JPH11346037A - Substrate for heat radiation - Google Patents

Substrate for heat radiation

Info

Publication number
JPH11346037A
JPH11346037A JP15044498A JP15044498A JPH11346037A JP H11346037 A JPH11346037 A JP H11346037A JP 15044498 A JP15044498 A JP 15044498A JP 15044498 A JP15044498 A JP 15044498A JP H11346037 A JPH11346037 A JP H11346037A
Authority
JP
Japan
Prior art keywords
aluminum
bus bar
substrate
ceramic substrate
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15044498A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokoyama
清 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15044498A priority Critical patent/JPH11346037A/en
Publication of JPH11346037A publication Critical patent/JPH11346037A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a crack from being generated and developed, by jointing a ceramic plate where at least one of aluminum, aluminum nitride, silicon nitride, and silicon carbide is used as a main constituent onto a bus bar part. SOLUTION: In a substrate for heat radiation, a semiconductor element- mounting part 11 made of metal and a busbar part 16 are provided on both surfaces or one surface of a ceramic substrate 10 where at least one of aluminum, aluminum nitride, silicon nitride, and silicon carbide is used as a main constituent, and at the same time a ceramic plate 20 where at least one of aluminum, aluminum nitride, silicon nitride, and silicon carbide is used as the main constituent is jointed onto the bus bar part 16. At least one type of junction materials 12 and 19 being selected from silver copper brazing alloy, silver brazing metal, aluminum brazing metal, aluminum, and polyimide are provided between the bus bar part 16 and the ceramic substrate 10 and/or the ceramic plate 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車、ハイ
ブリッド車、新幹線、地下鉄、通勤電車、エレベータ、
ロボット、クレーンや空調装置等に搭載されるパワーデ
バイスであるIGBT(Insulated Gate Bipolar Transisto
r) や、半導体素子が収容搭載される半導体素子収納用
パッケージや、半導体素子の他にコンデンサや抵抗体等
の各種電子部品が搭載される混成集積回路装置等で、大
電流を流すことが可能な低抵抗配線導体を有する放熱用
基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric car, a hybrid car, a bullet train, a subway, a commuter train, an elevator,
IGBT (Insulated Gate Bipolar Transisto) is a power device mounted on robots, cranes, air conditioners, etc.
r), and a large current can flow in a semiconductor device housing package in which semiconductor devices are housed and mounted, or in a hybrid integrated circuit device in which various electronic components such as capacitors and resistors are mounted in addition to semiconductor devices. The present invention relates to a heat dissipation substrate having a low-resistance wiring conductor.

【0002】[0002]

【従来の技術】パワーデバイスは、最も歴史のある半導
体素子であるが、近年、高耐圧化、大電流化、高速・高
周波化、高機能化が著しく進み、IGBT、GTO 、IPM 、パ
ワーMOS FET 等の高速のMOS 系パワーデバイスが出現す
るに至った。これらのパワーデバイスは、自動車、イン
バータ電車、ストロボ、電子レンジ、ゴルフカート等に
広く利用されている。しかしながら、環境問題を背景に
ハイブリッド車、電気自動車が一般に普及しつつある昨
今では、これらのパワーデバイス、特にIGBTの耐高電圧
化、小型化、薄型化、軽量化が要求されている。
2. Description of the Related Art Power devices are the oldest semiconductor devices, but in recent years, high voltage, large current, high speed, high frequency, and high performance have been remarkably advanced, and IGBT, GTO, IPM, power MOS FET And other high-speed MOS power devices. These power devices are widely used in automobiles, inverter trains, strobes, microwave ovens, golf carts, and the like. However, in recent years, hybrid vehicles and electric vehicles are becoming popular due to environmental problems, and these power devices, especially IGBTs, are required to withstand high voltages, to be smaller, thinner, and lighter.

