JPH1131505A - アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池 - Google Patents

アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池

Info

Publication number
JPH1131505A
JPH1131505A JP10125591A JP12559198A JPH1131505A JP H1131505 A JPH1131505 A JP H1131505A JP 10125591 A JP10125591 A JP 10125591A JP 12559198 A JP12559198 A JP 12559198A JP H1131505 A JPH1131505 A JP H1131505A
Authority
JP
Japan
Prior art keywords
nickel
storage battery
coating layer
alkaline storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10125591A
Other languages
English (en)
Other versions
JP2951940B2 (ja
Inventor
Tamao Kojima
環生 小島
Munehiro Tabata
宗弘 田端
Tomoyuki Washisaki
智幸 鷲▲崎▼
Masakazu Tanahashi
正和 棚橋
Yoshiki Murakami
義樹 村上
Osamu Kaita
理 貝田
Masayoshi Maruta
雅義 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10125591A priority Critical patent/JP2951940B2/ja
Publication of JPH1131505A publication Critical patent/JPH1131505A/ja
Application granted granted Critical
Publication of JP2951940B2 publication Critical patent/JP2951940B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】 【課題】 アルカリ蓄電池用電極およびアルカリ蓄電池
において、活物質の利用率を良好に確保しつつ、かつサ
イクル特性を向上させる。 【解決手段】 活物質と多孔質焼結基板の界面にコバル
トとニッケルとを含む酸化物、およびコバルトとニッケ
ルとを含みかつ水酸化物中の金属元素の酸化数の平均値
が+IIよりも大きい水酸化物の少なくとも一方を含む被
膜層を形成することとした。この被膜層は、多孔質基板
をコバルトとニッケルとを含む硝酸塩溶液に浸漬し、そ
の後に加熱することにより形成することができる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、アルカリ蓄電池用
電極およびその製造方法に関し、さらにこの電極を正極
として用いるアルカリ蓄電池に関するものである。
【0002】
【従来の技術】アルカリ蓄電池用電極を構成する多孔質
焼結基板は、通常、ニッケルなどの金属粉末を増粘剤と
なる樹脂成分と共にスラリーにして、芯材となる鉄など
の金属板上に塗布・乾燥した後、水素を含む還元雰囲気
中で熱処理して焼結することによって製造される。アル
カリ蓄電池用電極は、このようにして得られた多孔質焼
結基板を硝酸ニッケル溶液に浸漬し、化学的あるいは電
気化学的な手法により基板の空孔内に活物質となる水酸
化ニッケルを充填して製造される。
【0003】化学的な活物質の充填方法は化学含浸法と
呼ばれ、多孔質焼結基板を高濃度の硝酸ニッケル溶液に
浸漬し、乾燥した後、アルカリ溶液に浸漬することで空
孔内の硝酸塩を水酸化ニッケルに変化させることにより
行われる。この場合、1回の操作では充分な水酸化ニッ
ケル量が得られないため、通常は数回の繰り返し操作が
行われる。
【0004】一方、電気化学的な活物質の充填方法は電
析含浸法と呼ばれ、高濃度の硝酸ニッケル溶液中で多孔
質焼結基板をカソード電解することにより行われる。電
解により、多孔質焼結基板の空孔内に存在する硝酸ニッ
ケルの硝酸根が下記反応式(1)に示すように還元され
てアンモニウムイオンが生成し、pHが高くなって下記
反応式(2)に示すように水酸化ニッケルが空孔内に沈
殿する。 NO3 -+9H++8e-→NH4OH+2H2O (1) Ni2++2OH-→Ni(OH)2 (2)
【0005】しかしながら硝酸ニッケル溶液は腐食性が
高いため、化学含浸および電析含浸工程において多孔質
焼結基板中のニッケル焼結体部分が腐食し、極板が脆弱
化してサイクル特性が低下するという課題がある。そこ
で、ニッケル焼結体の腐食を防ぐために以下の技術が開
示されている。
