the interface with the hole blocking layer. The light emitting layer 5 is formed by a coating method or a vacuum evaporation method in the same manner as the hole transport layer 4.
It is formed by laminating on top. However, in the case of the coating method, it is necessary to use a solvent that does not dissolve the hole transport layer already formed as a thin film. The thickness of the light emitting layer 5 is usually 5 to 300 nm, preferably 10 to 100 nm. In order to uniformly form such a thin film, generally, a vacuum deposition method is often used.

【0040】発光層5の上には正孔阻止層6が設けられ
る。正孔阻止層6は、発光層から移動してくる正孔を陰
極に到達するのを阻止する役割と、陰極から注入された
電子を効率よく発光層5の方向に輸送することができる
化合物より形成される。正孔阻止層を構成する材料に求
められる物性としては、電子移動度が高く正孔移動度が
低いこと、及び、正孔を効率的に発光層内に閉じこめる
ために、発光層のイオン化ポテンシャルより0.2eV
以上大きいイオン化ポテンシャルの値を有する必要があ
る。正孔輸送層は電子輸送能力を持たない材料で構成さ
れることから、正孔阻止層は正孔と電子を発光層内に閉
じこめて、発光効率を向上させる機能を有する。このよ
うな条件を満たす正孔阻止層材料としては、以下の一般
式(III)で表わされる混合配位子錯体、
On the light emitting layer 5, a hole blocking layer 6 is provided. The hole blocking layer 6 has a role of preventing holes moving from the light emitting layer from reaching the cathode, and a compound capable of efficiently transporting electrons injected from the cathode toward the light emitting layer 5. It is formed. The physical properties required for the material constituting the hole blocking layer are that the electron mobility is high and the hole mobility is low, and in order to efficiently confine holes in the light emitting layer, the ionization potential of the light emitting layer is 0.2 eV
It is necessary to have a large value of the ionization potential. Since the hole transporting layer is made of a material having no electron transporting ability, the hole blocking layer has a function of confining holes and electrons in the light emitting layer and improving luminous efficiency. As a hole blocking layer material satisfying such conditions, a mixed ligand complex represented by the following general formula (III):

【0041】[0041]

【化10】 Embedded image

【0042】(式中、R1 ないしR6 は、各々独立し
て、水素原子、ハロゲン原子、アルキル基、アラルキル
基、アルケニル基、アリル基、シアノ基、アミノ基、ア
シル基、アルコキシカルボニル基、カルボキシル基、ア
ルコキシ基、アルキルスルホニル基、α−ハロアルキル
基、水酸基、置換基を有していてもよいアミド基、置換
基を有していてもよい芳香族炭化水素基又は置換基を有
していてもよい芳香族複素環基を表わし、MはAl原子
又はGa原子を示し、Lは以下に示す一般式(IIIa)、
(IIIb)又は(IIIc) のいずれかの基を表わす)
(Wherein R 1 to R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an allyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, Carboxyl group, alkoxy group, alkylsulfonyl group, α-haloalkyl group, hydroxyl group, amide group optionally having substituent (s), aromatic hydrocarbon group optionally having substituent (s) or substituent (s) Represents an aromatic heterocyclic group which may be represented by the following formula: M represents an Al atom or a Ga atom; L represents a general formula (IIIa) shown below;
(Indicates any group of (IIIb) or (IIIc))

【0043】[0043]

【化11】 Embedded image

【0044】(式中、ZはSi、Ge又はSnのいずれ
かの原子を表わし、Ar9 又はAr10は、各々独立し
て、各々置換基を有していてもよい、芳香族炭化水素基
又は芳香族複素環基を表わす) 以下の一般式(IV)で表わされる二核金属錯体、
(Wherein, Z represents any atom of Si, Ge or Sn, and Ar 9 or Ar 10 are each independently an aromatic hydrocarbon group which may have a substituent. Or an aromatic heterocyclic group) a binuclear metal complex represented by the following general formula (IV):

【0045】[0045]

【化12】 Embedded image

【0046】(式中、R1 ないしR6 は、各々独立し
て、水素原子、ハロゲン原子、アルキル基、アラルキル
基、アルケニル基、アリル基、シアノ基、アミノ基、ア
シル基、アルコキシカルボニル基、カルボキシル基、ア
ルコキシ基、アルキルスルホニル基、α−ハロアルキル
基、水酸基、置換基を有していてもよいアミド基、置換
基を有していてもよい芳香族炭化水素基又は置換基を有
していてもよい芳香族複素環基を表わし、MはAl原子
又はGa原子を示す) 以下の構造式(IV)で示される1,2,4−トリアゾー
ル環を少なくとも一個有する化合物、
(Wherein R 1 to R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an allyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, Carboxyl group, alkoxy group, alkylsulfonyl group, α-haloalkyl group, hydroxyl group, amide group optionally having substituent (s), aromatic hydrocarbon group optionally having substituent (s) or substituent (s) Represents an aromatic heterocyclic group which may be represented by M, and M represents an Al atom or a Ga atom.) A compound having at least one 1,2,4-triazole ring represented by the following structural formula (IV),

【0047】[0047]

【化13】 Embedded image

【0048】以下の一般式(V)で示されるスチリル化
合物が挙げられる。
A styryl compound represented by the following general formula (V) is exemplified.

【0049】[0049]

【化14】 Embedded image

【0050】(式中、Ar12は、各々置換基を有してい
てもよい二価の、芳香族炭化水素基又は芳香族複素環基
を表わし、Ar13ないしAr16は、各々独立して、各々
置換基を有していてもよい、芳香族炭化水素基又は芳香
族炭化水素基を表わす) 前記一般式(III)で示される混合配位子錯体の具体例と
して、ビス(2−メチル−8−キノリノラト)(フェノ
ラト)アルミニウム、ビス(2−メチル−8−キノリノ
ラト(オルト−クレゾラト)アルミニウム、ビス(2−
メチル−8−キノリノラト)(メタ−クレゾラト)アル
ミニウム、ビス(2−メチル−8−キノリノラト)(パ
ラ−クレゾラト)アルミニウム、ビス(2−メチル−8
−キノリノラト)(オルト−フェニルフェノラト)アル
ミニウム、ビス(2−メチル−8−キノリノラト)(メ
タ−フェニルフェノラト)アルミニウム、ビス(2−メ
チル−8−キノリノラト)(パラ−フェニルフェノラ
ト)アルミニウム、ビス(2−メチル−8−キノリノラ
ト)(2,3−ジメチルフェノラト)アルミニウム、ビ
ス(2−メチル−8−キノリノラト)(2,6−ジメチ
ルフェノラト)アルミニウム、ビス(2−メチル−8−
キノリノラト)(3,4−ジメチルフェノラト)アルミ
ニウム、ビス(2−メチル−8−キノリノラト)(3,
5−ジメチルフェノラト)アルミニウム、ビス(2−メ
チル−8−キノリノラト)(3,5−ジ−tert−ブ
チルフェノラト)アルミニウム、ビス(2−メチル−8
−キノリノラト)(2,6−ジフェニルフェノラト)ア
ルミニウム、ビス(2−メチル−8−キノリノラト)
(2,4,6−トリフェニルフェノラト)アルミニウ
ム、ビス(2−メチル−8−キノリノラト)(2,4,
6−トリメチルフェノラト)アルミニウム、ビス(2−
メチル−8−キノリノラト)(2,3,6−トリメチル
フェノラト)アルミニウム、ビス(2−メチル−8−キ
ノリノラト)(2,3,5,6−テトラメチルフェノラ
ト)アルミニウム、ビス(2−メチル−8−キノリノラ
ト)(1−ナフトラト)アルミニウム、ビス(2−メチ
ル−8−キノリノラト)(2−ナフトラト)アルミニウ
ム、ビス(2−メチル−8−キノリノラト)(トリフェ
ニルシラノラト)アルミニウム、ビス(2−メチル−8
−キノリノラト)(トリフェニルゲルマノラト)アルミ
ニウム、ビス(2−メチル−8−キノリノラト)(トリ
ス(4,4,−ビフェニル)シラノラト)アルミニウ
ム、ビス(2,4−ジメチル−8−キノリノラト)(オ
ルト−フェニルフェノラト)アルミニウム、ビス(2,
4−ジメチル−8−キノリノラト)(パラ−フェニルフ
ェノラト)アルミニウム、ビス(2,4−ジメチル−8
−キノリノラト)(メタ−フェニルフェノラト)アルミ
ニウム、ビス(2,4−ジメチル−8−キノリノラト)
(3,5−ジメチルフェノラト)アルミニウム、ビス
(2,4−ジメチル−8−キノリノラト)(3,5−ジ
−tert−ブチルフェノラト)アルミニウム、ビス
(2−メチル−4−エチル−8−キノリノラト)(パラ
−クレゾラト)アルミニウム、ビス(2−メチル−4−
メトキシ−8−キノリノラト)(パラ−フェニルフェノ
ラト)アルミニウム、ビス(2−メチル−5−シアノ−
8−キノリノラト)(オルト−クレゾラト)アルミニウ
ム、ビス(2−メチル−6−トリフルオロメチル−8−
キノリノラト)(2−ナフトラト)アルミニウム、ビス
(2−メチル−8−キノリノラト)(フェノラト)ガリ
ウム、ビス(2−メチル−8−キノリノラト)(オルト
−クレゾラト)ガリウム、ビス(2−メチル−8−キノ
リノラト)(パラ−フェニルフェノラト)ガリウム、ビ
ス(2−メチル−8−キノリノラト)(1−ナフトラ
ト)ガリウム、ビス(2−メチル−8−キノリノラト)
(2−ナフトラト)ガリウム、ビス(2−メチル−8−
キノリノラト)(トリフェニルシラノラト)ガリウム、
ビス(2−メチル−8−キノリノラト)(トリス(4,
4−ビフェニル)シラノラト)ガリウム等が挙げられ
る。特に好ましくは、ビス(2−メチル−8−キノリノ
ラト)(2−ナフトラト)アルミニウム、ビス(2−メ
チル−8−キノリノラト)(トリフェニルシラノラト)
アルミニウムが挙げられる。
(In the formula, Ar 12 represents a divalent aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and Ar 13 to Ar 16 each independently represent Represents an aromatic hydrocarbon group or an aromatic hydrocarbon group, each of which may have a substituent.) As a specific example of the mixed ligand complex represented by the general formula (III), bis (2-methyl -8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato (ortho-cresolato) aluminum, bis (2-
Methyl-8-quinolinolato) (meta-cresolato) aluminum, bis (2-methyl-8-quinolinolato) (para-cresolato) aluminum, bis (2-methyl-8)
-Quinolinolato) (ortho-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (meta-phenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (para-phenylphenolato) aluminum, Bis (2-methyl-8-quinolinolato) (2,3-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,6-dimethylphenolato) aluminum, bis (2-methyl-8-amino)
Quinolinolato) (3,4-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3
5-dimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (3,5-di-tert-butylphenolato) aluminum, bis (2-methyl-8)
-Quinolinolato) (2,6-diphenylphenolato) aluminum, bis (2-methyl-8-quinolinolato)
(2,4,6-triphenylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,4
6-trimethylphenolato) aluminum, bis (2-
Methyl-8-quinolinolato) (2,3,6-trimethylphenolato) aluminum, bis (2-methyl-8-quinolinolato) (2,3,5,6-tetramethylphenolato) aluminum, bis (2-methyl -8-quinolinolato) (1-naphtolat) aluminum, bis (2-methyl-8-quinolinolato) (2-naphtolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum, bis (2 -Methyl-8
-Quinolinolato) (triphenylgermanolato) aluminum, bis (2-methyl-8-quinolinolato) (tris (4,4, -biphenyl) silanolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) (ortho -Phenylphenolato) aluminum, bis (2,
4-dimethyl-8-quinolinolato) (para-phenylphenolato) aluminum, bis (2,4-dimethyl-8)
-Quinolinolato) (meta-phenylphenolato) aluminum, bis (2,4-dimethyl-8-quinolinolato)
(3,5-dimethylphenolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) (3,5-di-tert-butylphenolato) aluminum, bis (2-methyl-4-ethyl-8-) Quinolinolato) (para-cresolato) aluminum, bis (2-methyl-4-)
Methoxy-8-quinolinolato) (para-phenylphenolato) aluminum, bis (2-methyl-5-cyano-)
8-quinolinolato) (ortho-cresolato) aluminum, bis (2-methyl-6-trifluoromethyl-8-
Quinolinolato) (2-naphtolat) aluminum, bis (2-methyl-8-quinolinolato) (phenolato) gallium, bis (2-methyl-8-quinolinolato) (ortho-cresolato) gallium, bis (2-methyl-8-quinolinolato) ) (Para-phenylphenolato) gallium, bis (2-methyl-8-quinolinolato) (1-naphthrat) gallium, bis (2-methyl-8-quinolinolato)
(2-Naphthrat) gallium, bis (2-methyl-8-
Quinolinolato) (triphenylsilanolato) gallium,
Bis (2-methyl-8-quinolinolato) (Tris (4,
4-biphenyl) silanolato) gallium and the like. Particularly preferably, bis (2-methyl-8-quinolinolato) (2-naphthrat) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato)
Aluminum.