【0003】従来のパワーデバイスにおける放熱用基板
の構造を、図2を例にとって説明する。AlNからなる
セラミックス基板1の上には、半導体素子搭載部2とバ
スバー部7が形成されている。半導体素子搭載部2は、
Al板4がAlロウ3によりAlNからなるセラミック
ス基板1に接合されている。さらに、Al板4の上に
は、ハンダ層5によって半導体素子6が接合されてい
る。また、バスバー部7は、Al板9がAlロウ8を介
してAlNからなるセラミックス基板1に接合されてい
る。バスバー部7のAl板9は、半導体素子搭載部2の
Al板4より数倍の厚みで形成される。
The structure of a heat dissipation substrate in a conventional power device will be described with reference to FIG. On a ceramic substrate 1 made of AlN, a semiconductor element mounting portion 2 and a bus bar portion 7 are formed. The semiconductor element mounting section 2
The Al plate 4 is joined to the ceramic substrate 1 made of AlN by the Al brazing 3. Further, a semiconductor element 6 is joined on the Al plate 4 by a solder layer 5. In the bus bar portion 7, the Al plate 9 is joined to the ceramic substrate 1 made of AlN via the Al brazing material 8. The Al plate 9 of the bus bar portion 7 is formed several times thicker than the Al plate 4 of the semiconductor element mounting portion 2.

【0004】上記バスバー部7には、半導体素子6から
ワイヤボンディングされ(不図示)これを通じて通電す
るようになっている。また、通電時に発生する熱は、熱
伝導性の高いAlNからなるセラミックス基板1を通じ
て放熱するようになっている。
The bus bar portion 7 is wire-bonded from the semiconductor element 6 (not shown), and electricity is supplied through the wire bar. Further, heat generated at the time of energization is radiated through the ceramic substrate 1 made of AlN having high thermal conductivity.

【0005】[0005]

【発明が解決しようとする課題】上記のような放熱用基
板は、AlNからなるセラミックス基板1の熱膨張率
(4.7×10-6/℃)に対しAl板4、9の熱膨張率
が23.9×10-6/℃と大きく異なる。そのため、使
用時に温度変化が生じると特にAlNからなるセラミッ
クス基板1に引っ張り応力が加わり、熱疲労によりAl
Nからなるセラミックス基板1にクラックが発生した
り、半導体素子搭載部2やバスバー部7の金属層が破壊
したりするという問題点があった。
The heat dissipation substrate as described above has a thermal expansion coefficient of 4.7 × 10 −6 / ° C. for the ceramic substrate 1 made of AlN and a thermal expansion coefficient of the Al plates 4 and 9. Is significantly different from 23.9 × 10 −6 / ° C. Therefore, when a temperature change occurs during use, a tensile stress is particularly applied to the ceramic substrate 1 made of AlN.
There is a problem that cracks occur in the ceramic substrate 1 made of N or the metal layers of the semiconductor element mounting portion 2 and the bus bar portion 7 are broken.

【0006】そのため、例えば100A以上もの大電流を流
せることが要求され、なおかつ、-40 ℃〜150 ℃の冷熱
環境で使用されるような用途への使用は困難であり、大
電流プリント配線基板、例えば、環境問題への取り組み
から登場を余儀なくされているハイブリッド車、電気自
動車、次期新幹線に使用される各種制御機器などをはじ
めとする用途には適用できなかった。
For this reason, it is required that a large current of, for example, 100 A or more can be passed, and it is difficult to use it in a cold environment of -40 ° C. to 150 ° C. For example, it could not be applied to applications such as hybrid vehicles, electric vehicles, and various control devices used in the next Shinkansen, which have been forced to appear due to environmental issues.

【0007】もし、前記従来の放熱用基板を以上述べた
ような用途に使用した場合には、金属層とセラミックス
基板1との間に両者の熱膨張差に起因する熱応力が発生
し、特に金属層端部近傍のセラミックスに応力が集中し
て大きな残留応力となり、その結果、放熱用基板に冷熱
サイクルや外力が加わると前記残留応力と相まってきわ
めて大となり、前記セラミックス基板ににクラックを発
生させたり、そのクラックが進展して他の配線導体を断
線する恐れがあった。
If the above-mentioned conventional heat dissipation substrate is used for the applications described above, a thermal stress is generated between the metal layer and the ceramic substrate 1 due to a difference in thermal expansion between the two. Stress concentrates on the ceramics near the end of the metal layer, resulting in a large residual stress.As a result, when a thermal cycle or an external force is applied to the heat dissipation substrate, the residual stress becomes extremely large in combination with the residual stress, causing cracks in the ceramic substrate. Or the cracks may develop and break other wiring conductors.