【0006】例えば、特開昭48−100627号公報
には、ニッケル焼結体の表面に保護被膜を形成する技術
が記載されている。同公報には、保護被膜を構成する物
質として、珪酸ニッケル、燐酸ニッケル、炭酸ニッケル
が示されている。また、特開昭59−48157号公報
には、酸素を含むガス中を通過させることにより、ニッ
ケル焼結体の表面に酸化ニッケル膜を形成する技術が記
載されている。また、特開昭62−61271号公報、
特開昭63−128555号公報および特開平4−75
255号公報には、酸化コバルト膜をニッケル焼結体の
保護被膜として形成する技術が記載されている。この酸
化コバルト膜は、コバルト塩の熱分解により形成され
る。
【0007】
【発明が解決しようとする課題】上記従来技術によるニ
ッケル焼結体表面の保護被膜は、耐食性が高く、腐食防
止に効果的である。しかしながら、保護被膜そのものの
導電性が低いために、活物質の利用率が低下するという
課題があった。特に電析含浸法の場合には、導電性の低
い保護被膜上には水酸化ニッケルが析出せず、保護被膜
の破れたニッケルの露出部に偏って水酸化ニッケルが析
出することになる。多孔質焼結基板の搬送や集電時に保
護被膜には破損が発生するからである。また、電解効率
(投入電荷量に対する水酸化ニッケルの析出する効率)
が低下するという課題もあった。
【0008】本発明は、上記従来の課題を解決するため
に、活物質の利用率が高く、耐食性にも優れたアルカリ
蓄電池用電極、およびこの電極を利用したサイクル特性
が良好なアルカリ蓄電池を提供することを目的とする。
また活物質充填工程における多孔質焼結基板の腐食量が
少なく、電析含浸法を適用した場合の電界効率が良好で
ありかつ活物質を基板空孔内に偏りなく充填することが
できるアルカリ蓄電池用電極の製造方法を提供すること
を目的とする。
【0009】
【課題を解決するための手段】前記目的を達成するた
め、上記保護被膜として、コバルトとニッケルとを含む
化合物を含む被膜を形成することとした。この化合物
は、コバルトとニッケルとを含む酸化物およびコバルト
とニッケルとを含む水酸化物から選ばれる少なくとも一
方から構成される。ただし、上記水酸化物は、水酸化物
中の金属元素の酸化数の平均値(以下「平均酸化数」と
いう)は+IIよりも大きいという特徴を有する。
【0010】すなわち、本発明のアルカリ蓄電池用電極
は、多孔質基板に水酸化ニッケルを含む活物質を充填し
たアルカリ蓄電池用電極であって、前記活物質と前記多
孔質基板との界面に、コバルトとニッケルとを含む酸化
物およびコバルトとニッケルとを含む水酸化物(ただ
し、平均酸化数は+IIよりも大きい)から選ばれる少な
くとも一方を含む被膜層が形成されていることを特徴と
する。
【0011】このような構成とすることにより、活物質
の利用率が高く、耐食性にも優れたアルカリ蓄電池用電
極を実現することができる。また、この電極を正極とし
て用いることにより、サイクル特性が良好なアルカリ蓄
電池を提供することができる。
【0012】また、本発明のアルカリ蓄電池用電極の製
造方法は、多孔質基板に水酸化ニッケルを含む活物質を
充填したアルカリ蓄電池用電極の製造方法であって、前
記多孔質基板に前記活物質を充填する前に、前記多孔質
基板の表面に、コバルトとニッケルとを含む酸化物およ
びコバルトとニッケルとを含む水酸化物(ただし、平均
酸化数は+IIよりも大きい)から選ばれる少なくとも一
方を含む被膜層を形成する工程を含むことを特徴とす
る。
【0013】このような構成とすることにより、活物質
充填工程における多孔質焼結基板の腐食量を少なくする
ことができる。また、電析含浸法における電解効率が良
好で、しかも活物質を多孔質焼結基板の空孔内に偏りな
く充填することが可能となる。
【0014】
【発明の実施の形態】以下、本発明の好適な実施の形態
について説明する。本発明のアルカリ蓄電池用電極は、
活物質である水酸化ニッケルと多孔質焼結基板との界面
に、導電性および耐腐食性に優れた被膜層を備えてい
る。本発明の一形態によれば、上記被膜層はコバルトと
ニッケルとを含む酸化物を含む。また本発明の別の形態
によれば、上記被膜層は、コバルトとニッケルとを含
み、平均酸化数が2価よりも大きい水酸化物を含む。こ
の被膜層は、1S/cm以上、好ましくは10S/cm
以上という高い導電率を有する。このような高い導電率
により、活物質の利用度が改善される。
【0015】上記被膜層は、コバルトとニッケルとを含
む酸化物を含むことが好ましい。コバルトとニッケルと
を含む酸化物は、コバルトとニッケルとを含む水酸化物
と比較して、導電性および耐腐食性が高い。従って、活
物質の利用率とサイクル特性をさらに良好にすることが
できる。
【0016】一方、コバルトとニッケルとを含み、かつ
平均酸化数が2価よりも大きい水酸化物は、コバルトと
ニッケルとを含む酸化物と比較して、耐腐食性が若干劣
るものの、活物質充填工程における多孔質焼結基板の腐
食防止に対しては効果がある。また、この水酸化物に
は、比較的低温で生成することができるという製法上の