【0051】前記一般式(IV)で表わされる二核金属錯
体の具体例として、ビス(2−メチル−8−キノラト)
アルミニウム−μ−オキソ−ビス−(2−メチル−8−
キノリノラト)アルミニウム、ビス(2,4−ジメチル
−8−キノリノラト)アルミニウム−μ−オキソ−ビス
−(2,4−ジメチル−8−キノリノラト)アルミニウ
ム、ビス(4−エチル−2−メチル−8−キノリノラ
ト)アルミニウム−μ−オキソ−ビス−(4−エチル−
2−メチル−8−キノリノラト)アルミニウム、ビス
(2−メチル−4−メトキシキノリノラト)アルミニウ
ム−μ−オキソ−ビス−(2−メチル−4−メトキシキ
ノリノラト)アルミニウム、ビス(5−シアノ−2−メ
チル−8−キノリノラト)アルミニウム−μ−オキソ−
ビス−(5−シアノ−2−メチル−8−キノリノラト)
アルミニウム、ビス(5−クロロ−2−メチル−8−キ
ノリノラト)アルミニウム−μ−オキソ−ビス−(5−
クロロ−2−メチル−8−キノリノラト)アルミニウ
ム、ビス(2−メチル−5−トリフルオロメチル−8−
キノリノラト)アルミニウム−μ−オキソ−ビス−(2
−メチル−5−トリフルオロメチル−8−キノリノラ
ト)アルミニウム等が挙げられる。特に好ましくは、ビ
ス(2−メチル−8−キノリノラト)アルミニウム−μ
−オキソ−ビス−(2−メチル−8−キノリノラト)ア
ルミニウムが挙げられる。前記構造式(V)で表わされ
る1,2,4−トリアゾール環を少なくとも一個有する
化合物の具体例を以下に示す。
As a specific example of the binuclear metal complex represented by the general formula (IV), bis (2-methyl-8-quinolato)
Aluminum-μ-oxo-bis- (2-methyl-8-
Quinolinolato) aluminum, bis (2,4-dimethyl-8-quinolinolato) aluminum-μ-oxo-bis- (2,4-dimethyl-8-quinolinolato) aluminum, bis (4-ethyl-2-methyl-8-quinolinolato) ) Aluminum-μ-oxo-bis- (4-ethyl-
2-methyl-8-quinolinolato) aluminum, bis (2-methyl-4-methoxyquinolinolato) aluminum-μ-oxo-bis- (2-methyl-4-methoxyquinolinolato) aluminum, bis (5-cyano -2-Methyl-8-quinolinolato) aluminum-μ-oxo-
Bis- (5-cyano-2-methyl-8-quinolinolato)
Aluminum, bis (5-chloro-2-methyl-8-quinolinolato) aluminum-μ-oxo-bis- (5-
Chloro-2-methyl-8-quinolinolato) aluminum, bis (2-methyl-5-trifluoromethyl-8-)
Quinolinolato) aluminum-μ-oxo-bis- (2
-Methyl-5-trifluoromethyl-8-quinolinolato) aluminum and the like. Particularly preferably, bis (2-methyl-8-quinolinolato) aluminum-μ
-Oxo-bis- (2-methyl-8-quinolinolato) aluminum. Specific examples of the compound having at least one 1,2,4-triazole ring represented by the structural formula (V) are shown below.

【0052】[0052]

【化15】 Embedded image

【0053】前記一般式(VI)で表わされるスチリル化
合物の具体例としては、例えば以下に構造式を示すジス
チリルビフェニル誘導体が挙げられる。
Specific examples of the styryl compound represented by the general formula (VI) include, for example, a distyrylbiphenyl derivative represented by the following structural formula.

【0054】[0054]

【化16】 Embedded image

【0055】正孔阻止層6の膜厚は、通常、0.3〜1
00nm、好ましくは0.5〜30nmである。正孔阻
止層も正孔輸送層と同様の方法で形成することができる
が、通常は真空蒸着法が用いられる。素子の発光効率を
更に向上させることを目的として、正孔阻止層6と陰極
8の間に電子輸送層7を設けることが考えられる。電子
輸送層7は、電界を与えられた電極間において陰極から
注入された電子を効率よく正孔阻止層6の方向に輸送す
ることができる化合物より形成される。電子輸送層は、
発光層での再結合により生成するエキシトンが拡散して
陰極8で消光されるのを防ぐ効果を有する。電子輸送層
7に用いられる電子輸送性化合物としては、陰極8から
の電子注入効率が高く、且つ、高い電子移動度を有し注
入された電子を効率よく輸送することができる化合物で
あることが必要である。
The thickness of the hole blocking layer 6 is usually 0.3 to 1
00 nm, preferably 0.5 to 30 nm. The hole blocking layer can be formed in the same manner as the hole transporting layer, but usually, a vacuum evaporation method is used. It is conceivable to provide an electron transport layer 7 between the hole blocking layer 6 and the cathode 8 for the purpose of further improving the luminous efficiency of the device. The electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the hole blocking layer 6. The electron transport layer
This has an effect of preventing excitons generated by recombination in the light emitting layer from being diffused and quenched by the cathode 8. The electron transporting compound used in the electron transporting layer 7 is preferably a compound having high electron injection efficiency from the cathode 8 and having high electron mobility and capable of efficiently transporting injected electrons. is necessary.

