JPH11312850A - Heat-dissipating wiring substrate - Google Patents

Heat-dissipating wiring substrate

Info

Publication number
JPH11312850A
JPH11312850A JP10119762A JP11976298A JPH11312850A JP H11312850 A JPH11312850 A JP H11312850A JP 10119762 A JP10119762 A JP 10119762A JP 11976298 A JP11976298 A JP 11976298A JP H11312850 A JPH11312850 A JP H11312850A
Authority
JP
Japan
Prior art keywords
low
wiring conductor
substrate
resistance wiring
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10119762A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokoyama
清 横山
Hiroaki Sonoda
博昭 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10119762A priority Critical patent/JPH11312850A/en
Publication of JPH11312850A publication Critical patent/JPH11312850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent problems such as crackings of a substrate, etc., caused by thermal stresses due to the difference in thermal expansion between a substrate and a low-resistance wiring conductor formed on a heat-dissipating wiring substrate. SOLUTION: A substrate 1 is formed of ceramics, of a thickness 30 mm or less, comprising aluminum nitride sintered body or silicon nitride sintered body in which at least one kind selected from among yttrium oxide, erbium oxide, and ytterbium oxide is the main sintering assistant. The area ratio in occupancy of a low-resistance wiring conductor 4 with respect to the main surface of substrate 1 is at least 1%, with the porosity of the low-resistance wiring conductor 4 being set at 3-40%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車、ハイ
ブリッド車、新幹線、地下鉄、通勤電車、エレベータ、
ロボット、クレーンや空調装置等に搭載されるパワーデ
バイスであるIGBT(Insulated Gate Bipolar Trans
istor )や、半導体素子が収容搭載される半導体素子収
納用パッケージや、半導体素子の他にコンデンサや抵抗
体等の各種電子部品が搭載される混成集積回路装置等
で、大電流を流すことが可能な低抵抗配線導体を有する
放熱配線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric car, a hybrid car, a bullet train, a subway, a commuter train, an elevator,
IGBT (Insulated Gate Bipolar Transformer) which is a power device mounted on robots, cranes, air conditioners, etc.
Large current can flow through istors), packages for housing semiconductor devices that house semiconductor devices, and hybrid integrated circuit devices that mount various electronic components such as capacitors and resistors in addition to semiconductor devices. The present invention relates to a heat dissipation wiring substrate having a low-resistance wiring conductor.

【0002】[0002]

【従来の技術】パワーデバイスは、最も歴史のある半導
体素子であるが、近年、高耐圧化、大電流化、高速・高
周波化、高機能化が著しく進み、IGBT、GTO(Ga
te Turn Off thyrister )、IPM(Intelligent Powe
r Module)、パワーMOSFET等の高速のMOS系パ
ワーデバイスが出現するに至った。これらのパワーデバ
イスは、自動車、インバータ電車、ストロボ、電子レン
ジ、ゴルフカート等に広く利用されている。しかしなが
ら、環境問題を背景に、ハイブリッド車、電気自動車が
一般に普及しつつある昨今では、これらのパワーデバイ
ス、特にIGBTの耐高電圧化、小型化、薄型化、軽量
化が要求されている。
2. Description of the Related Art Power devices are the oldest semiconductor elements. However, in recent years, high breakdown voltage, large current, high speed and high frequency, and high performance have been remarkably advanced, and IGBT, GTO (Ga
te Turn Off thyrister), IPM (Intelligent Powe)
r Module), high-speed MOS-based power devices such as power MOSFETs. These power devices are widely used in automobiles, inverter trains, strobes, microwave ovens, golf carts, and the like. However, in recent years, hybrid vehicles and electric vehicles are becoming popular due to environmental problems, and these power devices, particularly IGBTs, are required to have higher withstand voltage, smaller size, thinner, and lighter weight.

【0003】このパワーデバイスに用いる放熱配線基板
としては、特開平7-162157号公報では、複数の絶縁層か
らなる多層基板上にパワー素子を配置し、一以上の絶縁
層のパワー素子下部領域に前記パワー素子の熱伝達用媒
体を充填した多層基板が示されている。
As a heat dissipation wiring board used in this power device, Japanese Patent Application Laid-Open No. 7-162157 discloses that a power element is arranged on a multilayer substrate composed of a plurality of insulating layers, Shown is a multilayer substrate filled with a heat transfer medium for the power element.

【0004】即ち、図4に示すように、複数の絶縁層1
1a〜11cからなる多層のアルミナからなる基板11
上にパワー素子17を配置し、絶縁層11aのパワー素
子17の下部領域に備えた凹部13に熱伝達用導体を充
填して低抵抗配線導体14を形成したものが提案されて
いる。また、上記低抵抗配線導体14は基板11に内蔵
された内部配線15に接続され、基板11上に形成され
た配線部とパワー素子17間がワイヤ16でボンディン
グされている。
That is, as shown in FIG.
Substrate 11 composed of multilayer alumina composed of 1a to 11c
A low-resistance wiring conductor 14 is proposed in which a power element 17 is disposed thereon, and a recess 13 provided in a lower region of the power element 17 of the insulating layer 11a is filled with a heat transfer conductor. The low-resistance wiring conductor 14 is connected to an internal wiring 15 built in the substrate 11, and a wiring 16 formed between the wiring portion formed on the substrate 11 and the power element 17 is bonded with a wire 16.