【0008】また、バスバー部7として銅板をDBC法
(Direct Bonding Copper法)で接合すること
もできるが、この場合は、バスバー部7を成す金属層と
AlNのセラミックス基板1とのの接合力が不十分で、
熱疲労によりセラミックス基板から金属層が剥離する。
この接合を強固にするためには、活性金属法を用いるこ
もできるが、この方法では、セラミックス基板1にメタ
ライズした部分の外周部にクラックが発生し、配線部分
が断線する恐れがあった。
Further, a copper plate can be bonded as the bus bar portion 7 by a DBC method (Direct Bonding Copper method). In this case, the bonding strength between the metal layer forming the bus bar portion 7 and the AlN ceramic substrate 1 is reduced. Not enough,
The metal layer peels off from the ceramic substrate due to thermal fatigue.
In order to strengthen the bonding, an active metal method can be used. However, in this method, cracks may occur in the outer peripheral portion of the metallized portion of the ceramic substrate 1 and the wiring portion may be disconnected.

【0009】[0009]

【課題を解決するための手段】本発明によれば、アルミ
ナ、窒化アルミニウム、窒化珪素、炭化珪素の中から選
ばれる少なくとも一種以上を主成分とするセラミックス
基板の両面または片面に、金属からなる半導体素子搭載
部とバスバー部とを備え、かつ前記バスバー部上にアル
ミナ、窒化アルミニウム、窒化珪素、炭化珪素の中から
選ばれる少なくとも一種以上を主成分とするセラミック
ス板を接合することにより、バスバー部を成す金属層と
セラミックス基板との熱膨張差に基づく応力の発生を緩
和し、クラックの発生やその進展を防ぎ、配線導体の断
線を防止できる。
According to the present invention, there is provided a ceramic substrate comprising at least one selected from alumina, aluminum nitride, silicon nitride, and silicon carbide as a main component on both surfaces or one surface of a ceramic substrate. By providing an element mounting portion and a bus bar portion, and by joining a ceramic plate containing at least one or more selected from alumina, aluminum nitride, silicon nitride, and silicon carbide on the bus bar portion, the bus bar portion is formed. The generation of stress based on the difference in thermal expansion between the formed metal layer and the ceramic substrate can be reduced, cracks can be prevented from occurring and developing, and disconnection of the wiring conductor can be prevented.

【0010】さらに、配線導体がセラミックス基板から
剥離せずに配線導体の低抵抗化を実現して、100A以上の
大電流を流すことが可能で、しかも、-40 ℃〜150 ℃の
冷熱環境で繰り返し使用しても不具合の起こらない高信
頼性の放熱用基板が提供される。
Further, the wiring conductor can be reduced in resistance without peeling the wiring conductor from the ceramic substrate, and a large current of 100 A or more can be passed. In a cold environment of -40.degree. C. to 150.degree. Provided is a highly reliable heat dissipation substrate that does not cause any trouble even when used repeatedly.

【0011】また、前記バスバー部と、セラミック基板
及び/又はセラミックス板との間に、銀銅ロウ、銀ロ
ウ、アルミロウ、アルミニウム、ポリイミドから選ばれ
る少なくとも一種以上の接合材を備えると、さらに項信
頼性の放熱用基板を得る事ができる。
Further, when at least one kind of joining material selected from silver-copper brazing, silver brazing, aluminum brazing, aluminum, and polyimide is provided between the bus bar portion and the ceramic substrate and / or the ceramic plate, the reliability is further improved. A heat-radiating substrate can be obtained.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0013】図1に本発明の放熱配線基板の斜視図を示
した。本発明の放熱配線基板は、AlN等を主成分とす
るセラミックス基板10の上に、半導体素子搭載部11
とバスバー部16が搭載されている。半導体素子搭載部
11は、Al等の金属板13がAlロウ等の接合材12
により接合されている。さらに、金属板13上にハンダ
層14を介して半導体素子15が搭載されている。ま
た、バスバー部16は、銅等の金属板18がAgロウ等
の接合材17により接合されており、さらに金属板18
上にAlNからなるセラミックス板20がAgロウ等の
金属材19により接合されている。
FIG. 1 is a perspective view of a heat dissipation wiring board of the present invention. The heat-dissipating wiring board of the present invention comprises a semiconductor element mounting portion 11 on a ceramic substrate 10 mainly containing AlN or the like.
And a bus bar section 16. The semiconductor element mounting portion 11 is made of a metal plate 13 made of Al or the like and a bonding material 12 made of Al brazing or the like.
It is joined by. Further, a semiconductor element 15 is mounted on the metal plate 13 via a solder layer 14. The busbar portion 16 is formed by joining a metal plate 18 such as copper with a joining material 17 such as Ag brazing.
A ceramic plate 20 made of AlN is joined thereon with a metal material 19 such as Ag braze.