【0056】このような条件を満たす材料としては、8
−ヒドロキシキノリンのアルミニウム錯体等の金属錯体
(特開昭59−194393号公報)、10−ヒドロキ
シベンゾ〔h〕キノリンの金属錯体(特開平6−322
362号公報)、オキサジアゾール誘導体(特開平2−
216791号公報)、ジスチリルビフェニル誘導体
(特開平3−231970号公報)、シロール誘導体
(特開平9−87616号公報)、3又は5−ヒドロキ
シフラボン金属錯体(Appl.Phys.Let
t.,71巻,3338頁,1997年)、ベンズオキ
サゾール金属錯体(特開平6−336586号公報)、
ベンゾチアゾール金属錯体(特開平9−279134号
公報)、トリスベンズイミダゾリルベンゼン(米国特許
第5,645,948号明細書)、キノキサリン化合物
(特開平6−207169号公報)、フェナントロリン
誘導体(特開平5−331459号公報)、2−t−ブ
チル−9,10−N,N′−ジシアノアントラキノンジ
イミン(Phys.Stat.Sol.(a),142
巻,489頁,1994年)、n型水素化非晶質炭化シ
リコン、n型硫化亜鉛、n型セレン化亜鉛等が挙げられ
る。電子輸送層7の膜厚は、通常、5〜200nm、好
ましくは10〜100nmである。
Materials satisfying such conditions include 8
Metal complexes such as aluminum complexes of 10-hydroxyquinoline (JP-A-59-194393) and metal complexes of 10-hydroxybenzo [h] quinoline (JP-A-6-322)
362), oxadiazole derivatives (Japanese Unexamined Patent Publication No.
No. 216791), distyrylbiphenyl derivatives (JP-A-3-231970), silole derivatives (JP-A-9-87616), and 3- or 5-hydroxyflavone metal complexes (Appl. Phys. Let).
t. , 71, 3338, 1997), benzoxazole metal complexes (JP-A-6-336586),
Benzothiazole metal complex (JP-A-9-279134), trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compound (JP-A-6-207169), phenanthroline derivative (JP-A-5-279169) No. 3,314,459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine (Phys. Stat. Sol. (A), 142).
Vol., P. 489, 1994), n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like. The thickness of the electron transport layer 7 is usually 5 to 200 nm, preferably 10 to 100 nm.

【0057】陰極8は、電子輸送層7に電子を注入する
役割を果たす。陰極8として用いられる材料は、前記陽
極2に使用される材料を用いることが可能であるが、効
率よく電子注入を行うには、仕事関数の低い金属が好ま
しく、スズ、マグネシウム、インジウム、カルシウム、
アルミニウム、銀等の適当な金属又はそれらの合金が用
いられる。具体例としては、マグネシウム−銀合金、マ
グネシウム−インジウム合金、アルミニウム−リチウム
合金等の低仕事関数合金電極が挙げられる。
The cathode 8 plays a role of injecting electrons into the electron transport layer 7. As the material used for the cathode 8, the material used for the anode 2 can be used, but for efficient electron injection, a metal having a low work function is preferable, and tin, magnesium, indium, calcium,
A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include a low work function alloy electrode such as a magnesium-silver alloy, a magnesium-indium alloy, and an aluminum-lithium alloy.

【0058】更に、陰極と発光層又は電子輸送層の界面
にLiF、Li2 O等のアルカリ金属化合物やアルカリ
土類ハロゲン化物等の極薄膜(0.1〜5nm)を挿入
することは、素子の効率を向上させる有効な方法である
(Appl.Phys.Lett.,70巻,152
頁,1997年;IEEE Trans.Electr
on.Devices,44巻,1245頁,1997
年;特願平9−86662号明細書)。陰極8の膜厚は
通常、陽極2と同様である。低仕事関数金属から成る陰
極を保護する目的で、この上に更に、仕事関数が高く大
気に対して安定な金属層を積層することは素子の安定性
を増す。この目的のために、銅、アルミニウム、銀、ニ
ッケル、クロム、金、白金等の金属が使われる。
Furthermore, inserting an ultrathin film (0.1 to 5 nm) of an alkali metal compound such as LiF or Li 2 O or an alkaline earth halide at the interface between the cathode and the light emitting layer or the electron transporting layer can be used. (Appl. Phys. Lett., 70, 152).
P. 1997; IEEE Trans. Electr
on. Devices, 44, 1245, 1997.
Year; Japanese Patent Application No. 9-86662). The thickness of the cathode 8 is usually the same as that of the anode 2. In order to protect the cathode made of a low work function metal, further laminating a metal layer having a high work function and being stable to the atmosphere increases the stability of the device. For this purpose, metals such as copper, aluminum, silver, nickel, chromium, gold, platinum and the like are used.

【0059】尚、図1とは逆の構造、即ち、基板上に陰
極8、電子輸送層7、発光層5、正孔輸送層4、陽極2
の順に積層することも可能であり、既述したように少な
くとも一方が透明性の高い二枚の基板の間に本発明の有
機電界発光素子を設けることも可能である。同様に、図
2及び図3に示した前記各層構成とは逆の構造に積層す
ることも可能である。本発明の有機電界発光素子によれ
ば、発光効率の高く、安定性に優れた白色発光が得ら
れ、直視型の表示素子として有用であるばかりでなく、
バックライト光源としても機能し、更には、カラーフィ
ルタと組み合わせることによりフルカラー表示素子を作
製することも可能である。
Incidentally, the structure reverse to that of FIG. 1, that is, the cathode 8, the electron transport layer 7, the light emitting layer 5, the hole transport layer 4, the anode 2
And the organic electroluminescent device of the present invention can be provided between two substrates, at least one of which has high transparency, as described above. Similarly, it is also possible to laminate in a structure opposite to the above-mentioned respective layer constitutions shown in FIGS. According to the organic electroluminescent device of the present invention, high luminous efficiency, white light emission with excellent stability is obtained, not only useful as a direct-view display device,
It also functions as a backlight light source, and can be used in combination with a color filter to produce a full-color display element.

【0060】[0060]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を越えない限り、以下の
実施例の記載に限定されるものではない。 参考例1 ガラス基板をアセトンで超音波洗浄、純水で水洗、イソ
プロピルアルコールで超音波洗浄、乾燥窒素で乾燥、U
V/オゾン洗浄を行った後、真空蒸着装置内に設置し
て、装置内の真空度が2×10-6Torr以下になるま
で油拡散ポンプを用いて排気した。例示化合物(I−
3)をセラミック坩堝に入れ、坩堝の周囲のタンタル線
ヒーターで加熱して蒸着を行った。この時の坩堝の温度
は、200〜260℃の範囲で制御した。蒸着時の真空
度は1.8×10-6Torr(約2.3×10-4Pa)
で、蒸着速度0.3nm/秒で膜厚82nmの一様で透
明な膜を得た。この薄膜試料のイオン化ポテンシャルを
理研計器(株)製の紫外線電子分析装置(AC−1)を
用いて測定したところ、5.06eVの値を示した。こ
の蒸着膜を水銀ランプ(波長 350nm)で励起して
測定した蛍光波長の極大は465nmで、青色の蛍光で
あった。また、例示化合物の粉末試料について、セイコ
ー電子社製DSC−20により示差熱分析測定したとこ
ろTgは93℃と高い値を示した。同様にして、他の例
示化合物についてイオン化ポテンシャル、蛍光極大波
長、Tgを測定した結果を表−6に示す。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the description of the following examples unless it exceeds the gist. Reference Example 1 A glass substrate was ultrasonically washed with acetone, washed with pure water, ultrasonically washed with isopropyl alcohol, dried with dry nitrogen, and dried.
After performing the V / ozone cleaning, the apparatus was set in a vacuum evaporation apparatus, and evacuated using an oil diffusion pump until the degree of vacuum in the apparatus became 2 × 10 −6 Torr or less. Exemplary compound (I-
3) was placed in a ceramic crucible and heated by a tantalum wire heater around the crucible to perform vapor deposition. At this time, the temperature of the crucible was controlled in the range of 200 to 260 ° C. The degree of vacuum at the time of vapor deposition is 1.8 × 10 −6 Torr (about 2.3 × 10 −4 Pa).
Thus, a uniform and transparent film having a thickness of 82 nm was obtained at a deposition rate of 0.3 nm / sec. When the ionization potential of this thin film sample was measured using an ultraviolet electron analyzer (AC-1) manufactured by Riken Keiki Co., Ltd., a value of 5.06 eV was shown. The maximum of the fluorescence wavelength measured by exciting this vapor-deposited film with a mercury lamp (wavelength 350 nm) was 465 nm, which was blue fluorescence. Further, the powder sample of the exemplified compound was subjected to differential thermal analysis measurement using DSC-20 manufactured by Seiko Electronics Co., Ltd., and as a result, Tg showed a high value of 93 ° C. Similarly, the results of measuring the ionization potential, the fluorescence maximum wavelength, and Tg of the other exemplified compounds are shown in Table-6.

【0061】[0061]

【表6】 [Table 6]

【0062】参考例2 正孔輸送層の材料としては、例示化合物(I−3)に代
えて、以下に示す4,4′−ビス〔N−(1−ナフチ
ル)−N−フェニルアミノ〕ビフェニル(H−1)を蒸
着源と
Reference Example 2 As a material for the hole transport layer, the following compound, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, was used instead of compound (I-3). (H-1) as an evaporation source

【0063】[0063]

【化17】 Embedded image

【0064】した他は参考例1と同様にして蒸着膜を作
製した。この薄膜試料のイオン化ポテンシャルを測定し
たところ、5.25eVの値を示した。 参考例3 正孔阻止層の材料として、例示化合物(I−3)に代え
て、下記に示すビス(2−メチル−8−キノリノラト)
(トリフェニルシラノラト)アルミニウム錯体(HB−
1)を蒸着源とした他は参考例1と同様にして蒸着膜を
作製した。
A vapor deposition film was prepared in the same manner as in Reference Example 1 except for the above. When the ionization potential of this thin film sample was measured, it showed a value of 5.25 eV. Reference Example 3 As a material for the hole blocking layer, bis (2-methyl-8-quinolinolato) shown below was used in place of the exemplary compound (I-3).
(Triphenylsilanolato) aluminum complex (HB-
A deposited film was prepared in the same manner as in Reference Example 1 except that 1) was used as the deposition source.