【0005】一方、特開昭63-120448 号公報では、放熱
用基板として、低熱膨張性金属材料の繊維からなる基材
に、放熱性の良い金属材料を含浸させてなる放熱用基板
が提案されている。
On the other hand, Japanese Patent Application Laid-Open No. 63-120448 proposes, as a heat dissipation substrate, a heat dissipation substrate obtained by impregnating a base material made of a fiber of a low thermal expansion metal material with a metal material having good heat dissipation properties. ing.

【0006】これらの基板を、例えば半導体素子収納用
パッケージに適用した場合には、その絶縁基体の凹部底
面に半導体素子をガラスあるいは樹脂、ロウ材等の接着
剤を介して接着固定すると共に、半導体素子の各電極が
凹部周辺に位置する配線導体にワイヤボンディングを介
して電気的に接続され、金属やセラミックスなどからな
る蓋体を前記凹部をふさぐように前記接着剤と同様の封
止剤を介して接合し、絶縁基体の凹部内に半導体素子を
機密に収容することにより、最終製品としての半導体装
置としていた。
When these substrates are applied to, for example, a package for accommodating a semiconductor element, the semiconductor element is bonded and fixed to the bottom surface of the concave portion of the insulating base via an adhesive such as glass, resin or brazing material. Each electrode of the element is electrically connected to a wiring conductor located around the concave portion via wire bonding, and a cover made of metal, ceramics, or the like is interposed via a sealing agent similar to the adhesive so as to cover the concave portion. And a semiconductor device as a final product is housed in such a manner that the semiconductor element is confidentially accommodated in the concave portion of the insulating base.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記従
来の放熱配線基板は、低抵抗配線導体14やビアホール
導体を形成するWやMoの電気抵抗値が4〜8×10-6
Ω・cmときわめて高い為、配線間の電気抵抗値を小さ
くして、例えば100A以上もの大電流を流すことは困
難であった。しかも、−40℃〜150℃の冷熱環境で
使用されるような配線基板、例えば、環境問題への取り
組みから登場を余儀なくされているハイブリッド車、電
気自動車、次期新幹線に使用される各種制御機器などを
はじめとする用途には適用できなかった。
However, in the conventional heat dissipation wiring board, the electric resistance of W or Mo forming the low resistance wiring conductor 14 or the via hole conductor is 4 to 8 × 10 -6.
Since the resistance is extremely high at Ω · cm, it has been difficult to reduce the electric resistance between the wirings and flow a large current of, for example, 100 A or more. In addition, wiring boards used in a cold environment of -40 ° C to 150 ° C, such as hybrid vehicles, electric vehicles, and various control devices used in the next Shinkansen, which have been forced to appear due to environmental issues. And other applications.

【0008】もし従来の放熱配線基板を上記の用途に使
用した場合には、低抵抗配線導体14と基板11との間
に両者の熱膨張差に起因する熱応力が発生し、特に低抵
抗配線導体14近傍の基板11に応力が集中して大きな
残留応力となる。その結果、放熱配線基板に冷熱サイク
ルや外力が加わると前記残留応力と相まってきわめて大
となり、前記基板11にクラックを発生させたり、その
クラックが進展して他の配線導体を断線する恐れがあっ
た。
If the conventional heat-radiating wiring board is used for the above purpose, thermal stress is generated between the low-resistance wiring conductor 14 and the substrate 11 due to the difference in thermal expansion between them, and particularly, the low-resistance wiring Stress concentrates on the substrate 11 in the vicinity of the conductor 14, resulting in a large residual stress. As a result, when a thermal cycle or an external force is applied to the heat-dissipating wiring board, it becomes extremely large in combination with the residual stress, which may cause cracks in the board 11 or the cracks may develop to break other wiring conductors. .

【0009】[0009]

【課題を解決するための手段】そこで、本発明者らは、
酸化イットリウム、酸化エルビウム、酸化イッテルビウ
ムから選ばれる少なくとも一種以上を主焼結助剤とする
窒化アルミニウム質焼結体あるいは窒化珪素質焼結体か
らなる厚さ30mm以下のセラミックス基板と、この基
板と一体化した厚さ50μm以上の銅(Cu)、銀(A
g)、アルミニウム(Al)から選ばれる少なくとも一
種以上を主成分とする低抵抗配線導体とから放熱配線基
板を形成し、基板の主面の面積に対する低抵抗配線導体
の面積比を1%以上とし、かつ低抵抗配線導体が気孔率
3〜40%の気孔率を有するようにすることで、前記の
問題が解決できることを見出した。
Means for Solving the Problems Accordingly, the present inventors have:
A ceramic substrate having a thickness of 30 mm or less made of an aluminum nitride-based sintered body or a silicon nitride-based sintered body containing at least one selected from yttrium oxide, erbium oxide, and ytterbium oxide as a main sintering aid; Copper (Cu) and silver (A) having a thickness of 50 μm or more
g), a heat-radiating wiring board is formed from a low-resistance wiring conductor containing at least one or more selected from aluminum (Al) as a main component, and the area ratio of the low-resistance wiring conductor to the area of the main surface of the substrate is set to 1% or more. In addition, it has been found that the above problem can be solved by making the low-resistance wiring conductor have a porosity of 3 to 40%.

【0010】また、前記低抵抗配線導体にNi、Cu、
Au、Zn、Snから選ばれる少なくとも一種の金属メ
ッキを施すと、ハンダ濡れ性が良好になり、作業効率が
向上した。
Further, Ni, Cu,
When at least one type of metal plating selected from Au, Zn, and Sn is applied, solder wettability is improved, and work efficiency is improved.

