JPH11317547A - 熱電変換材料及びその製造方法 - Google Patents

熱電変換材料及びその製造方法

Info

Publication number
JPH11317547A
JPH11317547A JP11041133A JP4113399A JPH11317547A JP H11317547 A JPH11317547 A JP H11317547A JP 11041133 A JP11041133 A JP 11041133A JP 4113399 A JP4113399 A JP 4113399A JP H11317547 A JPH11317547 A JP H11317547A
Authority
JP
Japan
Prior art keywords
thermoelectric
semiconductor
semiconductor substrate
thermoelectric conversion
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041133A
Other languages
English (en)
Other versions
JP3032826B2 (ja
Inventor
Atsushi Yamamoto
淳 山本
Toshitaka Ota
敏隆 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11041133A priority Critical patent/JP3032826B2/ja
Publication of JPH11317547A publication Critical patent/JPH11317547A/ja
Application granted granted Critical
Publication of JP3032826B2 publication Critical patent/JP3032826B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Weting (AREA)

Abstract

(57)【要約】 【課題】 本発明は性能指数を高くして、従来の熱電変
換モジュールに使用されている熱電材料と置換すること
で、高い変換効率を実現することができる熱電変換材料
を提供することを目的としている。 【解決手段】本発明の熱電変換材料及びその製造方法
は、半導体基板内部に電子とフォノンの平均自由行程と
同程度、あるいはそれ以下の間隔で分散した多数の微細
な空孔を基板表面から柱状又は樹形状に形成して多孔質
化し、密度の低下に伴う熱伝導率の減少や熱電能の増加
によって熱電性能指数を増加させ、また、その空孔の中
に異種の半導体または金属を充填し、量子効果により熱
電性能指数を増加させたものである。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は熱と電気の相互エネルギ
ー変換を行う熱電変換モジュールに利用される、高い熱
電性能指数を有する熱電変換材料及びその製造方法に関
する。
【0002】
【従来の技術】図2のようにp型及びn型の半導体材料
を金属で接合し電気的に直列、熱的には並列の回路を構
成し、その一方を加熱、他方を冷却し、それぞれの端の
温度をT 及びTに保持すると、ゼーベック効果によ
り、温度差(T-T)に比例する起電力が発生し、外
部負荷回路を接続するとそこに電流Iが流れ電力IR
を取り出すことができる。
【0003】また図3のようにp型及びn型の半導体材
料を金属で接合し、電気的に直列、熱的には並列の回路
を構成し、外部電源から電流を流すと、ペルチェ効果に
より、半導体の一方でQoutの発熱を、他方でQin
吸熱を行う。
【0004】熱から電気へのエネルギー変換効率ηは、
一般に使用される半導体材料の抵抗率、熱伝導率、熱電
能により下式のように定義できる。
【数1】 ここでTは材料の平均温度(K)で、Zは熱電性能指数と
呼ばれ、材料の熱電能α、抵抗率ρ及び熱伝導率κによ
り以下のように定義される。 Z=α/ρκ (2)
【0005】エネルギー変換効率ηを高めるためには、
熱電能αが大きく、抵抗率ρが小さく、熱伝導率κが小
さい材料を使用することが必要となる。実際に熱電素子
を利用する場合には、図2、3に示したようなp−n対
を複数個直列に接続し、これを電気絶縁性の基板で挟み
込み図4に示すようなモジュールとして利用するのが一
般的である。
【0006】熱伝導率と抵抗率は、材料の密度やキャリ
ア濃度で調整することができるが、両者はヴィーデマン