利点がある。
【0017】また、上記被膜層は、コバルトとニッケル
とをモル比が6:4〜8:2となる範囲で含むことが好
ましい。このようなモル比とすれば、特に導電性が高く
活物質の利用率が高い電極とすることができる。
【0018】本発明のアルカリ蓄電池用電極の製造方法
では、多孔質基板に活物質として水酸化ニッケルを充填
する前に、上記被覆層が形成される。この被覆層は、多
孔質基板をコバルトとニッケルとを含む溶液に接触させ
た後に加熱することにより形成することができる。
【0019】多孔質基板を浸漬するための溶液として
は、被膜層中のコバルトとニッケルとのモル比を調整す
るために、コバルトとニッケルとをモル比が6:4〜
8:2となる範囲で含む溶液が好ましい。溶液に含まれ
るコバルト塩またはニッケル塩としては、硝酸塩、塩化
物塩、硫酸塩等の無機酸塩、または酢酸塩、ギ酸塩、シ
ュウ酸塩、クエン酸塩、2−エチルヘキサン塩などの有
機酸塩を使用することができるが、熱分解温度が低く、
安価である硝酸塩が好ましい。また、溶媒は、水に限ら
れることなく、用いる溶質の種類に応じてアルコール等
の有機溶媒を用いても構わない。
【0020】また、コバルトとニッケルとの合計量の濃
度が0.01M(mol/L)以上であることが好まし
い。
【0021】また、被膜層を形成するために、多孔質基
板を、コバルトとニッケルとを含む溶液に接触させた後
にアルカリ溶液に接触させることが好ましい。アルカリ
溶液に接触させてから加熱すれば、アルカリ溶液に含ま
れている溶存酸素により、コバルト、ニッケルなどの金
属元素を酸化することができるからである。アルカリ溶
液としては、水酸化ナトリウム、水酸化カリウム、水酸
化リチウム等を用いることができる。この場合、多孔質
基板を120℃以上の温度で加熱することが好ましい。
【0022】アルカリ溶液に接触すると、コバルトおよ
びニッケルを含む塩は、水酸化物に化学的に置換され
る。このように水酸化物に置換することにより、これら
の塩を熱分解する際の腐食性の高い無機酸または有機酸
の分解生成物の発生を抑制することができる。このた
め、加熱処理設備を容易に設計できる。
【0023】また、被膜層を形成するために、多孔質基
板を、コバルトとニッケルとを含む溶液に接触させた後
に、アルカリ溶液に接触させ、さらに水洗することとし
てもよい。アルカリ溶液に接触させることにより、コバ
ルトおよびニッケルを含む塩は、水酸化物に化学的に置
換される。このとき、無機酸塩または有機酸塩が副生す
るが、このような副生成物は、水洗工程で余剰のアルカ
リ成分とともに除去される。従って、上記のように多孔
質基板をアルカリ溶液に接触させ、さらに水洗すること
により、加熱時の腐食性の高い無機酸または有機酸の分
解生成物およびアルカリミストの発生を抑制することが
できる。このため、加熱処理設備を容易に設計できる。
【0024】また、上記酸化物からなる被膜層を形成す
るためには、多孔質基板を250℃以上の温度で加熱す
ることが好ましい。
【0025】本発明で用いられる多孔質焼結基板として
は、従来から一般に用いられてきた多孔質焼結基板を特
に限定されることなく使用することができる。また、本
発明における活物質の充填方法は、化学含浸法、電析含
浸法または電析含浸法と化学含浸法の複合含浸法である
ことが好ましい。
【0026】
【実施例】以下、さらに本発明の好ましい実施の形態を
実施例に基づいて説明する。まず、カーボニルニッケル
粉末を、メチルセルローズと水とからなる増粘剤により
スラリーにして、厚さ60μmのニッケルメッキ多孔鋼
板に塗布した。このニッケルメッキ多孔鋼板を100℃
で乾燥した後、水素を含む還元雰囲気中で約1000℃
で熱処理し、多孔質焼結基板を作製した。この多孔質焼
結基板のニッケル焼結体層の厚さは、片面につき約30
0μmであり、約80%の多孔度を有していた。
【0027】次に、この多孔質焼結基板に、コバルトと
ニッケルとを含む酸化物または水酸化物からなる被膜層
を以下の3つの方法により形成した。
【0028】(第1の被膜層形成方法)上記基板を、硝
酸コバルトと硝酸ニッケルとを溶解した水溶液に3分間
浸漬した後、空気中で10分間所定の温度で熱処理し、
被膜層群(1)を形成した。
【0029】(第2の被膜層形成方法)上記基板を、硝
酸コバルトと硝酸ニッケルとを溶解した水溶液に3分間
浸漬した後、80℃で60分間真空乾燥した。次に、
6.5Mの水酸化ナトリウム水溶液に30分間浸漬した
後、空気中で10分間所定の温度で熱処理し、被膜層群
(2)を形成した。
【0030】(第3の被膜層形成方法)上記基板を、硝
酸コバルトと硝酸ニッケルとを溶解した水溶液に3分間
浸漬した後、80℃で60分間真空乾燥した。次に、
6.5Mの水酸化ナトリウム水溶液に30分間浸漬した
後、流水洗浄を30分間行なった。さらに、空気中で1
0分間所定の温度で熱処理し、被膜層群(3)を形成し
た。なお、上記各方法においては、硝酸コバルトと硝酸
ニッケルとのモル比が異なる水溶液を適用した。
【0031】図1は、第1から第3の被膜層形成方法に