【0011】さらに、前記低抵抗配線導体とセラミック
基板の間に、W、Mo、V、Tiの少なくとも一種の金
属層を介在させると、セラミックス基板とのなじみが良
く、低抵抗配線導体とセラミックス基板の接合がし易く
なった。
Further, when at least one metal layer of W, Mo, V, Ti is interposed between the low-resistance wiring conductor and the ceramic substrate, the compatibility with the ceramic substrate is good, and the low-resistance wiring conductor and the ceramic substrate are provided. Bonding became easier.

【0012】また、低抵抗配線導体とW、Mo、V、T
iの少なくとも一種の金属層との間に、Ag、Ti、M
o、V、Ni、Cu、Au、Zn、Snから選ばれる少
なくとも一種の金属メッキを施すと、低抵抗配線導体と
セラミックス基板との接合強度をさらに高めることがで
きた。
Further, the low-resistance wiring conductor and W, Mo, V, T
Ag, Ti, M between at least one metal layer of i
By applying at least one type of metal plating selected from o, V, Ni, Cu, Au, Zn, and Sn, the bonding strength between the low-resistance wiring conductor and the ceramic substrate could be further increased.

【0013】本発明によれば、低抵抗配線導体の気孔率
を3〜40%としたことによって、上述の低抵抗配線導
体と基板との間に両者の熱膨張差に起因する熱応力の発
生を防止し、基板へのクラックの発生やそのクラックの
進展を防ぎ、配線導体の断線等を防止することができ
る。そのため、−40℃〜150℃の冷熱環境で繰り返
し使用しても不具合の起こらない高信頼性の放熱配線基
板を得られる。
According to the present invention, by setting the porosity of the low-resistance wiring conductor to 3 to 40%, generation of thermal stress between the low-resistance wiring conductor and the substrate due to a difference in thermal expansion between the two. Can be prevented, the occurrence of cracks in the substrate and the propagation of the cracks can be prevented, and disconnection of the wiring conductor can be prevented. Therefore, a highly reliable heat-dissipating wiring board which does not cause any trouble even when repeatedly used in a cold environment of -40 ° C to 150 ° C can be obtained.

【0014】さらに低抵抗配線導体が基板の配線用空間
部や溝から剥離したりせずに、従って低抵抗配線導体に
接続された他の配線導体を断線したりすることもなく、
配線導体の低抵抗化を実現して、100A以上の大電流
を流すことが可能となる。
Further, the low-resistance wiring conductor does not peel off from the wiring space or groove of the substrate, and therefore does not break other wiring conductors connected to the low-resistance wiring conductor.
The resistance of the wiring conductor is reduced, and a large current of 100 A or more can flow.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図によ
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】図1に本発明の放熱配線基板の一例を示
す。窒化アルミニウム質焼結体又は窒化珪素質焼結体か
らなる複数の絶縁層1a、1b、1cを積層して基板1
を形成し、絶縁層1aに備えた凹部2に、気孔率3〜4
0%となるように気孔を内蔵した低抵抗配線導体4、
4’を備えてある。そして、一方の低抵抗配線導体4上
にSi等の半導体素子3を配置し、この半導体素子3と
他方の低抵抗配線導体4’との間をワイヤ5でボンディ
ングしてある。
FIG. 1 shows an example of a heat dissipation wiring board of the present invention. A substrate 1 is formed by laminating a plurality of insulating layers 1a, 1b, 1c made of an aluminum nitride sintered body or a silicon nitride sintered body.
Is formed, and a porosity of 3-4 is formed in the concave portion 2 provided in the insulating layer 1a.
A low-resistance wiring conductor 4 having a built-in pore so as to be 0%,
4 'is provided. Then, a semiconductor element 3 of Si or the like is arranged on one of the low-resistance wiring conductors 4, and the semiconductor element 3 and the other low-resistance wiring conductor 4 ′ are bonded by wires 5.

【0017】そのため、上記半導体素子3は低抵抗配線
導体4、4’を通じて、信号の入出力を行うことがで
き、また半導体素子3で発生した熱は、低抵抗配線導体
4や基板1を通じて放熱することができる。また、低抵
抗配線導体4、4’は気孔率3〜40%となるように気
孔を内蔵してあるため、冷熱サイクルが加わるような用
途で使用しても、基板1との熱膨張差による応力発生を
防止し、クラックの発生等を防止することができる。
Therefore, the semiconductor element 3 can input and output signals through the low-resistance wiring conductors 4 and 4 ′, and heat generated in the semiconductor element 3 is radiated through the low-resistance wiring conductor 4 and the substrate 1. can do. In addition, since the low-resistance wiring conductors 4 and 4 ′ have built-in porosity so as to have a porosity of 3 to 40%, even if they are used in an application where a cooling / heating cycle is applied, a difference in thermal expansion from the substrate 1 may occur. The generation of stress can be prevented, and the generation of cracks and the like can be prevented.

【0018】上記基板1は、主焼結助剤を酸化イットリ
ウム、酸化エルビウム、酸化イッテルビウムから選ばれ
る少なくとも一種とした窒化アルミニウム質焼結体ある
いは窒化珪素質焼結体から形成されている。これは、窒
化アルミニウム質焼結体、窒化珪素質焼結体の中で、酸
化イットリウム、酸化エルビウムまたは酸化イッテルビ
ウムを主焼結助剤とした場合に最も高い破壊靭性が得ら
れるからであり、この高靭性であるという特性が−40
℃〜150℃の冷熱環境で繰り返し使用しても不具合の
起こらない高信頼性の放熱配線基板が提供される主因で
あるためである。
The substrate 1 is formed of an aluminum nitride sintered body or a silicon nitride sintered body in which the main sintering aid is at least one selected from yttrium oxide, erbium oxide, and ytterbium oxide. This is because the highest fracture toughness is obtained when yttrium oxide, erbium oxide or ytterbium oxide is used as a main sintering aid among aluminum nitride-based sintered bodies and silicon nitride-based sintered bodies. The characteristic of high toughness is -40
This is because this is a main reason for providing a highly reliable heat-dissipating wiring board that does not cause any trouble even when repeatedly used in a cold environment of 150C to 150C.