【0065】[0065]

【化18】 Embedded image

【0066】この薄膜試料のイオン化ポテンシャルを測
定した結果、5.51eVであった。 実施例1 図2に示す構造を有する有機電界発光素子を以下の方法
で作製した。ガラス基板上にインジウム・スズ酸化物
(ITO)透明導電膜を120nm堆積したもの(ジオ
マテック社製;電子ビーム成膜品;シート抵抗15Ω)
を通常のフォトリソグラフィ技術と塩酸エッチングを用
いて2mm幅のストライプにパターニングして陽極を形
成した。パターン形成したITO基板を、アセトンによ
る超音波洗浄、純水による水洗、イソプロピルアルコー
ルによる超音波洗浄の順で洗浄後、窒素ブローで乾燥さ
せ、最後に紫外線オゾン洗浄を行って、真空蒸着装置内
に設置した。上記装置の粗排気を油回転ポンプにより行
った後、装置内の真空度が2×10-6Torr(約2.
7×10-4Pa)以下になるまで液体窒素トラップを備
えた油拡散ポンプを用いて排気した。
The measured ionization potential of this thin film sample was 5.51 eV. Example 1 An organic electroluminescent device having a structure shown in FIG. 2 was produced by the following method. Indium tin oxide (ITO) transparent conductive film deposited on a glass substrate with a thickness of 120 nm (Geomatec; electron beam filmed product; sheet resistance 15Ω)
Was patterned into 2 mm-wide stripes using ordinary photolithography and hydrochloric acid etching to form an anode. The patterned ITO substrate is cleaned in the order of ultrasonic cleaning with acetone, water cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol, dried with nitrogen blow, and finally cleaned with ultraviolet and ozone, and placed in a vacuum evaporation apparatus. installed. After the rough exhaust of the above apparatus is performed by an oil rotary pump, the degree of vacuum in the apparatus is 2 × 10 −6 Torr (about 2.10 Torr).
Evacuation was performed using an oil diffusion pump equipped with a liquid nitrogen trap until the pressure became 7 × 10 −4 Pa) or less.

【0067】正孔輸送層材料として、4,4′−ビス
〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェ
ニル(H−1)をセラミック坩堝に入れ、坩堝の周囲の
タンタル線ヒーターで加熱して蒸着を行った。この時の
坩堝の温度は、275〜280℃の範囲で制御した。蒸
着時の真空度は1.1×10-6Torr(約1.5×1
-4Pa)で、蒸着速度0.3nm/秒で膜厚60nm
の正孔輸送層4を得た。次に、発光層5を、例示化合物
(I−10)をホスト材料として、下記に構造式を示す
ルブレン(D−1)をドープ蛍光色素として、二元同時
蒸着法により、上記正孔輸送層4の上に蒸着を行った。
As a hole transport layer material, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (H-1) was put in a ceramic crucible, and a tantalum wire heater around the crucible was used. Heating was performed for vapor deposition. The temperature of the crucible at this time was controlled in the range of 275 to 280 ° C. The degree of vacuum at the time of vapor deposition is 1.1 × 10 −6 Torr (about 1.5 × 1 Torr).
0 -4 Pa) at a deposition rate of 0.3 nm / sec and a film thickness of 60 nm.
Was obtained. Next, the above-described hole transport layer was formed by a dual simultaneous vapor deposition method using the exemplified compound (I-10) as a host material and rubrene (D-1) represented by the following structural formula as a doped fluorescent dye. 4 was deposited.

【0068】[0068]

【化19】 Embedded image

【0069】この時の例示化合物(I−10)の坩堝温
度は320〜330℃の範囲で、ルブレンの坩堝温度は
200℃で制御した。蒸着時の真空度は1.1×10-6
Torr(約1.5×10-4Pa)で、ホスト材料の蒸
着速度0.2nm/秒で、膜厚は30nmであった。こ
の時、最初の膜厚15nmの領域で、ルブレン坩堝のシ
ャッタを開けずにドープしない領域とし、後半の15n
mの領域ではルブレンがホスト材料に対して0.4重量
%となるようにした。続いて、正孔阻止層6の材料とし
て、ビス(2−メチル−8−キノリノラト)(トリフェ
ニルシラノラト)アルミニウム錯体(HB−1)を上記
発光層5の上に同様にして蒸着を行った。この時の坩堝
の温度は180〜190℃の範囲で制御した。蒸着時の
真空度は8.0×10-7Torr(約1.1×10-4
a)で、蒸着速度0.5nm/秒で、膜厚は20nmで
あった。更に、電子輸送層7の材料として以下に示すア
ルミニウムの8−ヒドロキシキノリン錯体(E−1)を
上記正孔阻止層6の上に同様にして蒸着を行った。
At this time, the crucible temperature of Exemplified Compound (I-10) was controlled in the range of 320 to 330 ° C., and the crucible temperature of rubrene was controlled at 200 ° C. The degree of vacuum during vapor deposition is 1.1 × 10 -6
At Torr (about 1.5 × 10 −4 Pa), the deposition rate of the host material was 0.2 nm / sec, and the film thickness was 30 nm. At this time, the first 15 nm-thick region was set as an undoped region without opening the shutter of the rubrene crucible.
In the region of m, rubrene was set to be 0.4% by weight with respect to the host material. Subsequently, as a material for the hole blocking layer 6, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum complex (HB-1) was deposited on the light emitting layer 5 in the same manner. . At this time, the temperature of the crucible was controlled in the range of 180 to 190 ° C. The degree of vacuum during vapor deposition is 8.0 × 10 −7 Torr (about 1.1 × 10 −4 P
In a), the deposition rate was 0.5 nm / sec, and the film thickness was 20 nm. Further, an 8-hydroxyquinoline complex of aluminum (E-1) shown below as a material for the electron transport layer 7 was deposited on the hole blocking layer 6 in the same manner.

【0070】[0070]

【化20】 Embedded image

【0071】この時の坩堝の温度は300〜310℃の
範囲で制御した。蒸着時の真空度は8.0×10-7To
rr(約1.1×10-4Pa)で、蒸着速度0.3nm
/秒で、膜厚は25nmであった。上記の正孔輸送層4
から電子輸送層7を真空蒸着する時の基板温度は室温に
保持した。
At this time, the temperature of the crucible was controlled in the range of 300 to 310 ° C. The degree of vacuum during deposition is 8.0 × 10 −7 To
rr (approximately 1.1 × 10 −4 Pa) at a deposition rate of 0.3 nm
/ S and the film thickness was 25 nm. The above hole transport layer 4
The substrate temperature at the time of vacuum-depositing the electron transport layer 7 was kept at room temperature.

【0072】ここで、電子輸送層7までの蒸着を行った
素子を一度前記真空蒸着装置内より大気中に取り出し
て、陰極蒸着用のマスクとして2mm幅のストライプ状
シャドーマスクを、陽極2のITOストライプとは直交
するように素子に密着させて、別の真空蒸着装置内に設
置して有機層と同様にして装置内の真空度が2×10-6
Torr(約2.7×10-4Pa)以下になるまで排気
した。陰極8として、先ず、フッ化マグネシウム(Mg
2 )をモリブデンボートを用いて、蒸着速度0.04
nm/秒、真空度5.0×10-6Torr(約6.7×
10-4Pa)で、0.5nmの膜厚で電子輸送層7の上
に成膜した。次に、アルミニウムを同様にモリブデンボ
ートにより加熱して、蒸着速度0.5nm/秒、真空度
1.2×10-5Torr(約1.6×10-3Pa)で膜
厚40nmのアルミニウム層を形成した。更に、その上
に、陰極の導電性を高めるために銅を、同様にモリブデ
ンボートを用いて加熱して、蒸着速度0.4nm/秒、
真空度1.2×10-5Torr(約1.6×10-3
a)で膜厚40nmの銅層を形成して陰極8を完成させ
た。以上の三層型陰極8の蒸着時の基板温度は室温に保
持した。
Here, the element on which the electron transport layer 7 was deposited was once taken out of the vacuum deposition apparatus into the atmosphere, and a 2 mm-wide striped shadow mask was used as a cathode deposition mask. It is closely attached to the element so as to be orthogonal to the stripe, and is placed in another vacuum evaporation apparatus, and the degree of vacuum in the apparatus is 2 × 10 −6 as in the case of the organic layer.
Evacuation was performed until the pressure became Torr (about 2.7 × 10 −4 Pa) or less. As the cathode 8, first, magnesium fluoride (Mg)
F 2 ) was deposited on a molybdenum boat at a deposition rate of 0.04.
nm / sec, vacuum degree 5.0 × 10 −6 Torr (about 6.7 ×
At 10 −4 Pa), a film was formed on the electron transport layer 7 to a thickness of 0.5 nm. Next, the aluminum layer was similarly heated by a molybdenum boat to form a 40 nm-thick aluminum layer at a deposition rate of 0.5 nm / sec, a degree of vacuum of 1.2 × 10 −5 Torr (about 1.6 × 10 −3 Pa). Was formed. Further, copper is further heated thereon using a molybdenum boat in order to increase the conductivity of the cathode, and a deposition rate of 0.4 nm / sec.
The degree of vacuum is 1.2 × 10 −5 Torr (about 1.6 × 10 −3 P)
A cathode 8 was completed by forming a copper layer having a thickness of 40 nm in a). The substrate temperature during the deposition of the above three-layer cathode 8 was kept at room temperature.

【0073】以上の様にして、2mm×2mmのサイズ
の発光面積部分を有する有機電界発光素子が得られた。
この素子の発光特性を表−7に示す。表−7において、
発光輝度は250mA/cm2 の電流密度での値、発光
効率は100cd/m2 での値、輝度/電流は輝度−電
流密度特性の傾きを、電圧は100cd/m2 での値を
各々示す。CIE色度座標値(JIS Z8701)を
合わせて示す。ELスペクトルを図5に示す。発光色は
白色であった。この素子は長期間保存後も、駆動電圧の
顕著な上昇は見られず、発光効率や輝度の低下もなく、
安定した素子の保存安定性が得られた。
As described above, an organic electroluminescent device having a light emitting area of 2 mm × 2 mm was obtained.
Table 7 shows the light emission characteristics of this device. In Table-7,
The emission luminance indicates a value at a current density of 250 mA / cm 2 , the luminous efficiency indicates a value at 100 cd / m 2 , the luminance / current indicates a slope of the luminance-current density characteristic, and the voltage indicates a value at 100 cd / m 2. . The CIE chromaticity coordinate values (JIS Z8701) are also shown. The EL spectrum is shown in FIG. The emission color was white. Even after storage for a long time, this element does not show a remarkable increase in drive voltage, there is no decrease in luminous efficiency and luminance,
Stable storage stability of the device was obtained.