おいて、多孔質焼結基板上に形成された被膜層に含まれ
るコバルトとニッケルとのモル比と、用いた硝酸塩水溶
液中のコバルトとニッケルとのモル比との関係を示して
いる。図1から明らかなように、形成される被膜層中の
コバルトとニッケルとのモル比は、硝酸塩水溶液中のコ
バルトとニッケルとのモル比と、ほぼ同等の値となっ
た。
【0032】なお、被膜層中のコバルトとニッケルとの
モル比の測定は、以下の手順で行なった。被膜形成後の
多孔質焼結基板を、80℃で50重量%の酢酸水溶液に
5分間浸漬し、酢酸水溶液中に溶解したコバルト量およ
びニッケル量を、高周波プラズマ発光分光分析装置で測
定し、コバルトとニッケルとのモル比を算出した。
【0033】また、第1から第3の被膜層形成方法によ
り被膜層をセラミック基板上に形成し、各被膜層の組成
分析と導電率測定を行った、被膜層の組成分析はX線回
折装置により行い、導電率はシート抵抗測定器により測
定した。
【0034】X線による解析の結果から、上記各方法に
より、比較的低温で熱処理するとコバルトとニッケルと
を含む複合水酸化物が形成されることが確認できた。ま
た、この複合水酸化物は、熱処理温度が高くなるにつれ
て水酸化物に含まれている金属の酸化数が高くなる傾向
が認められた。熱処理温度がさらに高くなると、コバル
トとニッケルとを含む酸化物の生成が確認された。特に
250℃以上の熱処理で形成された被膜層からは、酸化
物に起因する回折ピークのみが観察された。
【0035】また、第2の被膜層形成方法によると、他
の被膜層形成方法と比較して、比較的低温の熱処理によ
り、酸化数の高い水酸化物および酸化物が生成されるこ
とが確認された。これは、アルカリ溶液中に存在する溶
存酸素の酸化効果によるものである。しかし、第1およ
び第3の被膜層形成方法でも、被膜形成の熱処理時の雰
囲気酸素濃度を高くすれば、第2の被膜層形成方法と同
様に、低温度での酸化が可能となる。
【0036】図2は、被膜層の導電率に対するコバルト
とニッケルとのモル比の影響を示している。被膜層形成
時の熱処理温度は、140℃または250℃とした。図
2に示したように、第1〜第3のいずれの被膜層形成方
法においても、コバルトとニッケルとのモル比が6:4
〜8:2の範囲で高い導電率を得ることができた。
【0037】また、熱処理温度140℃では、被膜層群
(2)の導電率が相対的に高くなっている。X線による
解析の結果では、熱処理温度140℃の被膜層群(2)に
は、酸化数の高い水酸化物が比較的多く存在していた。
また、熱処理温度250℃では、被膜層群(1)〜
(3)のX線回折パターンが類似していた。従って、被
膜層の導電性と結晶構造の間には強い相関があると考え
られる。
【0038】図3は、被膜層の導電率に及ぼす被膜層形
成時の熱処理温度の影響を示している。被膜層の形成に
用いた硝酸塩水溶液中のコバルトとニッケルとのモル比
は7:3とした。熱処理温度の上昇に伴い導電性が向上
する傾向が認められ、250℃以上の熱処理により、い
ずれの被膜層群についても導電率がほぼ一定の最高値を
示した。しかし、被膜層群(2)では比較的低温領域か
ら導電性が向上する傾向が認められ、120℃以上の熱
処理により導電率が10S/cm以上となった。
【0039】X線による解析の結果から、熱処理温度を
高くすることによって、酸化数の高いコバルトとニッケ
ルとの複合水酸化物層が形成されることが確認されてい
る。従って、酸化数の高いコバルトとニッケルとの複合
水酸化物層が、導電性の向上に寄与しているものと考え
られる。
【0040】また、250℃以上の熱処理により形成さ
れた被膜層からは、Co2NiO4に起因する回折ピーク
のみが得られた。従って、図2に示した結果も併せて考
慮すれば、10S/cmよりも高い導電性は、Co2
iO4の生成に起因しているものと考えられる。なお、
被膜層群(2)では、比較的低温領域の熱処理で、酸化
数の高いコバルトとニッケルとの複合水酸化物およびC
2NiO4の生成が確認できた。
【0041】図4および図5は、第1から第3の被膜層
形成方法により被膜層を形成した多孔質焼結基板の耐腐
食性試験の結果である。
【0042】耐腐食性試験は、多孔質焼結基板を、80
℃に保持したpH1.0、4.5Mの硝酸ニッケル水溶
液に60分間浸漬した後、水洗、乾燥を行ない、試験前
後での多孔質焼結基板の重量変化から腐食溶解率を算出
することにより実施した。
【0043】図4は、多孔質焼結基板の腐食溶解率に及
ぼすコバルトとニッケルとのモル比の影響を示してい
る。図4に示したように、被膜層形成時の熱処理温度は
140℃または250℃とした。コバルトとニッケルと
のモル比が10:0〜2:8の範囲では、耐腐食性に及
ぼす上記モル比の影響は認められなかった。
【0044】図5は、被膜層が形成された多孔質焼結基
板の腐食溶解率に及ぼす被膜層形成時の熱処理温度の影
響を示している。被膜層の形成に用いた硝酸塩水溶液中
のコバルトとニッケルとのモル比は7:3とした。図5
に示したように、熱処理温度の上昇に伴い耐腐食性が向
上する傾向が認められ、250℃以上の熱処理により、