【0019】この現象は、一般に破壊靭性について認識
されている下式をみれば容易に推測できるように、破壊
靱性が高いほど、破壊応力を大きくすることができる。 σf = K1C/Ya1/2 ただし、 σf: 破壊応力 K1C: 破壊靭性 Y : 形状係数 a : 亀裂長さ である。
This phenomenon can be easily estimated from the following equation, which is generally recognized for fracture toughness. As the fracture toughness increases, the fracture stress can be increased. σf = K 1C / Ya 1/2 where σf: fracture stress K 1C : fracture toughness Y: shape factor a: crack length.

【0020】なお、窒化アルミニウム質焼結体又は窒化
珪素質焼結体において、酸化イットリウム、酸化エルビ
ウム、酸化イッテルビウムから選ばれる少なくとも一種
を主焼結助剤とした場合に他の焼結助剤に比べて高い破
壊靭性が得られる理由は、他の焼結助剤に比べて、粒界
相の結晶化が起こりやすく、クラックデフレクションに
よる破壊靭性の向上が得られやすい為であると考えられ
るが、詳しいことは解っていない。
When at least one selected from the group consisting of yttrium oxide, erbium oxide and ytterbium oxide is used as the main sintering aid in the aluminum nitride-based sintered body or silicon nitride-based sintered body, The reason why higher fracture toughness is obtained compared to other sintering aids is thought to be that the crystallization of the grain boundary phase is more likely to occur, and it is easier to improve fracture toughness by crack deflection. I don't know the details.

【0021】また、上記焼結助剤を用いることにより、
焼結体の熱伝導率を向上させることができる。例えば、
図3に示すように、窒化アルミニウムに酸化イットリウ
ムを添加することにより、熱伝導を阻害する粒界層が結
晶粒界の三重点に集まり、熱伝導良好な結晶同志の接点
が増加するので熱伝導を向上させることができる。そし
て、基板1の熱伝導率を向上させることによって、半導
体素子3の放熱性を良好にすることができる。
Further, by using the above sintering aid,
The thermal conductivity of the sintered body can be improved. For example,
As shown in FIG. 3, by adding yttrium oxide to aluminum nitride, a grain boundary layer that inhibits heat conduction gathers at the triple point of a crystal grain boundary, and the number of contacts between crystals having good heat conductivity increases, so that heat conduction increases. Can be improved. By improving the thermal conductivity of the substrate 1, the heat dissipation of the semiconductor element 3 can be improved.

【0022】さらに、基板1の厚みは30mm以下とす
るが、これは30mmを超えると熱伝導性が悪化するた
めである。
Further, the thickness of the substrate 1 is set to 30 mm or less, because if it exceeds 30 mm, thermal conductivity deteriorates.

【0023】次に、低抵抗配線導体4は、銅(Cu)、
銀(Ag)、アルミニウム(Al)の一種から形成し、
その気孔率を3〜40%としてある。このような気孔率
を持たせる理由は、低抵抗配線導体4の弾性率(ヤング
率)を故意に低下させ、外力により変形しやすくするこ
とにより、温度変化時の基板1との熱膨張差に基づく残
留応力の発生を防止するためである。
Next, the low-resistance wiring conductor 4 is made of copper (Cu),
Formed from a type of silver (Ag), aluminum (Al),
The porosity is set to 3 to 40%. The reason for having such a porosity is that the elastic modulus (Young's modulus) of the low-resistance wiring conductor 4 is deliberately reduced and easily deformed by an external force. This is to prevent the generation of residual stress based on the above.

【0024】例えば、緻密な銅(Cu)のヤング率が1
30GPaであるのに対して、3〜40%の気孔を持た
せることにより、50〜110GPa程度まで下げるこ
とができる。その結果、基板1と低抵抗配線導体4とを
焼成一体化する場合や、使用時に冷熱サイクルが加わっ
たような場合、両者間に熱膨張率の相違に起因する熱応
力が発生しても、その熱応力は、低抵抗配線導体4が変
形する事により緩和され、基板1と低抵抗配線導体4に
残留応力がほとんど発生しない。
For example, when the Young's modulus of dense copper (Cu) is 1
By providing 3 to 40% of the pores in comparison with 30 GPa, it can be reduced to about 50 to 110 GPa. As a result, when the substrate 1 and the low-resistance wiring conductor 4 are integrated by firing or when a thermal cycle is applied during use, even if a thermal stress is generated between the two due to a difference in the coefficient of thermal expansion, The thermal stress is reduced by the deformation of the low-resistance wiring conductor 4, and almost no residual stress is generated in the substrate 1 and the low-resistance wiring conductor 4.