フランツの法則により効果を相殺するように変化するた
め、一般に大きな性能指数の向上は望めない。また、抵
抗率を減少させる目的でキャリア濃度を大きくすれば熱
電能が減少するため、これも大幅な性能指数の向上は望
めない。また、材料を焼結体にして数十マイクロメータ
程度の、多くの結晶粒界を導入することによって熱伝導
率を低減せしめ、性能向上を図ることも検討されている
が、キャリアも粒界で散乱を受けるため抵抗率が上昇
し、また熱電能はわずかしか変化しないため、大幅な向
上が見込めない。この様に、材料の性能指数を最適化す
るためにはキャリア濃度と材料組織によるが、通常の焼
結法などによりもたらされる、結晶組織制御では大幅な
性能向上を見込むことはできない。
【0007】
【発明が解決しようとする課題】本発明は上述した従来
の熱電材料の設計では検討対象としていなかった、電子
とフォノンの平均自由行程と同程度、あるいはそれ以下
の間隔で分散した微細な空孔を多数導入し、密度を低減
し熱伝導率を低減せしめ、また空孔導入に伴う抵抗率の
増加と熱電能の増加によって、そして、半導体材料内部
の前記空孔の中に該半導体材料とは異種の半導体または
金属を充填し、量子効果により熱電性能指数を大幅に増
加させることを目的としている。
【0008】
【課題を解決するための手段】本発明の熱電変換材料及
びその製造方法は、半導体基板内部にフォノンや電子と
の相互作用が顕著になる程度の大きさ及び間隔の多数の
空孔を基板表面から柱状又は樹形状に形成して多孔質化
し、密度の低下に伴う熱伝導率の減少や熱電能の増加に
よって熱電変換性能指数を増加させ、また、半導体材料
内部の前記空孔の中に該半導体材料とは異種の半導体ま
たは金属を充填し、量子効果により熱電性能指数を増加
させたことを特徴としている。
【0009】このように、本発明の熱電変換材料は、内
部に、直径の小さい孔、又は小さい孤立した孔を高密度
に有し、それぞれの孔の平均的な間隔が電子やフォノン
の平均自由行程よりも短いか、もしくは同程度であり、
高い性能指数を有し、本発明を従来の熱電変換モジュー
ルに使用されている熱電材料と置換することで、高い変
換効率を実現することができる。
【0010】
【実施の形態】以下、本発明の前提とする空孔を備える
熱電変換材料を例示により説明する。図1は、半導体材
料としてシリコンを用いた場合の熱電変換材料を示して
いる。
【0011】図1は高濃度(1019cm−3)にボロン
ドーピングされたp型シリコン単結晶基板1を50%フ
ッ酸溶液中で陽極反応により100分間エッチングし、
表面から基板内に向けて多数の空孔2を形成し、密度を
低下せしめた試料の断面模式図である。陽極反応の電極
材料には白金を利用したが、金のようにフッ酸に侵され
ない金属ならば何でも良い。試料中に存在する孔2は均
一な密度で形成され、それらの配列する間隔は、20〜
500Aの範囲に入っている。この試料の基板面に平行
な方向の抵抗率と熱電能を測定した結果、孔の空いてい
ない元の基板と比較して、以下の表1に示す結果を得
た。
【表1】
【0012】すなわち、結果の示すところは、ナノメー
トルサイズの孔を試料中に導入する事により、抵抗率は
12倍になり、熱電能は4.5倍になり熱伝導率も大幅
に減少すると言うことである。式2による熱電性能指数
を計算すると、表1に示したように100%以上の増加
となり、この熱電材料の多孔質化が極めて熱電性能指数
の向上に有効であることが分かる。
【0013】この実施例は、孔の間隔が非常に狭い間隔
で自己形成される陽極反応法を効果的に利用して、性能
向上を果たしている例である。すなわち、以下の通りで
ある。電子、フォノンは常に不純物や格子からの散乱を
受けながら、シリコン結晶中を移動している。電子、フ
ォノンそれぞれの散乱から散乱までの平均距離、つまり
平均自由行程は、電子の有効質量をm、移動度をμ、電
荷素量をe、格子熱伝導率をκph、比熱をC、結晶中の
フォノンの伝播速度をvph、電子の速度をvとする
と、 電子 ι=(μ・m/e)・v (3) フォノン ιph=3κph/(C・vph) (4) により与えられる。常温における通常のシリコンについ
て計算を行うと、キャリア濃度によっても若干異なる
が、 電子 ι=10〜400A (5) フォノン ιph=40μm (6) という値を得る。
【0014】これらの値の意味するところは、もし散乱
要因が新たに加わった場合、電子、フォノンそれぞれに
対する散乱要因が、これらの値よりも十分に広い間隔で
分布していれば、その影響は無視でき、同程度の距離で
分布しているときは、その影響を受け、また、上記の値