腐食溶解率は1%以下になった。また、第2の被膜層形
成方法では比較的低温の領域から耐腐食性が改善され
た。
【0045】この場合も、熱処理温度の上昇に伴い形成
された平均酸化数の高い水酸化物層が、耐腐食性の向上
に寄与しているものと考えられる。また、この場合も、
250℃以上の熱処理により形成されたCo2NiO4
より、上記測定方法による腐食溶解率が1%以下という
高い耐腐食性が実現していると考えられる。なお、この
場合も、第2の被膜層形成方法によれば、120℃以上
の熱処理により腐食溶解率が2%以下となった。
【0046】図6は、多孔質焼結基板の腐食溶解率に及
ぼす被膜層形成時の硝酸塩水溶液中のコバルトとニッケ
ルとの合計濃度の影響を示している。多孔質焼結基板へ
の被膜形成条件は、硝酸水溶液中のコバルトとニッケル
とのモル比は7:3の一定とし、熱処理温度は250℃
とした。図6に示すように、硝酸塩水溶液中のコバルト
とニッケルとの合計濃度が0.01M以上で、良好な耐
腐食性が得られた。
【0047】上記のように、多孔質焼結基板の表面に、
コバルトとニッケルとを含む酸化物、およびコバルトと
ニッケルとを含み平均酸化数が2価よりも大きい水酸化
物の少なくとも一方を含む被膜層を形成することによ
り、硝酸塩に対する耐腐食性が向上し、さらに導電性も
良好に確保されたアルカリ蓄電池用電極を製造すること
ができた。導電性が良好であるため、活物質を充填する
ための電析工程における電解効率が良好で、かつ焼結基
板の空孔内に、活物質が均一に充填されることが期待で
きる。従って、この電極を正極として利用すれば、耐食
性とサイクル特性とが良好なアルカリ蓄電池を製造する
ことができる。
【0048】この効果を確認するため、上記アルカリ蓄
電池用電極を用いて、アルカリ蓄電池を作製し、電池容
量の測定とサイクル特性の検討を行なった。
【0049】以下にアルカリ蓄電池の作製方法を述べ
る。まず、第2の被膜層形成方法により、多孔質焼結基
板の表面に被膜層を形成した。硝酸塩水溶液のコバルト
とニッケルとのモル比を変えることにより、それぞれの
多孔質焼結基板に組成の異なる被膜層を形成した。被膜
層形成の熱処理温度は140℃または250℃とした。
また、比較のために、未処理の(被膜層を形成しない)
多孔質焼結基板を作製した。
【0050】被膜層を形成した多孔質焼結基板および未
処理の多孔質焼結基板への活物質の充填は化学含浸法に
より行なった。多孔質焼結基板を、80℃に保持され
た、4.5M硝酸ニッケルと0.1M硝酸コバルトとの
混合水溶液に3分間浸漬し、80℃で90分間乾燥させ
た後、80℃、6.5M水酸化ナトリウム水溶液に浸漬
する充填操作を7回繰り返して、アルカリ蓄電池用電極
を作製した。
【0051】次に、同一条件で作製した容量が十分に大
きい水素吸蔵合金系負極(MmNi 3.55Mn0.4Al0.3
Co0.75)とセパレーター(ポリプロピレン不織布)と
アルカリ電解液(水酸化カリウム)と上記アルカリ蓄電
池用電極とを同一条件で組み合わせて、公称1.3Ah
のアルカリ蓄電池を作製した。
【0052】作製した各アルカリ蓄電池について12A
充電/12A放電を行い、容量測定を実施した。また、
12A充電/12A放電サイクルを繰り返すことによ
り、サイクル特性を検討した。このとき、12A充電は
6分間行い、12A放電は電圧が0.8Vとなったとき
に終了することとした。
【0053】図7および図8は、アルカリ蓄電池の3サ
イクル目および500サイクル目の容量を示している。
なお、図7に示したアルカリ蓄電池(A)〜(F)は、
熱処理温度を110℃とした電極を使用したものであ
り、図8は、アルカリ蓄電池(G)〜(M)は熱処理温
度を250℃とした電極を使用したものである。一方、
被膜層を形成していない正極を用いたアルカリ蓄電池を
アルカリ蓄電池(N)として示す。
【0054】図7および図8に示すように、コバルトと
ニッケルとのモル比が6:4〜8:2の範囲の被膜層を
有する多孔質焼結基板において、大きな電池容量が得ら
れた。また、250℃で熱処理した電極を使用したアル
カリ蓄電池において、より大きな電池容量が得られた。
このように、コバルトとニッケルとのモル比を被膜層の
導電性が向上するように調整すれば、大きな電池容量が
得られることが確認できた。
【0055】サイクルによる容量低下に対しては、コバ
ルトとニッケルとのモル比の影響は、ほとんど認められ
なかった。一方、熱処理温度が250℃の電極を使用し
たアルカリ蓄電池において、熱処理温度を110℃とし
た場合よりも、容量の低下は小さくなった。先に述べた
結果との比較から、被膜層の耐食性を向上させれば、ア
ルカリ蓄電池のサイクル特性が向上すると考えられる。
なお、比較のために作製した被膜層を有しないアルカリ
蓄電池(N)は500サイクル後に容量が約65%にま
で大きく低下した。
【0056】以上のように、上記電極を正極として使用
することにより、活物質の利用率が高く、かつサイクル
特性の良好なアルカリ蓄電池が実現できた。