【0025】なお、気孔率を3〜40%の範囲としたの
は、40%より高い気孔率を持たせると抵抗が高くなり
すぎ、低抵抗配線導体4としての役目を果たさなくな
り、配線基板として使えないという根本的な問題が発生
する。また、気孔率3%以下では、低抵抗配線導体4の
ヤング率を十分に低下できくなるためである。さらに、
低抵抗配線導体4の気孔率は、好ましくは5〜30%、
さらに好ましくは10〜20%の範囲が良い。
The reason for setting the porosity in the range of 3 to 40% is that if the porosity is higher than 40%, the resistance becomes too high, and the porosity does not function as the low-resistance wiring conductor 4, and the porosity does not function as a wiring board. There is a fundamental problem of not being able to use it. If the porosity is 3% or less, the Young's modulus of the low-resistance wiring conductor 4 cannot be sufficiently reduced. further,
The porosity of the low-resistance wiring conductor 4 is preferably 5 to 30%,
More preferably, the range is 10 to 20%.

【0026】また、低抵抗配線導体4に3〜40%の気
孔率を持たせるには、一般的には焼成温度の調整を行う
が、所望の気孔率を正確に得るためには、あらかじめ焼
結前の低抵抗配線導体4に所望の形状で所望の大きさの
プラスチックビーズを適量混入させておき、焼成時にこ
れらのプラスチックビーズを焼失させて気孔を得る方法
がある。
In order to give the low-resistance wiring conductor 4 a porosity of 3 to 40%, the sintering temperature is generally adjusted. However, in order to accurately obtain a desired porosity, the sintering is performed in advance. There is a method in which an appropriate amount of plastic beads having a desired shape and a desired size are mixed in the low-resistance wiring conductor 4 before the sintering, and the plastic beads are burned off during firing to obtain pores.

【0027】ここで、放熱配線基板における低抵抗配線
導体4の気孔率の測定方法について説明する。この低抵
抗配線導体4は、厚みが50μm程度と非常に薄いの
で、通常の方法では気孔率の測定が難しい。そこで、本
発明では、JIS−C2141に準拠して、ポロシメー
タを用いて気孔率の測定を行った。
Here, a method of measuring the porosity of the low-resistance wiring conductor 4 in the heat dissipation wiring board will be described. Since the low-resistance wiring conductor 4 has a very small thickness of about 50 μm, it is difficult to measure the porosity by an ordinary method. Therefore, in the present invention, the porosity was measured using a porosimeter in accordance with JIS-C2141.

【0028】この測定方法は、ガラスの容器(ディラト
メータ)に低抵抗配線導体4を備えた基板1を入れ、ガ
ラス容器に水銀(Hg)を満たした後、水銀に外部から
圧力を掛けて、その際の低抵抗配線導体4への水銀の侵
入体積から気孔率を算出する。水銀の表面張力のため、
そのままでは低抵抗配線導体4の気孔部分に水銀は浸透
しないが、外部から圧力を掛けると、次式に従って、気
孔内部に水銀が浸透し、その浸透量を測定する事によ
り、気孔量Kを測定できる。本発明では、外圧を100
気圧まで上昇させて、気孔量を測定した。
In this measurement method, the substrate 1 provided with the low-resistance wiring conductor 4 is placed in a glass container (dilatometer), and after the mercury (Hg) is filled in the glass container, a pressure is applied to the mercury from outside, and the mercury is applied. The porosity is calculated from the volume of mercury penetrating into the low-resistance wiring conductor 4 at this time. Due to the surface tension of mercury,
Mercury does not penetrate into the pores of the low-resistance wiring conductor 4 as it is, but when pressure is applied from the outside, mercury penetrates into the pores according to the following equation, and the amount of permeation is measured to measure the pore volume K. it can. In the present invention, the external pressure is set to 100
The pressure was raised to the atmospheric pressure, and the porosity was measured.

【0029】水銀侵入気孔径(μm )=15/水銀に掛
ける圧力(atm) また、低抵抗配線導体4の厚みtは、表面粗さ計もしく
は光干渉厚み計等を用いて測定し、幅hと長さLをメジ
ャースコープで測定し、低抵抗配線導体4の体積Vは、 V=t×h×L にて計算して求め、気孔率Aは、 気孔率A(%)=K/V×100 にて求めた。
Mercury intrusion pore diameter (μm) = 15 / pressure applied to mercury (atm) The thickness t of the low-resistance wiring conductor 4 is measured using a surface roughness meter or an optical interference thickness meter, and the width h is And the length L are measured with a measure scope, and the volume V of the low-resistance wiring conductor 4 is calculated and calculated according to V = t × h × L, and the porosity A is represented by porosity A (%) = K / V × 100.

【0030】ここで、基板1をなす窒化珪素又は窒化ア
ルミニウム質焼結体は緻密なので、焼結体の気孔率は無
視したが、無視できない気孔が焼結体に存在する場合
は、表面積および体積が測定試験片と同一のダミーを準
備し、ダミーの気孔量を差し引いたものを低抵抗配線導
体4の気孔量とすればよい。
Here, since the silicon nitride or aluminum nitride sintered body forming the substrate 1 is dense, the porosity of the sintered body was neglected. May prepare the same dummy as the measurement test piece, and subtract the dummy porosity to obtain the porosity of the low-resistance wiring conductor 4.

【0031】また、低抵抗配線導体4の材質を銅(C
u)、銀(Ag)、アルミニウム(Al)から選ばれる
少なくとも一種以上を主成分とするとしたのは、これら
の三種類が、低抵抗配線導体4として重要な、0.2%
耐力が低いことと熱伝導率が高いという二つの要件を満
足するからである。
The material of the low-resistance wiring conductor 4 is copper (C
u), silver (Ag), and aluminum (Al) as the main components. These three types are important as the low-resistance wiring conductor 4, 0.2%
This is because the two requirements of low proof stress and high thermal conductivity are satisfied.