よりも小さい間隔で散乱要因が分布しているときは、輸
送現象がその散乱機構に支配されると言うことである。
陽極反応法により作製した試料の孔の間隔は20〜500A
であるため、フォノンは非常に大きな散乱を受け、また
電子も平均自由行程と同程度の散乱中心の存在のため、
孔による散乱の効果を大きく受ける。すなわち、電子、
フォノンの輸送現象はともに孔による散乱により支配さ
れる。孔による散乱機構は次のように考えられる。材料
中に導入された微小孔はその内側に表面を有しているた
め、通常の固体結晶中の結合状態と異なるエネルギー準
位を形成する。すなわち、孔の内表面は高密度の未結合
手が存在し、図5に示すようなエネルギーバンドの変形
が生じる。このため図中キャリア1のような高エネルギ
ーを持つキャリアは通過可能だが、キャリア2のような
低エネルギーキャリアはポテンシャルの谷間にトラップ
され、輸送に寄与できない。すなわち、図6に示したよ
うに、低エネルギーのキャリアがカットされる。
【0015】半導体の熱電能αは、キャリアのエネルギ
ーεとケミカルポテンシャルε、状態密度D(ε)、フ
ェルミ分布関数f(ε)、キャリアの緩和時間τ(ε)とす
れば、以下の式で与えられる。
【数2】 式中にε-εという因子があることから分かるよう
に、エネルギーの高いキャリアは高い熱電能を発生させ
るため、上記のようなバンド構造を変化させ、エネルギ
ーの低いキャリアをトラップして輸送不能にし、エネル
ギーの高いキャリアのみを電気・熱輸送に用いること
で、熱電能が増加する。
【0016】表1に見るように多孔質化する事により、
熱電能は400μV/Kから1800μV/Kに増加しており、上記
の原理に基づく熱電能の増加が実験的にも実施できるこ
とが明らかである。この様に散乱中心を電子やフォノン
の平均自由行程と同程度あるいはそれ以下の間隔で分布
させることで、性能向上を図ることができる。上記の例
ではシリコンを陽極反応法で多孔質化し、孔を散乱中心
として利用する例であるが、材料系は他の物でもよく、
例えば、Bi、Sb,Te、Seから構成される合金系
結晶や、Zn,Sbの化合物、Pb,Teの化合物、S
i、Geの混晶などでも、エッチングによりこの様な微
細孔を作製する事により、同様の原理により、同様の性
能向上を確認することができる。
【0017】また、多数の空孔は密度を低下させ、材料
の機械的強度を低下させるが、電気絶縁物を孔の中に充
填しても性能向上の効果は同様であるため、電気絶縁物
を孔の中に充填することで機械的にも丈夫な材料として
利用することができる。
【0018】図7は、本発明を適用する熱電変換材料の
例を示している。図1に例示したような多孔質の構造が
ある場合、その空孔2内に別の物質を注入することによ
り性能向上を実現できる。例えば、多孔質化したシリコ
ン基板1を溶融ビスマステルル合金の融液に浸し、2時
間〜10時間放置することにより、ビスマステルル半導
体は拡散により多孔質組織内に入り込み、図7にしめす
ような柱状又は樹形状のビスマステルル組織ができる。
元々空いている孔の径は数〜数十ナノメートルであるた
め、柱状又は樹形状のビスマステルル組織のサイズも数
〜数十ナノメートルの幅を持つことになり、量子細線を
作製することができる。この場合、電子は量子細線の長
手方向には自由に動けるが、量子細線の幅方向には束縛
されているため、量子サイズ効果が発現し、ビスマステ
ルル半導体の状態密度が通常のバルク材料における、3
次元状態密度から、1次元状態密度に変化する。
【0019】図8に示すように、1次元状態密度は3次
元状態密度にくらべて大きく、熱電材料としてはより好
ましい特性をもつ。すなわち、式(7)における状態密
度D(ε)の増加により熱電能が増加する。この場合、輸
送は量子細線の方向に行われることを考えているので、
図7のように基板の厚み方向に電界をかけて物性を測定
した場合、バルクに比べて高い熱電能αとバルクと同程
度の抵抗率ρ、が観測される。また、フォノンも平均自
由行程が量子細線により制限されるため、熱伝導率κが
低下する。総合すると熱電性能指数Zは大きくなる。
【0020】図9は、シリコン材料内に異物質の微細組
織を作製する別の例を示している。MBE法(分子線エ
ピタキシー法)などによりシリコン材料内に異物質の微
細組織を作製することも、図4に示した例と同様の原理
で、同様の効果を発現する。図9はMBE法による成膜
装置の模式図を示す。MBE法は10−9Torr程度の超高
真空中で原料(蒸発源)を蒸発させ、基板ホルダーに保
持されている基板に目的の原料を堆積させる試料作製法