【0074】[0074]

【表7】 [Table 7]

【0075】実施例2 発光層のホスト材料として例示化合物(I−27)を、
ドープ蛍光色素を以下の構造式に示すベンゾチオキサン
テン誘導体(D−2)とした他は実施例1と同様
Example 2 The exemplified compound (I-27) was used as a host material for the light emitting layer.
Same as Example 1 except that the doped fluorescent dye was a benzothioxanthene derivative (D-2) represented by the following structural formula

【0076】[0076]

【化21】 Embedded image

【0077】にして素子を作製した。素子の発光特性を
表−7に示す。ELスペクトルを図6に示す。発光色は
白色であった。 実施例3 発光層のホスト材料として例示化合物(I−3)を、正
孔輸送層側の膜厚15nmの領域におけるドープ蛍光色
素としてペリレンを、正孔阻止層側の膜厚15nmの領
域におけるドープ蛍光色素を以下の構造式に示すアザベ
ンゾチオキサンテン誘導体(D−3)とした他は実施例
1と同様にして素子を作製した。
Thus, an element was manufactured. Table 7 shows the emission characteristics of the device. The EL spectrum is shown in FIG. The emission color was white. Example 3 Exemplified compound (I-3) as a host material of a light emitting layer, perylene as a doped fluorescent dye in a region with a film thickness of 15 nm on the hole transport layer side, and doping in a region with a film thickness of 15 nm on the hole blocking layer side An element was prepared in the same manner as in Example 1 except that the fluorescent dye was an azabenzothioxanthene derivative (D-3) represented by the following structural formula.

【0078】[0078]

【化22】 Embedded image

【0079】素子の発光特性を表−7に示す。 実施例4 実施例1で作製した素子を、電圧を変えて輝度レベルを
変化させて発光スペクトルを測定し、色度座標を求めた
結果を表−8に示す。色度座標値は若干変動するが、い
ずれも白色発光領域であり、実用上は問題のない程度で
あった。
Table 7 shows the emission characteristics of the device. Example 4 The results obtained by measuring the emission spectrum of the device manufactured in Example 1 while changing the luminance level by changing the voltage and obtaining the chromaticity coordinates are shown in Table-8. Although the chromaticity coordinate values slightly fluctuated, all of them were in the white light emitting region, and were practically no problem.

【0080】[0080]

【表8】 [Table 8]

【0081】参考例4 発光層材料に例示化合物(I−10)、(I−27)及
び(I−3)を用い、発光層にドープしない他は実施例
1と同様にして素子を作製した。これらの素子の発光特
性を表−7に示す。いずれも青色、青緑色の発光色であ
った。これらドープしない素子の色度座標と実施例1〜
3で用いたドープ色素の溶液での蛍光スペクトルから求
めた色度座標値を図7に示す。
Reference Example 4 A device was prepared in the same manner as in Example 1 except that the exemplified compounds (I-10), (I-27) and (I-3) were used as the light emitting layer material and the light emitting layer was not doped. . Table 7 shows the light emission characteristics of these devices. All emitted blue and blue-green light. Chromaticity coordinates of these undoped elements and Examples 1 to
FIG. 7 shows chromaticity coordinate values obtained from the fluorescence spectrum of the solution of the doped dye used in No. 3.

【0082】比較例1 正孔阻止層を設けず、電子輸送層の膜厚を45nmとし
た他は実施例2と同様に素子を作製した。この素子の発
光特性を表−7に示す。青色発光は得られず、電子輸送
層として用いたアルミニウムの8−ヒドロキシキノリン
錯体からの発光にドープ色素が加わった黄緑色発光が観
測された。 比較例2 正孔輸送層を設けず、発光層材料を例示化合物(I−
3)として、その膜厚を60nmとし、ドープ色素とし
てアザベンゾチオキサンテン(D−3)を用いた他は実
施例1と同様にして素子を作製した。この素子の発光特
性を表−7に示す。白色発光は得られたものの発光効率
は低かった。
Comparative Example 1 An element was produced in the same manner as in Example 2 except that the hole blocking layer was not provided and the thickness of the electron transport layer was changed to 45 nm. Table 7 shows the light emission characteristics of this device. Blue light emission was not obtained, and yellow-green light emission in which a doped dye was added to light emission from the 8-hydroxyquinoline complex of aluminum used as the electron transport layer was observed. Comparative Example 2 A light-emitting layer material was prepared using the exemplified compound (I-
As 3), an element was produced in the same manner as in Example 1 except that the film thickness was 60 nm and azabenzothioxanthene (D-3) was used as a dope dye. Table 7 shows the light emission characteristics of this device. Although white light emission was obtained, the light emission efficiency was low.

【0083】比較例3 青色発光層ホスト材料として前記化合物(HB−1)を
用い、ペリレンとベンゾチオキサンテン(D−2)を各
々1.0、0.4重量%ドープし、正孔阻止層を設けず
電子輸送層として45nmの(E−1)を用いた他は実
施例1と同様にして素子を作製した。この素子の発光特
性を表−7に示す。白色発光は得られたものの発光効率
は低かった。
Comparative Example 3 The above compound (HB-1) was used as a host material for a blue light emitting layer, and perylene and benzothioxanthene (D-2) were doped at 1.0 and 0.4% by weight, respectively. Was prepared in the same manner as in Example 1 except that 45 nm (E-1) was used as the electron transporting layer without providing the element. Table 7 shows the light emission characteristics of this device. Although white light emission was obtained, the light emission efficiency was low.

【0084】[0084]

【発明の効果】本発明の有機電界発光素子によれば、特
定の芳香族アミンからなる発光層に特定の発光色素を含
有させるために、高い発光効率の白色発光が達成でき、
また安定性の向上した素子を得ることができる。従っ
て、本発明による有機電界発光素子はフラットパネル・
ディスプレイ(例えばOAコンピュータ用や壁掛けテレ
ビ)やマルチカラー表示素子、或いは面発光体としての
特徴を生かした光源(例えば、複写機の光源、液晶ディ
スプレイや計器類のバックライト光源)、表示板、標識
等への応用が考えられ、特に、高耐熱性が要求される車
載用、屋外用表示素子としては、その技術的価値は大き
いものである。
According to the organic electroluminescent device of the present invention, since a specific luminescent dye is contained in the luminescent layer composed of a specific aromatic amine, white luminescence with high luminous efficiency can be achieved.
Further, an element with improved stability can be obtained. Therefore, the organic electroluminescent device according to the present invention can
Light sources (e.g., light sources for copiers, backlight sources for liquid crystal displays and instruments, etc.), display boards, signs, and the like (e.g., light sources for displays (e.g., OA computers and wall-mounted televisions), multi-color display elements, or surface light emitters) The technical value is great as an in-vehicle or outdoor display element that requires high heat resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機電界発光素子の一例を示した模式断面図。FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent device.

【図2】有機電界発光素子の別の例を示した模式断面
図。
FIG. 2 is a schematic sectional view showing another example of the organic electroluminescent device.

【図3】有機電界発光素子の別の例を示した模式断面
図。
FIG. 3 is a schematic sectional view showing another example of the organic electroluminescent device.

【図4】加法混色の概念を示したCIE色度座標図。FIG. 4 is a CIE chromaticity coordinate diagram showing the concept of additive color mixture.

【図5】実施例1の有機電界発光素子からの発光スペク
トル。
FIG. 5 is an emission spectrum from the organic electroluminescent device of Example 1.

【図6】実施例2の有機電界発光素子からの発光スペク
トル。
FIG. 6 is an emission spectrum from the organic electroluminescent device of Example 2.

【図7】実施例1〜3に用いたホスト及びドープ色素か
らの発光のCIE色度座標図。
FIG. 7 is a CIE chromaticity coordinate diagram of light emission from a host and a doped dye used in Examples 1 to 3.

【符号の説明】[Explanation of symbols]