【0032】さらに、本発明では、基板1の主面の面積
に対して低抵抗配線導体4の占有する面積比を1%以上
としてあるが、この理由は、面積比が1%未満であると
低抵抗配線導体4が極端に発熱して、断線が発生する傾
向がみられた為である。
Further, in the present invention, the area ratio occupied by the low-resistance wiring conductor 4 to the area of the main surface of the substrate 1 is set to 1% or more. This is because the area ratio is less than 1%. This is because the low-resistance wiring conductor 4 was extremely heated, and a disconnection was likely to occur.

【0033】また、低抵抗配線導体4の厚みは50μm
以上とするが、これは50μm未満であると大電流を流
したときに発熱量が大きくなりすぎるためである。
The thickness of the low-resistance wiring conductor 4 is 50 μm.
The reason for this is that when the thickness is less than 50 μm, the amount of heat generated becomes too large when a large current flows.

【0034】次に、本発明の他の実施形態を説明する。Next, another embodiment of the present invention will be described.

【0035】図2に示す放熱配線基板は、窒化珪素又は
窒化アルミニウム質焼結体からなる基板1上に同時焼成
したW等の金属層6を形成し、その上にNi等の金属メ
ッキ層7、さらにその上に気孔を内蔵した低抵抗配線導
体4を形成し、該低抵抗配線導体4の上に、Ni等の金
属メッキ8を形成し、この上にハンダ9でSi等の半導
体素子3を接合したものである。
In the heat dissipation wiring board shown in FIG. 2, a metal layer 6 of W or the like which is simultaneously fired is formed on a substrate 1 made of a silicon nitride or aluminum nitride sintered body, and a metal plating layer 7 of Ni or the like is formed thereon. Further, a low-resistance wiring conductor 4 having pores therein is formed thereon, and a metal plating 8 of Ni or the like is formed on the low-resistance wiring conductor 4. Are joined.

【0036】このように、低抵抗配線導体4上にNi、
Cu、Au、Zn、Snから選ばれる少なくとも一種の
金属メッキ8を施すことによって、ハンダ9の濡れ性が
よくなり、その上にSi等の半導体素子3を実装する際
の生産を効率的に進めることができる。
Thus, Ni, Ni on the low-resistance wiring conductor 4
By applying at least one kind of metal plating 8 selected from Cu, Au, Zn, and Sn, the wettability of the solder 9 is improved, and the production when the semiconductor element 3 such as Si is mounted thereon is efficiently advanced. be able to.

【0037】また、前記低抵抗配線導体4と基板との間
にW、Mo、V、Tiの少なくとも一種からなる金属層
6を介在させることによって、低抵抗配線導体4とセラ
ミックス製の基板1との接合をしやすくし、接合強度を
向上できる。
By interposing a metal layer 6 made of at least one of W, Mo, V and Ti between the low-resistance wiring conductor 4 and the substrate, the low-resistance wiring conductor 4 and the ceramic substrate 1 Can be easily joined and the joining strength can be improved.

【0038】さらに、低抵抗配線導体4と金属層6との
間に、Ag、Ti、Mo、V、Ni、Cu、Au、Z
n、Snから選ばれる少なくとも一種の金属メッキ7を
施すことによって、低抵抗配線導体4と基板1との接合
強度をさらに高めることができる。
Further, between the low resistance wiring conductor 4 and the metal layer 6, Ag, Ti, Mo, V, Ni, Cu, Au, Z
By applying at least one type of metal plating 7 selected from n and Sn, the bonding strength between the low-resistance wiring conductor 4 and the substrate 1 can be further increased.

【0039】[0039]

【実施例】以下、本発明の実施例として、図2に示す放
熱配線基板を作製した。
EXAMPLE As a working example of the present invention, a heat dissipation wiring board shown in FIG. 2 was manufactured.

【0040】0.7mm厚みの、酸化エルビウムを主焼
結助剤とする窒化珪素あるいは窒化アルミニウムのグリ
ーンシートをドクターブレード法によりテープ成形し、
その上に、金属層6を成すタングステンインクをプリン
トした。その後、数枚のグリーンシートを積層してから
脱脂工程を通し、1850℃、3時間の条件で窒化珪素
あるいは窒化アルミニウムを緻密化させた。
A 0.7 mm thick green sheet of silicon nitride or aluminum nitride containing erbium oxide as a main sintering aid is tape-formed by a doctor blade method.
A tungsten ink forming the metal layer 6 was printed thereon. After that, several green sheets were laminated and then subjected to a degreasing process to densify silicon nitride or aluminum nitride at 1850 ° C. for 3 hours.

【0041】緻密化後、タングステンの金属層6の上に
Niの金属メッキ7を施した。その上に、粒径1〜50
μmのCu、AlまたはAg粉末に、3〜40体積%の
粒径20μmの球形状のプラスチックビーズを混入した
粉体をペースト化して、印刷あるいはディスペンサーに
より塗布した後、600〜900℃で焼き付けを行って
低抵抗配線導体4を形成した。焼き付け後の低抵抗配線
導体4の上に新たにNiの金属メッキ8を施し、さらに
その上にハンダ9を流し、Siの半導体素子3の実装を
行った。
After densification, Ni metal plating 7 was applied on the tungsten metal layer 6. On top of this, a particle size of 1 to 50
A powder obtained by mixing 3 to 40% by volume of spherical plastic beads having a particle size of 20 μm into 3 to 40% by volume of Cu, Al, or Ag powder is pasted, applied by printing or dispenser, and then baked at 600 to 900 ° C. Thus, a low-resistance wiring conductor 4 was formed. Ni metal plating 8 was newly applied on the low-resistance wiring conductor 4 after baking, and solder 9 was flowed over the metal plating 8 to mount the semiconductor element 3 of Si.