である。真空度が良く、清浄な基板表面を長時間保持す
ることができるため、エピタキシャルに原子層単位の成
膜を行えるという特徴を持つ。
【0021】以下、MBE法を用いた熱電変換材料の製
造を説明する。 1.MBE法でシリコン単結晶の基板1に数Aのシリコ
ンを蒸着し、一度1000℃まで基板加熱をおこなう
と、表面を覆っていたSiO層が取り除かれ、清浄シリ
コンの表面が出る。 2.この状態で基板温度を700℃に保持し、この表面
に0.25A/sの速度でゲルマニウムを堆積させると、格子
定数の違いから歪みが生じ、表面エネルギーを最小にす
るように自己組織化により凝集し、表面にナノメートル
サイズのゲルマニウムのドットが生成する。 3.この状態で、次に基板温度を400℃に落とし、シ
リコンを1A/sで蒸着すると次第に表面は平坦化し、
再び平坦な面が得られ、ゲルマニウムドットが中に内在
するシリコン薄膜が形成される。
【0022】2.3.のプロセスを繰り返すことで、内
部にゲルマニウムのドットが分布するシリコン薄膜を作
製することができる。この場合、ゲルマニウムのドット
は数〜数十ナノメートルの間隔で作製することができ、
図10のようなゲルマニウムを内在させたシリコン薄膜
を得る。電子とフォノンの平均自由行程よりも狭い間隔
でこの様なゲルマニウムのドットを分布させることによ
り、図4で示した熱電変換材料と同様に熱電性能指数が
増加する。
【0023】図11は、部分的に材料改質を行う本発明
の熱電変換材料の別の例を示している。前述の例ではシ
リコン基板や、その他の熱電材料全体を多孔質化、その
他の方法で材料改質を行っているが、部分的に材料改質
を行うことも可能である。図11はマスクを利用して部
分的に多孔質化を行い、デバイスを作製するときのイメ
ージである。
【0024】図11(A)に見るように基板1上にマス
ク3を施して、特定の場所だけを陽極反応法により多孔
質化し、(B)の組織を得る。この孔2は貫通させて
も、そうでなくても良いが、デバイスの特性を考えると
貫通させた方が望ましい。またエッチングは電界方向に
そろって進行するため、基板1の厚み方向にそろった多
孔質部分が得られる。
【0025】図11(C)では同じようにマスクを用い
て多孔質部分に不純物添加を行い、p型とn型に仕分け
る。p型としてはボロン、アルミニウム、n型用ドーパ
ントとしてはヒ素、アンチモン、リン等を用いる。不純
物は孔に沿って急速に拡散するため、多孔質部分だけに
選択的にドーピングが施される。この場合、先にドーピ
ングを施して後から多孔質化を行うことも可能である。
【0026】図11(D)では基板の表面と裏面に金属
電極を蒸着し、各々のp型多孔質部分、n型多孔質部分
を電気的に接続する。表面と裏面の間に温度差を与えた
ときに、p型部分とn型部分の1対で発生する電圧はa
[V](a=数mV〜数十mVのオーダー)であるが、n個のp
n対を金属電極で接続することによって、n×a[V]の電
圧が発生する。高い電圧が利用できるため、より応用範
囲の拡大につながる。
【0027】
【発明の効果】本発明の熱電変換材料は、内部に、直径
の小さい孔、又は小さい孤立した孔を高密度に有し、そ
れぞれの孔の平均的な間隔が電子やフォノンの平均自由
行程よりも短い、もしくは同程度にしたことにより、そ
して、半導体材料内部の空孔の中に該半導体材料とは異
種の半導体または金属を充填し、密度の低下に伴う熱伝
導率の減少や熱電能の増加により、かつ量子効果により
熱電性能指数を高いものにすることができ、従来の熱電
変換モジュールに使用されている熱電材料と置換するこ
とで、高い変換効率を実現することができる。
【図面の簡単な説明】
【図1】本発明の前提とする空孔を備える熱電変換材料
の構成を示す図である。
【図2】一般的熱電変換材料の利用例を説明するための
図である。
【図3】一般的熱電変換材料の別の利用例を説明するた
めの図である。
【図4】一般的熱電変換材料のさらに別の利用例を説明
するための図である。
【図5】本発明の熱電変換材料の孔の作用を説明するた
めの図である。
【図6】本発明の熱電変換材料の孔の作用を説明するた
めの別の図である。
【図7】本発明を適用する熱電変換材料の例を示してい
る。
【図8】図7に示した熱電変換材料の作用を説明するた
めの図である。
【図9】シリコン材料内に異物質の微細組織を作製する
ための装置を示している。
【図10】図9に示された装置により製造される熱電変
換材料の例を示す図である。
【図11】部分的に材料改質を行う本発明の熱電変換材
料の別の例を示している。
【符号の説明】
1 基板 2 孔(空孔) 3 マスク