1 基板 2 陽極 3 陽極バッファ層 4 正孔輸送層 5 発光層 6 正孔阻止層 7 電子輸送層 8 陰極 DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Anode buffer layer 4 Hole transport layer 5 Emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Cathode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、陽極及び陰極により挟持され
た正孔輸送層、発光層及び正孔阻止層を少なくとも含む
有機電界発光素子であって、該発光層が400〜500
nmの範囲に蛍光極大波長を有する芳香族アミン化合物
を含有し、正孔輸送層のイオン化ポテンシャルが発光層
のイオン化ポテンシャルより0.1eV以上大きく、正
孔阻止層のイオン化ポテンシャルが発光層のイオン化ポ
テンシャルより0.2eV以上大きく、少なくとも発光
層に蛍光極大波長が550〜650nmの範囲にある蛍
光色素を含有させることを特徴とする有機電界発光素
子。
An organic electroluminescent device comprising at least a hole transport layer, a light emitting layer, and a hole blocking layer sandwiched between an anode and a cathode on a substrate, wherein the light emitting layer is 400 to 500
The compound contains an aromatic amine compound having a fluorescence maximum wavelength in the range of nm, the ionization potential of the hole transport layer is 0.1 eV or more larger than the ionization potential of the light emitting layer, and the ionization potential of the hole blocking layer is the ionization potential of the light emitting layer. An organic electroluminescent device characterized by containing a fluorescent dye having a maximum fluorescence wavelength in the range of 550 to 650 nm at least in the light emitting layer by 0.2 eV or more.
【請求項2】 発光層に含まれる前記芳香族アミン化合
物が下記一般式(I)又は(II)で表わされる芳香族ア
ミン化合物であることを特徴とする請求項1に記載の有
機電界発光素子。 【化1】 (式中、Xは、各々置換基を有していてもよい二価の、
芳香族炭化水素基又は芳香族複素環基を表わし、Ar1
ないしAr4 は、各々独立して、各々置換基を有してい
てもよい、芳香族炭化水素基又は芳香族複素環基を表わ
し、X及びAr1ないしAr4 の中少なくとも一つは、
縮合芳香族環基である) 【化2】 (式中、Yは窒素原子又は1,3,5−位に置換するベ
ンゼン環を表わし、Ar 5 及びAr6 は、各々独立し
て、各々置換基を有していてもよい、芳香族炭化水素基
又は芳香族複素環基を表わす)
2. The aromatic amine compound contained in the light emitting layer
The aromatic compound represented by the following general formula (I) or (II)
2. The compound according to claim 1, wherein the compound is a mine compound.
Electroluminescent device. Embedded image(Wherein X is a divalent group which may have a substituent,
Represents an aromatic hydrocarbon group or an aromatic heterocyclic group, and represents Ar1
Or ArFourEach independently has a substituent
May represent an aromatic hydrocarbon group or an aromatic heterocyclic group.
X and Ar1Or ArFourAt least one of the
(This is a condensed aromatic ring group.)(In the formula, Y is a nitrogen atom or a group substituted at the 1,3,5-position.
Represents a Zensen ring, Ar FiveAnd Ar6Are independent
An aromatic hydrocarbon group which may have a substituent
Or represents an aromatic heterocyclic group)
【請求項3】 発光層に含まれる前記蛍光色素の量が
0.1〜10重量%の範囲にあることを特徴とする請求
項1又は2に記載の有機電界発光素子。
3. The organic electroluminescent device according to claim 1, wherein the amount of the fluorescent dye contained in the light emitting layer is in the range of 0.1 to 10% by weight.
【請求項4】 正孔阻止層が、下記一般式(III)若しく
は(IV)で表わされる金属錯体、下記構造式(V)を少
なくとも一個含むトリアゾール誘導体又は下記一般式
(VI)で表わされるスチリル化合物の少なくとも一種で
構成されることを特徴とする請求項1ないし3のいずれ
かに記載の有機電界発光素子。 【化3】 (式中、R1 ないしR6 は、各々独立して、水素原子、
ハロゲン原子、アルキル基、アラルキル基、アルケニル
基、アリル基、シアノ基、アミノ基、アシル基、アルコ
キシカルボニル基、カルボキシル基、アルコキシ基、ア
ルキルスルホニル基、α−ハロアルキル基、水酸基、置
換基を有していてもよいアミド基、置換基を有していて
もよい芳香族炭化水素基又は置換基を有していてもよい
芳香族複素環基を表わし、MはAl原子又はGa原子を
示し、Lは下記一般式(IIIa)、(IIIb)又は、(III
c) のいずれかの基を表わす) 【化4】 (式中、ZはSi、Ge又はSnのいずれかの原子を表
わし、Ar9 及びAr10は、各々独立して、各々置換基
を有していてもよい、芳香族炭化水素基又は芳香族複素
環基を表わす) 【化5】 (式中、R1 ないしR6 は、各々独立して、水素原子、
ハロゲン原子、アルキル基、アラルキル基、アルケニル
基、アリル基、シアノ基、アミノ基、アシル基、アルコ
キシカルボニル基、カルボキシル基、アルコキシ基、ア
ルキルスルホニル基、α−ハロアルキル基、水酸基、置
換基を有していてもよいアミド基、置換基を有していて
もよい芳香族炭化水素基又は置換基を有していてもよい
芳香族複素環基を表わし、MはAl原子又はGa原子を
示す) 【化6】 【化7】 (式中、Ar12は、各々、置換基を有していてもよい二
価の、芳香族炭化水素基又は芳香族複素環基を表わし、
Ar13ないしAr16は、各々独立して、各々置換基を有
していてもよい、芳香族炭化水素基又は芳香族複素環基
を表わす)
4. A metal complex represented by the following general formula (III) or (IV), a triazole derivative containing at least one of the following structural formulas (V) or styryl represented by the following general formula (VI): The organic electroluminescent device according to any one of claims 1 to 3, wherein the organic electroluminescent device is composed of at least one compound. Embedded image (Wherein, R 1 to R 6 are each independently a hydrogen atom,
Having a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an allyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group, an alkylsulfonyl group, an α-haloalkyl group, a hydroxyl group, and a substituent. Represents an amide group which may be substituted, an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, M represents an Al atom or a Ga atom, Is represented by the following general formula (IIIa), (IIIb) or (III
c) represents any group of the formula) (Wherein, Z represents an atom of any of Si, Ge and Sn, and Ar 9 and Ar 10 each independently represent an aromatic hydrocarbon group or an aromatic group which may have a substituent. Represents a heterocyclic group) (Wherein, R 1 to R 6 are each independently a hydrogen atom,
Having a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, an allyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group, an alkylsulfonyl group, an α-haloalkyl group, a hydroxyl group, and a substituent. Represents an amide group which may be substituted, an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and M represents an Al atom or a Ga atom. Formula 6 Embedded image (In the formula, Ar 12 represents a divalent aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent,
Ar 13 to Ar 16 each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent.)
【請求項5】 正孔阻止層と陰極との間に電子輸送層を
設けたことを特徴とする請求項1ないし4のいずれかに
記載の有機電界発光素子。
5. The organic electroluminescent device according to claim 1, wherein an electron transporting layer is provided between the hole blocking layer and the cathode.
【請求項6】 正孔阻止層の膜厚が、0.5〜30nm
の範囲にあることを特徴とする請求項1ないし5のいず
れかに記載の有機電界発光素子。
6. The film thickness of the hole blocking layer is 0.5 to 30 nm.
The organic electroluminescent device according to any one of claims 1 to 5, wherein
【請求項7】 正孔輸送層が芳香族アミン化合物により
形成されることを特徴とする請求項1ないし6のいずれ
かに記載の有機電界発光素子。
7. The organic electroluminescent device according to claim 1, wherein the hole transport layer is formed of an aromatic amine compound.
JP10139509A 1998-03-10 1998-05-21 Organic electroluminescence element Pending JPH11329734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139509A JPH11329734A (en) 1998-03-10 1998-05-21 Organic electroluminescence element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-57888 1998-03-10
JP5788898 1998-03-10
JP10139509A JPH11329734A (en) 1998-03-10 1998-05-21 Organic electroluminescence element

Publications (1)

Publication Number Publication Date
JPH11329734A true JPH11329734A (en) 1999-11-30

Family

ID=26398976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139509A Pending JPH11329734A (en) 1998-03-10 1998-05-21 Organic electroluminescence element

Country Status (1)