【0042】以上のようにして、基板1の寸法がB6サ
イズの放熱配線基板を得た。
As described above, a heat dissipation wiring board having the size of the substrate 1 of B6 size was obtained.

【0043】得られた放熱配線基板について、前述した
方法で低抵抗配線導体4の気孔率を測定し、基板1の主
面に対する低抵抗配線導体4の面積比を求めた後、冷熱
試験を行った。
The porosity of the low-resistance wiring conductor 4 was measured for the obtained heat-dissipating wiring board by the above-described method, and the area ratio of the low-resistance wiring conductor 4 to the main surface of the substrate 1 was determined. Was.

【0044】冷熱試験とは、−40℃と150℃の二種
類の液槽を用意し、各液槽で放熱配線基板を30分間放置
し、合計1時間のサイクルを1000サイクル行った
後、クラックの有無や抵抗値の変化等を測定した。
The heat / cold test means that two types of liquid tanks at -40 ° C. and 150 ° C. are prepared, and the heat radiating wiring board is left in each liquid tank for 30 minutes. And the change in resistance value were measured.

【0045】結果を表1に示すように、基板1を成すセ
ラミックスの主焼結助剤が本発明の範囲外であるもの
(No.6,15)や、低抵抗配線導体4の気孔率が3
%未満のもの(No.7,17)では1000サイクル
未満でクラックが発生した。また、低抵抗配線導体4の
気孔率が40%をこえるもの(No.8,16)では電
気抵抗が高すぎた。さらに、低抵抗配線導体4の面積比
が1%未満のもの(No.9,18)では断線が生じ
た。
The results are shown in Table 1. As shown in Table 1, the main sintering aid of the ceramics constituting the substrate 1 is out of the range of the present invention (Nos. 6, 15), and the porosity of the low-resistance wiring conductor 4 is lower. 3
% (No. 7, 17), cracks occurred in less than 1000 cycles. In the case of the low-resistance wiring conductor 4 having a porosity exceeding 40% (Nos. 8, 16), the electric resistance was too high. Further, when the area ratio of the low-resistance wiring conductor 4 was less than 1% (Nos. 9 and 18), disconnection occurred.

【0046】これらに対し、本発明の範囲内のもの(N
o.1〜5,10〜14)は、1000サイクルの試験
後も、クラックが発生せず、抵抗値にもなんら影響はみ
られなかった。
On the other hand, those (N
o. Nos. 1 to 5, 10 to 14) showed no cracks even after the test of 1000 cycles, and no influence on the resistance value was observed.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明によれば、酸化イットリウム、酸
化エルビウム、酸化イッテルビウムから選ばれる少なく
とも一種以上を主焼結助剤とする窒化アルミニウム質焼
結体あるいは窒化珪素質焼結体からなる厚さ30mm以
下のセラミックス基板と、このセラミックス基板と一体
化した厚さ50μm以上の銅(Cu)、銀(Ag)、ア
ルミニウム(Al)から選ばれる少なくとも一種以上を
主成分とする低抵抗配線導体とを有する配線基板であっ
て、セラミックス基板の主面に対する低抵抗配線導体の
占有する面積比を1%以上とし、かつ低抵抗配線導体の
気孔率を3〜40%としたことによって、冷熱サイクク
ルが加わっても基板のクラックの発生やそのクラックの
進展を防ぎ、配線導体の断線を防止できる。
According to the present invention, the thickness of an aluminum nitride-based sintered body or a silicon nitride-based sintered body containing at least one selected from yttrium oxide, erbium oxide and ytterbium oxide as a main sintering aid is provided. A ceramic substrate having a thickness of 30 mm or less and a low-resistance wiring conductor having at least one selected from copper (Cu), silver (Ag), and aluminum (Al) having a thickness of 50 μm or more integrated with the ceramic substrate. A low-resistance wiring conductor having an area ratio of 1% or more to the main surface of the ceramic substrate and a porosity of the low-resistance wiring conductor of 3% to 40%, thereby adding a thermal cycle. However, it is possible to prevent the occurrence of the cracks in the substrate and the progress of the cracks, and to prevent the disconnection of the wiring conductor.

【0049】さらに低抵抗配線導体が基板の配線用空間
部や溝から剥離したりせずに、従って低抵抗配線導体に
接続された他の配線導体を断線したりすることが無く、
配線導体の低抵抗化を実現して、100A以上の大電流
を流すことが可能で、しかも、−40℃〜150℃の冷
熱環境で繰り返し使用しても不具合の起こらない高信頼
性の放熱配線基板を得ることができいる。
Further, the low-resistance wiring conductor does not peel off from the wiring space or the groove of the substrate, and therefore does not break other wiring conductors connected to the low-resistance wiring conductor.
Highly reliable heat-dissipation wiring that realizes a low resistance of the wiring conductor, allows a large current of 100 A or more to flow, and does not cause any trouble even if it is repeatedly used in a cold environment of -40 ° C to 150 ° C. A substrate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放熱配線基板を示す斜視図である。FIG. 1 is a perspective view showing a heat dissipation wiring board of the present invention.

【図2】本発明の放熱配線基板の他の実施形態を示す断
面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the heat dissipation wiring board of the present invention.

【図3】窒化アルミニウムに酸化イットリウムを添加す
ることにより、熱伝導が向上することを示したメカニズ
ムの模式図である。
FIG. 3 is a schematic view of a mechanism showing that heat conduction is improved by adding yttrium oxide to aluminum nitride.