【0014】通常AlNからなるセラミックス基板10
と銅等の金属板18を接合すると、両者の熱膨張差によ
りセラミックス基板10に引っ張り応力が掛かってセラ
ミックス基板10にクラックが発生するが、金属板18
の上面にセラミックス板20を備えて両側からセラミッ
クスで保持する事により、セラミックス基板10に掛か
る熱応力を分散し、クラックの発生を防止するものであ
る。
A ceramic substrate 10 usually made of AlN
When a metal plate 18 made of copper or the like is joined, a tensile stress is applied to the ceramic substrate 10 due to a difference in thermal expansion between the two, and cracks occur in the ceramic substrate 10.
By providing a ceramic plate 20 on the upper surface of the ceramic substrate 20 and holding the ceramic plate from both sides, thermal stress applied to the ceramic substrate 10 is dispersed and cracks are prevented from occurring.

【0015】ここで、セラミックス板20の面積は、金
属板18の面積に対し、60%以上、好ましくは80%
以上とする。これは、セラミックス板20の面積が銅板
18の面積の60%未満になると、金属板18とセラミ
ックス基板10間の熱膨張差による応力を支えきれず、
セラミックス基板10にクラックが発生するためであ
る。
The area of the ceramic plate 20 is at least 60%, preferably 80%, of the area of the metal plate 18.
Above. This is because when the area of the ceramic plate 20 is less than 60% of the area of the copper plate 18, the stress due to the difference in thermal expansion between the metal plate 18 and the ceramic substrate 10 cannot be supported,
This is because cracks occur in the ceramic substrate 10.

【0016】また、セラミックス板20の形状は、でき
るだけ金属板18の外周に沿った形状である事が好まし
い。金属板18上にワイヤーボンディングで導通をとる
部分は、金属板18の端面もしくはセラミックス板板2
0の中央部に穴を開けて金属板18を露出させるように
する。通常、3個の半導体素子搭載部11が1個のバス
バー部16にワイヤーボンディング等の手法で接続され
る。
Further, it is preferable that the shape of the ceramic plate 20 is as much as possible along the outer periphery of the metal plate 18. The portion to be electrically connected to the metal plate 18 by wire bonding is the end face of the metal plate 18 or the ceramic plate 2
A hole is made in the center of the hole 0 so that the metal plate 18 is exposed. Usually, three semiconductor element mounting portions 11 are connected to one bus bar portion 16 by a method such as wire bonding.

【0017】また、本発明では、一つのセラミックス基
板10上に半導体素子搭載部11とバスバー部16がそ
れぞれ一個所以上形成されていることを特徴とするが、
これは、この半導体素子搭載部11とバスバー部16を
セラミックス基板11上で一体化した構造がパワーデバ
イス、特にIGBTのような用途にとって必要不可欠だ
からである。
The present invention is characterized in that one or more semiconductor element mounting portions 11 and bus bar portions 16 are formed on one ceramic substrate 10, respectively.
This is because the structure in which the semiconductor element mounting portion 11 and the bus bar portion 16 are integrated on the ceramic substrate 11 is indispensable for a power device, particularly for an application such as an IGBT.

【0018】本発明において、半導体素子搭載部11を
成す金属板13や接合材12、又はバスバー部16を成
す金属板18や接合材17、19等の材質としては、モ
リブデン、タングステン、銅、アルミニウム、銀から選
ばれる少なくとも一種以上の緻密質または多孔質の金属
を用いる。これは、これらの金属が低抵抗でなおかつ、
気孔率の選択によってヤング率を低下させると同時に固
有抵抗値を低下させても十分な大電流配線導体として使
用できるからである。
In the present invention, the metal plate 13 and the bonding material 12 forming the semiconductor element mounting portion 11 or the metal plate 18 and the bonding materials 17 and 19 forming the bus bar portion 16 are made of molybdenum, tungsten, copper, aluminum, or the like. And at least one dense or porous metal selected from silver. This is because these metals have low resistance and
This is because even if the porosity is selected and the Young's modulus is lowered and at the same time the specific resistance is lowered, it can be used as a sufficiently large current wiring conductor.