Country Link
JP (1) JPH11329734A (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048116A1 (en) * 1999-12-28 2001-07-05 Idemitsu Kosan Co., Ltd. White organic electroluminescence element
WO2002020693A1 (en) * 2000-09-07 2002-03-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JP2002100478A (en) * 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element and its method of manufacture
JP2002100482A (en) * 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element
JP2002134273A (en) * 2000-10-27 2002-05-10 Denso Corp Organic el element
WO2002043449A1 (en) * 2000-11-24 2002-05-30 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
WO2002079343A1 (en) * 2001-03-30 2002-10-10 Fuji Photo Film Co., Ltd. Luminescent element
JP2002324673A (en) * 2001-02-22 2002-11-08 Semiconductor Energy Lab Co Ltd Organic luminous element and display device using above element
US6759145B2 (en) * 2001-10-18 2004-07-06 Opto Tech Corporation White light emitting organic electroluminescent device and method for fabricating the same
WO2004075603A2 (en) * 2003-02-19 2004-09-02 Lg Electronics Inc. Organic electroluminescent device
US6866947B1 (en) * 1999-12-28 2005-03-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
JP2005100977A (en) * 2003-08-29 2005-04-14 Semiconductor Energy Lab Co Ltd Electroluminescent element and light-emitting device using the same
WO2005112518A1 (en) * 2004-03-25 2005-11-24 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP1661888A1 (en) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
JP2006190682A (en) * 2005-01-04 2006-07-20 Osram Opto Semiconductors Gmbh Device emitting light
EP1752442A1 (en) 2005-07-22 2007-02-14 Samsung SDI Co., Ltd. Triarylamine-based compound, method of preparing the same, and organic light emitting device using the triarylamine-based compound
JP2007042875A (en) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp Organic electroluminescence element
US7201975B2 (en) 2000-12-13 2007-04-10 Sanyo Electric Co., Ltd. Organic light emitting device
JP2007138228A (en) * 2005-11-16 2007-06-07 Mitsui Chemicals Inc Thin film, low molecular organic material, and organic electroluminescence element containing the thin film formed from the low molecular organic material
JP2007201491A (en) * 1999-12-28 2007-08-09 Idemitsu Kosan Co Ltd White color organic electroluminescence element
WO2007105783A1 (en) * 2006-03-13 2007-09-20 Bando Chemical Industries, Ltd. Novel 1,3,5-tris(diarylamino)benzenes and use thereof
JP2008108712A (en) * 2006-09-28 2008-05-08 Fujifilm Corp Organic luminescent element
EP1970978A2 (en) 2007-03-14 2008-09-17 Samsung SDI Co., Ltd. Anthracene derivatives and organic light-emitting device including the same
EP1993139A2 (en) 2007-05-16 2008-11-19 Samsung SDI Co., Ltd. Organic light emitting device
EP2012375A2 (en) 2007-07-03 2009-01-07 Samsung SDI Co., Ltd. Organic light emitting device
EP2015380A2 (en) 2007-06-05 2009-01-14 Samsung SDI Co., Ltd. Organic light emitting device and method of manufacturing the same
US7505487B2 (en) 2003-04-23 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Laser oscillator including phosphorescent material
DE112007001166T5 (en) 2006-05-17 2009-06-10 Dongjin Semichem Co., Ltd. A silicon compound having bisphenylcarbazole in the molecule and a method for producing an organic thin film of organic light emitting devices using the same
US7572522B2 (en) 2000-12-28 2009-08-11 Semiconductor Energy Laboratory Co., Ltd. Luminescent device
US7582366B2 (en) 2005-07-15 2009-09-01 Samsung Mobile Display Co., Ltd. Difluoropyridine-based compound and organic electroluminescent device using the same
US7622584B2 (en) 2006-11-24 2009-11-24 Samsung Mobile Display Co., Ltd. Imidazopyridine-based compound and organic light emitting diode including organic layer comprising the imidazopyridine-based compound
WO2009154168A1 (en) * 2008-06-17 2009-12-23 株式会社日立製作所 Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
JP2010010235A (en) * 2008-06-25 2010-01-14 Hitachi Ltd Organic light-emitting display device
US7699482B2 (en) 2002-09-25 2010-04-20 Fujifilm Corporation Light-emitting element
US7754349B2 (en) 2007-01-15 2010-07-13 Samsung Mobile Display Co., Ltd. Silanylamine-based compound and organic light-emitting device including organic layer including the silanylamine-based compound
JP2010177462A (en) * 2009-01-29 2010-08-12 Nihon Univ Organic el device
US7795799B2 (en) 2000-05-02 2010-09-14 Fujifilm Corporation Light-emitting device
US7816021B2 (en) 2007-01-18 2010-10-19 Samsung Mobile Display Co., Ltd. Carbazole-based compound and organic light-emitting device including organic layer including the carbazole-based compound
US7824780B2 (en) 2007-03-13 2010-11-02 Samsung Mobile Display Co., Ltd. Imidazopyrimidine-based compound and organic light-emitting device employing organic layer including the same
KR101001384B1 (en) 2008-02-29 2010-12-14 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
US7862907B2 (en) 2005-07-28 2011-01-04 Samsung Mobile Display Co., Ltd. Dimethylenecyclohexane compound, method of preparing the same and organic light emitting device comprising the same
US7867631B2 (en) 2007-01-15 2011-01-11 Samsung Mobile Display Co., Ltd. Fluorine-containing compound and organic light-emitting device employing the same
US7879463B2 (en) 2006-05-10 2011-02-01 Samsung Mobile Display Co., Ltd. Dimethylenecyclohexane compound, method of preparing the same and organic light emitting device comprising the dimethylenecyclohexane compound
US7880164B2 (en) 2005-12-19 2011-02-01 Samsung Mobile Display Co., Ltd. Conducting polymer composition and electronic device including layer obtained using the conducting polymer composition
US7887932B2 (en) 2005-08-26 2011-02-15 Samsung Mobile Display Co., Ltd. Organosiloxane compound and organic light-emitting device comprising the same
US7906227B2 (en) 2007-10-15 2011-03-15 Samsung Electronics Co., Ltd. Indene derivative compound and organic light emitting device comprising the same
US7927719B2 (en) 2006-11-08 2011-04-19 Samsung Mobile Display Co., Ltd. Silanylamine-based compound, method of preparing the same and organic light emitting device including organic layer comprising the silanylamine-based compound
JP2011124236A (en) * 2004-09-13 2011-06-23 Semiconductor Energy Lab Co Ltd Lighting system
US7999459B2 (en) 2008-01-28 2011-08-16 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method of manufacturing the same
US8004177B2 (en) 2005-11-14 2011-08-23 Samsung Mobile Display Co., Ltd. Conducting polymer composition and electronic device including layer obtained using the conducting polymer composition
US8021765B2 (en) 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
US8048537B2 (en) 2006-02-08 2011-11-01 Samsung Mobile Display Co., Ltd. Cyclometalated transition metal complex and organic light emitting device using the same
EP2407501A1 (en) 2010-07-16 2012-01-18 Samsung Mobile Display Co., Ltd. Dendrimer and organic light-emitting device using the same
EP2407502A1 (en) 2010-07-16 2012-01-18 Samsung Mobile Display Co., Ltd. Dendrimer and organic light-emitting device using the same
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
US8227093B2 (en) 2006-02-11 2012-07-24 Samsung Mobile Display Co., Ltd. Cyclometalated transition metal complex and organic electroluminescence device using the same
US8288014B2 (en) 2008-09-03 2012-10-16 Samsung Mobile Display Co., Ltd. Fluorene-containing compound and organic light emitting device employing the same
US8394511B2 (en) 2008-02-11 2013-03-12 Samsung Display Co., Ltd. Compound for forming organic film, and organic light emitting device and flat panel display device including the same
US9516713B2 (en) 2011-01-25 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2023277604A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277593A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277606A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277594A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277605A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer and organic light-emitting device comprising same
WO2023043040A1 (en) 2021-09-17 2023-03-23 주식회사 동진쎄미켐 Novel compound for light-emitting device, and organic light-emitting device comprising same
WO2023043039A1 (en) 2021-09-17 2023-03-23 주식회사 동진쎄미켐 Novel compound for light-emitting device, and organic light-emitting device comprising same
WO2023043038A1 (en) 2021-09-17 2023-03-23 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023063701A1 (en) 2021-10-13 2023-04-20 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201491A (en) * 1999-12-28 2007-08-09 Idemitsu Kosan Co Ltd White color organic electroluminescence element
JP2001250690A (en) * 1999-12-28 2001-09-14 Idemitsu Kosan Co Ltd White system organic electroluminescence element
EP1182244A1 (en) * 1999-12-28 2002-02-27 Idemitsu Kosan Co., Ltd. White organic electroluminescence element
EP1182244A4 (en) * 1999-12-28 2007-04-04 Idemitsu Kosan Co White organic electroluminescence element
JP4630300B2 (en) * 1999-12-28 2011-02-09 出光興産株式会社 White organic electroluminescence device
CN100417702C (en) * 1999-12-28 2008-09-10 出光兴产株式会社 Organic electroluminescent device emitting white light
KR100896376B1 (en) * 1999-12-28 2009-05-08 이데미쓰 고산 가부시키가이샤 White organic electroluminescence element
US6866947B1 (en) * 1999-12-28 2005-03-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
EP1905809A3 (en) * 1999-12-28 2008-06-25 Idemitsu Kosan Co., Ltd. White Organic Electroluminescent Element
EP1905809A2 (en) * 1999-12-28 2008-04-02 Idemitsu Kosan Co., Ltd. White Organic Electroluminescent Element
US6803120B2 (en) * 1999-12-28 2004-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device emitting white light
WO2001048116A1 (en) * 1999-12-28 2001-07-05 Idemitsu Kosan Co., Ltd. White organic electroluminescence element
US7795799B2 (en) 2000-05-02 2010-09-14 Fujifilm Corporation Light-emitting device
JP2011054981A (en) * 2000-09-07 2011-03-17 Idemitsu Kosan Co Ltd Organic electric-field light-emitting element
US7879465B2 (en) 2000-09-07 2011-02-01 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US8841003B2 (en) 2000-09-07 2014-09-23 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US6929871B2 (en) 2000-09-07 2005-08-16 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
JPWO2002020693A1 (en) * 2000-09-07 2004-01-15 出光興産株式会社 Organic electroluminescence device
WO2002020693A1 (en) * 2000-09-07 2002-03-14 Idemitsu Kosan Co., Ltd. Organic electroluminescent element
JP4632628B2 (en) * 2000-09-07 2011-02-16 出光興産株式会社 Organic electroluminescence device
JP2002100482A (en) * 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element
JP2002100478A (en) * 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element and its method of manufacture
JP2002134273A (en) * 2000-10-27 2002-05-10 Denso Corp Organic el element
WO2002043449A1 (en) * 2000-11-24 2002-05-30 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
US7318966B2 (en) 2000-11-24 2008-01-15 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
US7201975B2 (en) 2000-12-13 2007-04-10 Sanyo Electric Co., Ltd. Organic light emitting device
US7572522B2 (en) 2000-12-28 2009-08-11 Semiconductor Energy Laboratory Co., Ltd. Luminescent device
US7399991B2 (en) 2001-02-22 2008-07-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device and display device using the same
JP2002324673A (en) * 2001-02-22 2002-11-08 Semiconductor Energy Lab Co Ltd Organic luminous element and display device using above element
US7504161B2 (en) 2001-03-30 2009-03-17 Fujifilm Corporation Luminescent element
WO2002079343A1 (en) * 2001-03-30 2002-10-10 Fuji Photo Film Co., Ltd. Luminescent element
US6759145B2 (en) * 2001-10-18 2004-07-06 Opto Tech Corporation White light emitting organic electroluminescent device and method for fabricating the same
US7699482B2 (en) 2002-09-25 2010-04-20 Fujifilm Corporation Light-emitting element
WO2004075603A3 (en) * 2003-02-19 2004-11-11 Lg Electronics Inc Organic electroluminescent device
KR101066499B1 (en) * 2003-02-19 2011-09-21 엘지디스플레이 주식회사 organic electroluminescent device
US7651787B2 (en) 2003-02-19 2010-01-26 Lg Display Co., Ltd. Organic electroluminescent device
WO2004075603A2 (en) * 2003-02-19 2004-09-02 Lg Electronics Inc. Organic electroluminescent device
US7505487B2 (en) 2003-04-23 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Laser oscillator including phosphorescent material
JP2005100977A (en) * 2003-08-29 2005-04-14 Semiconductor Energy Lab Co Ltd Electroluminescent element and light-emitting device using the same
US7737625B2 (en) 2004-03-25 2010-06-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device with carrier blocking layer interposed between two emitting layers
US8035297B2 (en) 2004-03-25 2011-10-11 Idemitsu Kosan Co., Ltd. Organic electroluminescent device with carrier blocking layer interposed between two emitting layers
WO2005112518A1 (en) * 2004-03-25 2005-11-24 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US10573821B2 (en) 2004-04-02 2020-02-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US10211406B2 (en) 2004-04-02 2019-02-19 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US9917258B2 (en) 2004-04-02 2018-03-13 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US8974922B2 (en) 2004-04-02 2015-03-10 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
US9478754B2 (en) 2004-04-02 2016-10-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US11482678B2 (en) 2004-04-02 2022-10-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US11950501B2 (en) 2004-04-02 2024-04-02 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US8487529B2 (en) 2004-09-13 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Lighting device with plural light emitting elements
JP2011124236A (en) * 2004-09-13 2011-06-23 Semiconductor Energy Lab Co Ltd Lighting system
US8912718B2 (en) 2004-09-13 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device with a plurality of circuits connected in parallel
US8487530B2 (en) 2004-09-13 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Lighting device having plural light emitting layers which are separated
EP1661888A1 (en) 2004-11-29 2006-05-31 Samsung SDI Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
US8021764B2 (en) 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
US8021765B2 (en) 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
JP2006190682A (en) * 2005-01-04 2006-07-20 Osram Opto Semiconductors Gmbh Device emitting light
DE102006000770B4 (en) * 2005-01-04 2017-12-28 Osram Oled Gmbh OLEDs with phosphors
US7582366B2 (en) 2005-07-15 2009-09-01 Samsung Mobile Display Co., Ltd. Difluoropyridine-based compound and organic electroluminescent device using the same
EP1752442A1 (en) 2005-07-22 2007-02-14 Samsung SDI Co., Ltd. Triarylamine-based compound, method of preparing the same, and organic light emitting device using the triarylamine-based compound
US7862907B2 (en) 2005-07-28 2011-01-04 Samsung Mobile Display Co., Ltd. Dimethylenecyclohexane compound, method of preparing the same and organic light emitting device comprising the same
JP2007042875A (en) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp Organic electroluminescence element
US7887932B2 (en) 2005-08-26 2011-02-15 Samsung Mobile Display Co., Ltd. Organosiloxane compound and organic light-emitting device comprising the same
US8004177B2 (en) 2005-11-14 2011-08-23 Samsung Mobile Display Co., Ltd. Conducting polymer composition and electronic device including layer obtained using the conducting polymer composition
JP2007138228A (en) * 2005-11-16 2007-06-07 Mitsui Chemicals Inc Thin film, low molecular organic material, and organic electroluminescence element containing the thin film formed from the low molecular organic material
US7880164B2 (en) 2005-12-19 2011-02-01 Samsung Mobile Display Co., Ltd. Conducting polymer composition and electronic device including layer obtained using the conducting polymer composition
US8048537B2 (en) 2006-02-08 2011-11-01 Samsung Mobile Display Co., Ltd. Cyclometalated transition metal complex and organic light emitting device using the same
US8227093B2 (en) 2006-02-11 2012-07-24 Samsung Mobile Display Co., Ltd. Cyclometalated transition metal complex and organic electroluminescence device using the same
WO2007105783A1 (en) * 2006-03-13 2007-09-20 Bando Chemical Industries, Ltd. Novel 1,3,5-tris(diarylamino)benzenes and use thereof
US8029920B2 (en) 2006-03-13 2011-10-04 Bando Chemical Industries, Ltd 1,3,5-tris(diarylamino)benzenes and use thereof
US7879463B2 (en) 2006-05-10 2011-02-01 Samsung Mobile Display Co., Ltd. Dimethylenecyclohexane compound, method of preparing the same and organic light emitting device comprising the dimethylenecyclohexane compound
DE112007001166T5 (en) 2006-05-17 2009-06-10 Dongjin Semichem Co., Ltd. A silicon compound having bisphenylcarbazole in the molecule and a method for producing an organic thin film of organic light emitting devices using the same
JP2008108712A (en) * 2006-09-28 2008-05-08 Fujifilm Corp Organic luminescent element
US7927719B2 (en) 2006-11-08 2011-04-19 Samsung Mobile Display Co., Ltd. Silanylamine-based compound, method of preparing the same and organic light emitting device including organic layer comprising the silanylamine-based compound
US7622584B2 (en) 2006-11-24 2009-11-24 Samsung Mobile Display Co., Ltd. Imidazopyridine-based compound and organic light emitting diode including organic layer comprising the imidazopyridine-based compound
US7754349B2 (en) 2007-01-15 2010-07-13 Samsung Mobile Display Co., Ltd. Silanylamine-based compound and organic light-emitting device including organic layer including the silanylamine-based compound
US7867631B2 (en) 2007-01-15 2011-01-11 Samsung Mobile Display Co., Ltd. Fluorine-containing compound and organic light-emitting device employing the same
US7816021B2 (en) 2007-01-18 2010-10-19 Samsung Mobile Display Co., Ltd. Carbazole-based compound and organic light-emitting device including organic layer including the carbazole-based compound
US7824780B2 (en) 2007-03-13 2010-11-02 Samsung Mobile Display Co., Ltd. Imidazopyrimidine-based compound and organic light-emitting device employing organic layer including the same
EP1970978A2 (en) 2007-03-14 2008-09-17 Samsung SDI Co., Ltd. Anthracene derivatives and organic light-emitting device including the same
EP2105979A2 (en) 2007-03-14 2009-09-30 Samsung Mobile Display Co., Ltd. Anthracene derivatives and organic light-emitting device including the same
EP1993139A2 (en) 2007-05-16 2008-11-19 Samsung SDI Co., Ltd. Organic light emitting device
EP2015380A2 (en) 2007-06-05 2009-01-14 Samsung SDI Co., Ltd. Organic light emitting device and method of manufacturing the same
US8119256B2 (en) 2007-07-03 2012-02-21 Samsung Mobile Display Co., Ltd. Organic light emitting device
EP2012375A2 (en) 2007-07-03 2009-01-07 Samsung SDI Co., Ltd. Organic light emitting device
US7906227B2 (en) 2007-10-15 2011-03-15 Samsung Electronics Co., Ltd. Indene derivative compound and organic light emitting device comprising the same
US7999459B2 (en) 2008-01-28 2011-08-16 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method of manufacturing the same
US8394511B2 (en) 2008-02-11 2013-03-12 Samsung Display Co., Ltd. Compound for forming organic film, and organic light emitting device and flat panel display device including the same
KR101001384B1 (en) 2008-02-29 2010-12-14 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2009154168A1 (en) * 2008-06-17 2009-12-23 株式会社日立製作所 Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
US8536611B2 (en) 2008-06-17 2013-09-17 Hitachi, Ltd. Organic light-emitting element, method for manufacturing the organic light-emitting element, apparatus for manufacturing the organic light-emitting element, and organic light-emitting device using the organic light-emitting element
JP2010010235A (en) * 2008-06-25 2010-01-14 Hitachi Ltd Organic light-emitting display device
US8288014B2 (en) 2008-09-03 2012-10-16 Samsung Mobile Display Co., Ltd. Fluorene-containing compound and organic light emitting device employing the same
JP2010177462A (en) * 2009-01-29 2010-08-12 Nihon Univ Organic el device
EP2407501A1 (en) 2010-07-16 2012-01-18 Samsung Mobile Display Co., Ltd. Dendrimer and organic light-emitting device using the same
EP2407502A1 (en) 2010-07-16 2012-01-18 Samsung Mobile Display Co., Ltd. Dendrimer and organic light-emitting device using the same
US9516713B2 (en) 2011-01-25 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2023277593A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277606A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277594A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023277605A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer and organic light-emitting device comprising same
WO2023277604A1 (en) 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023043040A1 (en) 2021-09-17 2023-03-23 주식회사 동진쎄미켐 Novel compound for light-emitting device, and organic light-emitting device comprising same
WO2023043039A1 (en) 2021-09-17 2023-03-23 주식회사 동진쎄미켐 Novel compound for light-emitting device, and organic light-emitting device comprising same
WO2023043038A1 (en) 2021-09-17 2023-03-23 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same
WO2023063701A1 (en) 2021-10-13 2023-04-20 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same