【図4】従来の放熱配線基板を示す断面図である。FIG. 4 is a sectional view showing a conventional heat dissipation wiring board.

【符号の説明】[Explanation of symbols]

1:基板 1a〜1c:絶縁層 2:凹部 3:半導体素子 4:低抵抗配線導体 5:ワイヤ 6:金属層 7,8:金属メッキ 9:ハンダ 1: substrate 1a to 1c: insulating layer 2: concave portion 3: semiconductor element 4: low-resistance wiring conductor 5: wire 6: metal layer 7, 8: metal plating 9: solder

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化イットリウム、酸化エルビウム、酸化
イッテルビウムから選ばれる少なくとも一種以上を主焼
結助剤とする窒化アルミニウム質焼結体あるいは窒化珪
素質焼結体からなる厚さ30mm以下のセラミックス基
板と、該基板と一体化した厚さ50μm以上の銅(C
u)、銀(Ag)、アルミニウム(Al)から選ばれる
少なくとも一種以上を主成分とする低抵抗配線導体とを
有し、セラミックス基板の主面の面積に対する低抵抗配
線導体の占有する面積比が1%以上であり、かつ低抵抗
配線導体は3〜40%の気孔率を有することを特徴とす
る放熱配線基板。
1. A ceramic substrate having a thickness of 30 mm or less made of an aluminum nitride sintered body or a silicon nitride based sintered body containing at least one selected from yttrium oxide, erbium oxide and ytterbium oxide as a main sintering aid. , A copper (C) having a thickness of 50 μm or more integrated with the substrate
u), a low-resistance wiring conductor containing at least one or more selected from silver (Ag) and aluminum (Al) as a main component, and the area ratio occupied by the low-resistance wiring conductor to the area of the main surface of the ceramic substrate is A heat dissipation wiring board, wherein the low-resistance wiring conductor has a porosity of 3 to 40% or more.
【請求項2】前記低抵抗配線導体にNi、Cu、Au、
Zn、Snから選ばれる少なくとも一種の金属メッキを
施し、この上に半導体素子を実装したことを特徴とする
請求項1記載の放熱配線基板。
2. The method according to claim 2, wherein the low-resistance wiring conductor includes Ni, Cu, Au,
2. The heat dissipation wiring board according to claim 1, wherein at least one kind of metal plating selected from Zn and Sn is applied, and a semiconductor element is mounted thereon.
【請求項3】前記低抵抗配線導体とセラミックス基板と
の間にW、Mo、V、Tiの少なくとも一種の金属層が
介在することを特徴とする請求項1又は2記載の放熱配
線基板。
3. The heat dissipation wiring board according to claim 1, wherein at least one metal layer of W, Mo, V, and Ti is interposed between the low-resistance wiring conductor and the ceramic substrate.
【請求項4】前記低抵抗配線導体と金属層の間に、A
g、Ti、Mo、V、Ni、Cu、Au、Zn、Snか
ら選ばれる少なくとも一種の金属メッキを施したことを
特徴とする請求項3記載の放熱配線基板。
4. A method according to claim 1, further comprising the step of:
4. The heat dissipation wiring board according to claim 3, wherein at least one metal plating selected from the group consisting of g, Ti, Mo, V, Ni, Cu, Au, Zn, and Sn is applied.
JP10119762A 1998-04-28 1998-04-28 Heat-dissipating wiring substrate Pending JPH11312850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10119762A JPH11312850A (en) 1998-04-28 1998-04-28 Heat-dissipating wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10119762A JPH11312850A (en) 1998-04-28 1998-04-28 Heat-dissipating wiring substrate

Publications (1)

Publication Number Publication Date
JPH11312850A true JPH11312850A (en) 1999-11-09

Family

ID=14769558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10119762A Pending JPH11312850A (en) 1998-04-28 1998-04-28 Heat-dissipating wiring substrate

Country Status (1)

Country Link
JP (1) JPH11312850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157389A (en) * 2012-01-27 2013-08-15 Kyocera Corp Circuit board and electronic apparatus equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157389A (en) * 2012-01-27 2013-08-15 Kyocera Corp Circuit board and electronic apparatus equipped with the same

Similar Documents

Publication Publication Date Title
US11114355B2 (en) Power module and method for manufacturing power module
JP2002329938A (en) Ceramic circuit board
JP3610247B2 (en) Wiring board
JP3793562B2 (en) Ceramic circuit board
JPH0823145A (en) Substrate for hybrid ic
JPH11312850A (en) Heat-dissipating wiring substrate
JP2000294888A (en) Heat radiative wiring board
JPH11103141A (en) Wiring board
JP3668083B2 (en) Ceramic wiring board
JPH07162157A (en) Multilayered board
JP3588315B2 (en) Semiconductor element module
JP2009238976A (en) Ceramic laminated substrate and method for manufacturing the ceramic laminated body
JP3426827B2 (en) Semiconductor device
JP2000340716A (en) Wiring substrate
JP2703426B2 (en) Circuit board
JP2001185838A (en) Ceramic wiring board
JP4339976B2 (en) Power module board
JPH0823052A (en) Thick film hybrid ic board provided with lead terminal
JPH11346037A (en) Substrate for heat radiation
JP3554166B2 (en) Electronic circuit board
JP2000311916A (en) Hybrid integrated circuit device
JPH0748180A (en) Ceramic-metal conjugate
JP2003197825A (en) Semiconductor device and its manufacturing method
JP2000049257A (en) Head radiation circuit board
JP2724075B2 (en) Method for depositing metal layer on aluminum nitride sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050811