【0057】次に、電析工程に対する効果を確認した。
まず、第2の被膜層形成方法により、硝酸塩水溶液のコ
バルトとニッケルとのモル比を変えて、組成の異なる被
膜層を多孔質焼結基板に形成した。被膜層形成の熱処理
温度は250℃とした。
【0058】被膜層形成をした多孔質焼結基板を90
℃、4.5Mの硝酸ニッケル水溶液に浸漬しカソード電
解することにより、水酸化ニッケルの電析充填を行なっ
た。
【0059】電析後の多孔質焼結基板への水酸化ニッケ
ルの詰まり方を確認するために、この多孔質焼結基板の
断面を電子顕微鏡で観察した。その結果、コバルトとニ
ッケルとのモル比が6:4〜8:2の範囲では、水酸化
ニッケルは、多孔質焼結基板の芯材となるニッケルメッ
キ多孔鋼板に近い中心部から表面に至るまで均一に充填
されていた。一方、この範囲外のモル比では、表面が酸
化ニッケル層が形成された多孔質焼結基板と同様、水酸
化ニッケルは表面付近に多く、内部には少ない不均一な
充填になっていた。
【0060】また、電析時の電解効率も、被膜層中のコ
バルトとニッケルとのモル比が6:4〜8:2の範囲で
高い値となり、多孔質焼結基板の導電性の影響が現れ
た。さらに、電析工程における腐食は、いずれの多孔質
焼結基板においても発生しておらず、高い耐腐食性を示
した。
【0061】比較のため、未処理の多孔質焼結基板の電
析を行なった。未処理の多孔質焼結基板は導電性が良好
なため電解効率が高く、また、水酸化ニッケルは均一に
充填されるが、耐腐食性が低いため、多孔質焼結基板中
のニッケル焼結体部分が脆弱化した。
【0062】なお、上記実施例では、負極に水素吸蔵合
金系負極として、MmNi3.55Mn 0.4Al0.3Co0.75
を用いたがこれに限ることなく、Mg2Ni、TiMn
1.5などを用いることもできる。また、セパレーターと
してはポリプロピレン不織布に代えてポリアミド不織布
などを用いてもよい。アルカリ電解液としては、水酸化
カリウムに代えて水酸化ナトリウムなどを用いることも
できる。また、アルカリ電解液には、要求特性に応じて
水酸化リチウムなどを添加してもよい。
【0063】上記実施例で作製したアルカリ蓄電池は、
ニッケル−水素電池であるが、本発明はこれに限ること
なく、ニッケル−カドミウム電池のような他のアルカリ
蓄電池に適用してもよい。
【0064】
【発明の効果】以上説明したように、本発明のアルカリ
蓄電池用電極によれば、活物質と多孔質基板との界面
に、コバルトとニッケルとを含む酸化物、およびコバル
トとニッケルとを含む平均酸化数が+IIよりも大きい水
酸化物から選ばれる少なくとも一方を含む被膜層が形成
することにより、活物質の利用率と耐腐食性とをともに
高くすることができる。この電極を正極として利用した
本発明のアルカリ蓄電池は、サイクル特性のみならず電
池容量も向上したものとなる。
【0065】また、本発明のアルカリ蓄電池用電極の製
造方法によれば、多孔質基板に活物質を充填する前に、
多孔質基板の表面に、上記被膜層を形成する工程を実施
することにより、活物質充填工程における多孔質焼結基
板の腐食量が少なく、かつ電析含浸法における電解効率
が良好でしかも活物質を多孔質基板の空孔内に偏りなく
充填することが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態における硝酸塩水溶液中
のコバルトとニッケルとのモル比と多孔質焼結基板上に
形成される被膜層中のコバルトとニッケルとのモル比と
の関係を示す図である。
【図2】 本発明の一実施形態における被膜層の導電率
に及ぼすコバルトとニッケルとのモル比の影響を示す図
である。
【図3】 本発明の一実施形態における被膜層の導電率
に及ぼす被膜形成時の熱処理温度の影響を示す図であ
る。
【図4】 本発明の一実施形態における多孔質焼結基板
の腐食溶解率に及ぼすコバルトとニッケルとのモル比の
影響を示す図である。
【図5】 本発明の一実施形態における多孔質焼結基板
の腐食溶解率に及ぼす被膜形成時の熱処理温度の影響を
示す図である。
【図6】 本発明の一実施形態における多孔質焼結基板
の腐食溶解率に及ぼす硝酸塩水溶液濃度の影響を示す図
である。
【図7】 本発明の一実施形態におけるアルカリ蓄電池
と従来のアルカリ蓄電池の容量変化を示す図である。
【図8】 本発明の一実施形態におけるアルカリ蓄電池
と従来のアルカリ蓄電池の容量変化を示す図である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 棚橋 正和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 村上 義樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 貝田 理 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 丸田 雅義 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Claims (19)