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 半導体基板内部に電子とフォノンの平均
    自由行程と同程度、あるいはそれ以下の間隔で分散した
    多数の微細な空孔を基板表面からエッチングにより柱状
    又は樹形状に形成して多孔質化し、前記半導体基板内部
    の前記空孔の中にその半導体材料とは異種の半導体また
    は金属を充填し、密度の低下に伴う熱伝導率の減少や熱
    電能の増加により、かつ量子効果により熱電性能指数を
    増加させて、エッチングにより形成された組織に沿う方
    向の性能を向上させたことを特徴とする熱電変換材料。
  2. 【請求項2】 半導体基板内部に電子とフォノンの平均
    自由行程と同程度、あるいはそれ以下の間隔で分散した
    多数の微細な空孔を基板表面からエッチングにより柱状
    又は樹形状に形成して多孔質化し、前記半導体基板内部
    の前記空孔の中にその半導体材料とは異種の半導体また
    は金属を充填し、密度の低下に伴う熱伝導率の減少や熱
    電能の増加により、かつ量子効果により熱電性能指数を
    増加させて、エッチングにより形成された組織に沿う方
    向の性能を向上させたことを特徴とする熱電変換材料の
    製造方法。
  3. 【請求項3】 前記異種の半導体または金属の充填は、
    溶融した前記異種の半導体または金属の融液に、多孔質
    化した半導体材料を浸すことにより行うものである請求
    項2に記載の熱電変換材料の製造方法。
  4. 【請求項4】 前記多孔質化は、マスクを利用して部分
    的に行うものである請求項2〜3のいずれかに記載の熱
    電変換材料の製造方法。
  5. 【請求項5】 半導体基板表面に、該半導体基板材料と
    は異種の半導体または金属の多数のドットを分子線エピ
    タキシー法により、電子とフォノンの平均自由行程と同
    程度、あるいはそれ以下の間隔で分散して生成した後、
    この半導体基板上に、前記半導体基板材料と同一材料で
    蒸着して、該半導体基板表面を平坦化することにより、
    半導体基板材料内部に異種の半導体または金属の多数の
    ドットを内在させて、密度の低下に伴う熱伝導率の減少
    や熱電能の増加により、かつ量子効果により熱電性能指
    数を増加させたことを特徴とする熱電変換材料の製造方
    法。
JP11041133A 1998-03-05 1999-02-19 熱電変換材料及びその製造方法 Expired - Lifetime JP3032826B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041133A JP3032826B2 (ja) 1998-03-05 1999-02-19 熱電変換材料及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5319198 1998-03-05
JP10-53191 1998-03-05
JP11041133A JP3032826B2 (ja) 1998-03-05 1999-02-19 熱電変換材料及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10061500A Division JP2958451B1 (ja) 1998-03-05 1998-03-12 熱電変換材料及びその製造方法