Similar Documents

Publication Publication Date Title
JPH11329734A (en) Organic electroluminescence element
JP3855675B2 (en) Organic electroluminescence device
JP4023204B2 (en) Organic electroluminescence device
JP4992183B2 (en) Luminescent layer forming material and organic electroluminescent device
JP4058842B2 (en) Organic electroluminescence device
US6660411B2 (en) Organic electroluminescent device
JP4003299B2 (en) Organic electroluminescence device
JPH11242996A (en) Organic electroluminescent element
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
JP2002100482A (en) Organic electroluminescence element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
JP2000150169A (en) Organic electroluminescence element
JP3750315B2 (en) Organic electroluminescence device
JP4135411B2 (en) Asymmetric 1,4-phenylenediamine derivative and organic electroluminescence device using the same
JP4147621B2 (en) Organic electroluminescence device
JP3982164B2 (en) Organic electroluminescent device and manufacturing method thereof
JP4734849B2 (en) Aluminum mixed ligand complex compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP3903645B2 (en) Organic electroluminescence device
JP2000003790A (en) Organic electroluminescent element
JPH11354284A (en) Organic electroluminescence element
JP2004327166A (en) Organic el device and its manufacturing method
JPH11302639A (en) Organic electroluminescent element
JPH11312587A (en) Organic electroluminescent element
JP2000243571A (en) Organic electroluminescent element
JPH11312586A (en) Organic electroluminescent element