    【特許請求の範囲】
  1. 【請求項1】 多孔質基板に水酸化ニッケルを含む活物
    質を充填したアルカリ蓄電池用電極であって、前記活物
    質と前記多孔質基板との界面に、コバルトとニッケルと
    を含む酸化物およびコバルトとニッケルとを含む水酸化
    物(ただし、水酸化物中の金属元素の酸化数の平均値は
    +IIよりも大きい)から選ばれる少なくとも一方を含む
    被膜層が形成されていることを特徴とするアルカリ蓄電
    池用電極。
  2. 【請求項2】 前記被膜層が1S/cm以上の導電率を
    有する請求項1に記載のアルカリ蓄電池用電極。
  3. 【請求項3】 前記被膜層が10S/cm以上の導電率
    を有する請求項1に記載のアルカリ蓄電池用電極。
  4. 【請求項4】 前記被膜層がコバルトとニッケルとをモ
    ル比が6:4〜8:2となる範囲で含む請求項1に記載
    のアルカリ蓄電池用電極。
  5. 【請求項5】 前記被膜層がコバルトとニッケルとを含
    む酸化物を含む請求項1に記載のアルカリ蓄電池用電
    極。
  6. 【請求項6】 前記被膜層がCo2NiO4を含む請求項
    5に記載のアルカリ蓄電池用電極。
  7. 【請求項7】 多孔質基板に水酸化ニッケルを含む活物
    質を充填したアルカリ蓄電池用電極の製造方法であっ
    て、前記多孔質基板に前記活物質を充填する前に、前記
    多孔質基板の表面に、コバルトとニッケルとを含む酸化
    物およびコバルトとニッケルとを含む水酸化物(ただ
    し、水酸化物中の金属元素の酸化数の平均値は+IIより
    も大きい)から選ばれる少なくとも一方を含む被膜層を
    形成する工程を含むことを特徴とするアルカリ蓄電池用
    電極の製造方法。
  8. 【請求項8】 前記被膜層を形成する工程が、前記多孔
    質基板をコバルトとニッケルとを含む溶液に接触させた
    後に加熱する工程を含む請求項7に記載のアルカリ蓄電
    池用電極の製造方法。
  9. 【請求項9】 前記コバルトとニッケルとを含む溶液
    が、コバルトとニッケルとをモル比が6:4〜8:2と
    なる範囲で含む請求項8に記載のアルカリ蓄電池用電極
    の製造方法。
  10. 【請求項10】 前記コバルトとニッケルとを含む溶液
    が、コバルトの硝酸塩およびニッケルの硝酸塩を含む請
    求項8に記載のアルカリ蓄電池用電極の製造方法。
  11. 【請求項11】 前記コバルトとニッケルとを含む溶液
    が、コバルトとニッケルとの合計量の濃度が0.01M
    以上である請求項8に記載のアルカリ蓄電池用電極の製
    造方法。
  12. 【請求項12】 前記被膜層を形成する工程が、前記多
    孔質基板をコバルトとニッケルとを含む溶液に接触させ
    る工程と、前記多孔質基板をアルカリ溶液に接触させる
    工程と、前記多孔質基板を加熱する工程をこの順に含む
    請求項7に記載のアルカリ蓄電池用電極の製造方法。
  13. 【請求項13】 前記多孔質基板を120℃以上の温度
    で加熱する請求項12に記載のアルカリ蓄電池用電極の
    製造方法。
  14. 【請求項14】 前記被膜層を形成する工程が、前記多
    孔質基板をコバルトとニッケルとを含む溶液に接触させ
    る工程と、前記多孔質基板をアルカリ溶液に接触させる
    工程と、前記多孔質基板を水洗する工程と、前記多孔質
    基板を加熱する工程をこの順に含む請求項7に記載のア
    ルカリ蓄電池用電極の製造方法。
  15. 【請求項15】 前記多孔質基板を250℃以上の温度
    で加熱する請求項7に記載のアルカリ蓄電池用電極の製
    造方法。
  16. 【請求項16】 正極、負極、ならびに前記正極と前記
    負極との間に介在するセパレータおよびアルカリ電解液
    を含むアルカリ蓄電池であって、 前記正極として、多孔質基板に水酸化ニッケルを含む活
    物質が充填されており、前記活物質と前記多孔質基板と
    の界面に、コバルトとニッケルとを含む酸化物およびコ
    バルトとニッケルとを含む水酸化物(ただし、水酸化物
    中の金属元素の酸化数の平均値は+IIよりも大きい)か
    ら選ばれる少なくとも一方を含む被膜層が形成されてい
    る電極を備えていることを特徴とするアルカリ蓄電池。
  17. 【請求項17】 前記被膜層が1S/cm以上の導電率
    を有する請求項16に記載のアルカリ蓄電池。
  18. 【請求項18】 前記被膜層がコバルトとニッケルとを
    モル比が6:4〜8:2となる範囲で含む請求項16に
    記載のアルカリ蓄電池。
  19. 【請求項19】 前記被膜層がCo2NiO4を含む請求
    項16に記載のアルカリ蓄電池。
JP10125591A 1997-05-15 1998-05-08 アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池 Expired - Lifetime JP2951940B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10125591A JP2951940B2 (ja) 1997-05-15 1998-05-08 アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-125870 1997-05-15
JP12587097 1997-05-15
JP10125591A JP2951940B2 (ja) 1997-05-15 1998-05-08 アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池