Publications (2)

Publication Number Publication Date
JPH11317547A true JPH11317547A (ja) 1999-11-16
JP3032826B2 JP3032826B2 (ja) 2000-04-17

Family

ID=26380694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041133A Expired - Lifetime JP3032826B2 (ja) 1998-03-05 1999-02-19 熱電変換材料及びその製造方法

Country Status (1)

Country Link
JP (1) JP3032826B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013918A1 (ja) * 2007-07-25 2009-01-29 Kyocera Corporation 熱電素子、熱電モジュール及び熱電素子の製造方法
JP2009518866A (ja) * 2005-12-09 2009-05-07 ゼットティースリー テクノロジーズ,インク. ガラス状マトリックス中の高密度ナノワイヤーアレイ
JP2009520361A (ja) * 2005-12-15 2009-05-21 ザ・ボーイング・カンパニー 熱電トンネル装置
JP2010510682A (ja) * 2006-11-21 2010-04-02 エボニック デグサ ゲーエムベーハー 熱電素子、前記素子の作製方法、および前記素子の使用
JP2011521459A (ja) * 2008-05-21 2011-07-21 ナノ−ヌーベル ピーティーワイ リミテッド 熱電素子
WO2012056806A1 (ja) 2010-10-29 2012-05-03 スタンレー電気株式会社 発電装置、熱発電方法および太陽光発電方法
JP2012174813A (ja) * 2011-02-18 2012-09-10 Kyushu Univ 熱電変換材料及びその製造方法
WO2014007225A1 (ja) * 2012-07-06 2014-01-09 国立大学法人九州工業大学 熱電変換材料の製造方法
JP2014501031A (ja) * 2010-10-22 2014-01-16 カリフォルニア インスティチュート オブ テクノロジー 低熱伝導率および熱電性エネルギー転換材料のためのナノメッシュのフォノン性構造
CN106537621A (zh) * 2014-03-25 2017-03-22 西里兹姆能源公司 热电设备和系统
JP2018056161A (ja) * 2016-09-26 2018-04-05 株式会社東芝 熱電変換装置
JPWO2017002514A1 (ja) * 2015-06-30 2018-04-19 住友電気工業株式会社 熱電材料、熱電素子、光センサおよび熱電材料の製造方法
USD819627S1 (en) 2016-11-11 2018-06-05 Matrix Industries, Inc. Thermoelectric smartwatch
EP3407399A1 (en) * 2012-02-16 2018-11-28 Nanohmics, Inc. Membrane-supported, thermoelectric compositions
US10290796B2 (en) 2016-05-03 2019-05-14 Matrix Industries, Inc. Thermoelectric devices and systems
US10749094B2 (en) 2011-07-18 2020-08-18 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
IT201900009627A1 (it) * 2019-06-20 2020-12-20 Fondazione St Italiano Tecnologia Microgeneratore termoelettrico flessibile e relativo metodo di produzione
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components
US11152556B2 (en) 2017-07-29 2021-10-19 Nanohmics, Inc. Flexible and conformable thermoelectric compositions