Publications (2)

Publication Number Publication Date
JPH1131505A true JPH1131505A (ja) 1999-02-02
JP2951940B2 JP2951940B2 (ja) 1999-09-20

Family

ID=26461987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10125591A Expired - Lifetime JP2951940B2 (ja) 1997-05-15 1998-05-08 アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池

Country Status (1)

Country Link
JP (1) JP2951940B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045506A (ja) * 2001-07-31 2003-02-14 Toyota Motor Corp アルカリ二次電池正極材の分離回収方法、アルカリ二次電池正極材の特性分析方法及びアルカリ二次電池
US6858347B2 (en) 2000-03-24 2005-02-22 Matsushita Electric Industrial Co., Ltd. Paste type positive electrode for alkaline storage battery, and nickel-metal hydride storage battery
JP2009032597A (ja) * 2007-07-27 2009-02-12 Sumitomo Electric Ind Ltd リチウム電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858347B2 (en) 2000-03-24 2005-02-22 Matsushita Electric Industrial Co., Ltd. Paste type positive electrode for alkaline storage battery, and nickel-metal hydride storage battery
JP2003045506A (ja) * 2001-07-31 2003-02-14 Toyota Motor Corp アルカリ二次電池正極材の分離回収方法、アルカリ二次電池正極材の特性分析方法及びアルカリ二次電池
JP2009032597A (ja) * 2007-07-27 2009-02-12 Sumitomo Electric Ind Ltd リチウム電池

Also Published As

Publication number Publication date
JP2951940B2 (ja) 1999-09-20

Similar Documents

Publication Publication Date Title
US8377567B2 (en) Highly corrosion-resistant porous metal member
JP2951940B2 (ja) アルカリ蓄電池用電極とその製造方法、およびアルカリ蓄電池
GB2104279A (en) Method of loading metallic battery plaques
JP3412451B2 (ja) アルカリ蓄電池正極用ニッケル焼結基板とその製造法およびアルカリ蓄電池
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
EP0878858B1 (en) Electrode for alkaline storage battery and method for manufacturing the same
JPH1079246A (ja) アルカリ蓄電池用水酸化ニッケル電極の製造方法
JP2000311680A (ja) ニッケル水素電池用焼結型正極板とその製造方法およびニッケル水素電池
CN117410437B (zh) 一种锑基电极及其制备方法和应用
JP2000133258A (ja) アルカリ蓄電池用正極板およびその製造方法
JPH0475255A (ja) アルカリ蓄電池用水酸化ニッケル電極の製造方法
JPH10154508A (ja) アルカリ蓄電池とそのニッケル極及びその製造法
JPS6290864A (ja) アルカリ蓄電池用水酸化ニツケル電極の製造方法
JP2558759B2 (ja) アルカリ蓄電池用カドミウム負極の製造法
JPH0410181B2 (ja)
JP4357133B2 (ja) 電極用水素吸蔵合金、水素吸蔵合金電極及びアルカリ蓄電池
JP2639916B2 (ja) アルカリ蓄電池用焼結式ニツケル電極の製造方法
JP2529308B2 (ja) アルカリ蓄電池用カドミウム負極の製造法
JP3625681B2 (ja) アルカリ蓄電池用ニッケル電極の製造方法
JP3540557B2 (ja) アルカリ蓄電池用ニッケル電極およびその製造方法
JP4479136B2 (ja) ニッケル電極材料の製造方法
JPH04359864A (ja) 非焼結式ニッケル正極及びその製造方法
JP4530555B2 (ja) 電極用水素吸蔵合金、水素吸蔵合金電極及びアルカリ蓄電池
JP2773253B2 (ja) アルカリ蓄電池用カドミウム負極の製造法
JPH09293503A (ja) 焼結式ニッケル極の製造法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 14

EXPY Cancellation because of completion of term