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518866A (ja) * 2005-12-09 2009-05-07 ゼットティースリー テクノロジーズ,インク. ガラス状マトリックス中の高密度ナノワイヤーアレイ
JP2009520361A (ja) * 2005-12-15 2009-05-21 ザ・ボーイング・カンパニー 熱電トンネル装置
JP2010510682A (ja) * 2006-11-21 2010-04-02 エボニック デグサ ゲーエムベーハー 熱電素子、前記素子の作製方法、および前記素子の使用
JP4828635B2 (ja) * 2007-07-25 2011-11-30 京セラ株式会社 熱電素子、熱電モジュール及び熱電素子の製造方法
JPWO2009013918A1 (ja) * 2007-07-25 2010-09-30 京セラ株式会社 熱電素子、熱電モジュール及び熱電素子の製造方法
WO2009013918A1 (ja) * 2007-07-25 2009-01-29 Kyocera Corporation 熱電素子、熱電モジュール及び熱電素子の製造方法
JP2011521459A (ja) * 2008-05-21 2011-07-21 ナノ−ヌーベル ピーティーワイ リミテッド 熱電素子
JP2014501031A (ja) * 2010-10-22 2014-01-16 カリフォルニア インスティチュート オブ テクノロジー 低熱伝導率および熱電性エネルギー転換材料のためのナノメッシュのフォノン性構造
WO2012056806A1 (ja) 2010-10-29 2012-05-03 スタンレー電気株式会社 発電装置、熱発電方法および太陽光発電方法
US9467088B2 (en) 2010-10-29 2016-10-11 Stanley Electric Co., Ltd. Power generation device, thermal power generation method and solar power generation method
JP2012174813A (ja) * 2011-02-18 2012-09-10 Kyushu Univ 熱電変換材料及びその製造方法
US10749094B2 (en) 2011-07-18 2020-08-18 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
EP3407399A1 (en) * 2012-02-16 2018-11-28 Nanohmics, Inc. Membrane-supported, thermoelectric compositions
WO2014007225A1 (ja) * 2012-07-06 2014-01-09 国立大学法人九州工業大学 熱電変換材料の製造方法
JPWO2014007225A1 (ja) * 2012-07-06 2016-06-02 国立大学法人九州工業大学 熱電変換材料の製造方法
EP3123532A4 (en) * 2014-03-25 2017-11-08 Matrix Industries, Inc. Thermoelectric devices and systems
CN106537621B (zh) * 2014-03-25 2018-12-07 美特瑞克斯实业公司 热电设备和系统
US10644216B2 (en) 2014-03-25 2020-05-05 Matrix Industries, Inc. Methods and devices for forming thermoelectric elements
CN106537621A (zh) * 2014-03-25 2017-03-22 西里兹姆能源公司 热电设备和系统
JPWO2017002514A1 (ja) * 2015-06-30 2018-04-19 住友電気工業株式会社 熱電材料、熱電素子、光センサおよび熱電材料の製造方法
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components
US10290796B2 (en) 2016-05-03 2019-05-14 Matrix Industries, Inc. Thermoelectric devices and systems
US10580955B2 (en) 2016-05-03 2020-03-03 Matrix Industries, Inc. Thermoelectric devices and systems
JP2018056161A (ja) * 2016-09-26 2018-04-05 株式会社東芝 熱電変換装置
USD819627S1 (en) 2016-11-11 2018-06-05 Matrix Industries, Inc. Thermoelectric smartwatch
US11152556B2 (en) 2017-07-29 2021-10-19 Nanohmics, Inc. Flexible and conformable thermoelectric compositions
IT201900009627A1 (it) * 2019-06-20 2020-12-20 Fondazione St Italiano Tecnologia Microgeneratore termoelettrico flessibile e relativo metodo di produzione
WO2020254956A1 (en) * 2019-06-20 2020-12-24 Fondazione Istituto Italiano Di Tecnologia Flexible thermoelectric microgenerator and production method thereof

Also Published As

Publication number Publication date
JP3032826B2 (ja) 2000-04-17

Similar Documents

Publication Publication Date Title
JP3032826B2 (ja) 熱電変換材料及びその製造方法
JPH11317548A (ja) 熱電変換材料及びその製造方法
US9219215B1 (en) Nanostructures having high performance thermoelectric properties
Snyder et al. Complex thermoelectric materials
US10305014B2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
US5550387A (en) Superlattice quantum well material
Dresselhaus et al. The promise of low-dimensional thermoelectric materials
US7309830B2 (en) Nanostructured bulk thermoelectric material
US5436467A (en) Superlattice quantum well thermoelectric material
US6605772B2 (en) Nanostructured thermoelectric materials and devices
KR101482598B1 (ko) 열전재료, 그 제조방법, 및 그것을 사용한 열전 변환 모듈
JP5282598B2 (ja) 熱電変換素子の製造方法
KR20100063707A (ko) 나노와이어 전자 장치 및 그 제조 방법
WO2001093343A2 (en) Nanostructured thermoelectric materials and devices
US20040107988A1 (en) Self-assembled quantum dot superlattice thermoelectric materials and devices
US20100175734A1 (en) Thermoelectric nanowire and method of manufacturing the same
JP2013016685A (ja) 熱電変換材料、熱電変換素子およびその作製方法
KR20200095861A (ko) 열전 복합체, 및 이를 포함하는 열전소자 및 열전장치
Song et al. Review of research on the thermoelectric material ZnSb
Tervo et al. State-of-the-art of thermoelectric materials processing
WO2018131532A1 (ja) 熱電変換素子およびその製造方法
US20070084495A1 (en) Method for producing practical thermoelectric devices using quantum confinement in nanostructures
US20070084499A1 (en) Thermoelectric device produced by quantum confinement in nanostructures
JP2004296629A (ja) 熱電変換材料およびその製造方法
CN212542474U (zh) 一种平面碲化铋基薄膜热电模块及热电发电机

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term