【0019】この気孔率の選択は、セラミックス基板1
と各金属層との熱膨張率の差に起因する応力の発生を抑
制する際に重要であり、たとえば窒化アルミニウム質セ
ラミックスからなるセラミックス基板1の場合、各金属
層として銀、銅を用いる場合に限っては、5〜30%、
望ましくは7〜15%、理想的には8〜12%の気孔率
が必要である。この気孔率を調整する方法としては、一
般的にはセラミックス基板11と各金属層との接合をす
る際の焼き付け温度の調整を行うが、所望の気孔率を正
確に得るためには、あらかじめ焼結前の金属層に所望の
形状で所望の大きさのプラスチックビーズを適量混入さ
せておく方法がある。
The selection of the porosity depends on the ceramic substrate 1
Is important in suppressing the generation of stress due to the difference in the coefficient of thermal expansion between the metal layer and each metal layer. For example, in the case of a ceramic substrate 1 made of aluminum nitride ceramics, when silver or copper is used as each metal layer, 5-30%,
Desirably, a porosity of 7-15%, ideally 8-12% is required. As a method of adjusting the porosity, generally, the baking temperature at the time of joining the ceramic substrate 11 and each metal layer is adjusted. However, in order to accurately obtain a desired porosity, the baking temperature is adjusted in advance. There is a method in which a suitable amount of plastic beads having a desired shape and a desired size are mixed in a metal layer before the bonding.

【0020】以下、各金属層のメタライズ部分の気孔率
の測定方法について説明する。メタライズ部分は、厚み
が50μm 程度と非常に薄いので、通常の方法では気孔
率の測定が難しい。
Hereinafter, a method of measuring the porosity of the metallized portion of each metal layer will be described. Since the metallized portion has a very small thickness of about 50 μm, it is difficult to measure the porosity by a usual method.

【0021】そこで、本発明では、ポロシメータを用い
て気孔率の測定を行った。この測定方法は、ガラスの容
器(ディラトメータ)にメタライズが形成された窒化珪
素を挿入し、ガラス容器に水銀(Hg)を満たし水銀に
外部から圧力を掛けて、その際のメタライズ部への侵入
体積から気孔率を算出する。水銀の表面張力のため、そ
のままではメタライズの気孔部分に水銀は浸透しない。
外部から圧力を掛けると、次式に従って、気孔内部に水
銀が浸透し、その浸透量を測定する事により、気孔量
(K)を測定できる。今回外圧を100気圧まで上昇さ
せて、気孔量を測定した。
Therefore, in the present invention, the porosity was measured using a porosimeter. In this measurement method, a metallized silicon nitride is inserted into a glass container (a dilatometer), the glass container is filled with mercury (Hg), and a pressure is applied to the mercury from the outside. The porosity is calculated from Due to the surface tension of mercury, mercury does not penetrate into the pores of the metallization as it is.
When pressure is applied from the outside, mercury penetrates into the pores according to the following equation, and the pore volume (K) can be measured by measuring the permeation amount. This time, the external pressure was increased to 100 atm, and the porosity was measured.

【0022】水銀侵入気孔径(μm )=15/水銀に掛
ける圧力(atm)メタライズ部のメタライズ厚み
(t)は、表面粗さ計もしくは光干渉厚み計等を用いて
測定し、幅(h)と長さ(L)はメジャースコープで測
定し、メタライス部の体積(V)は、 V=t×h×L 式にて計算して求め、気孔率(A)は、次式にて求め
た。
Mercury intrusion pore diameter (μm) = 15 / pressure applied to mercury (atm) The metallized thickness (t) of the metallized portion is measured using a surface roughness meter or an optical interference thickness meter, and the width (h) is measured. And the length (L) were measured with a measure scope, the volume (V) of the metallized portion was calculated by the formula V = t × h × L, and the porosity (A) was calculated by the following formula. .

【0023】気孔率(A)=K/V ここで、窒化珪素等のセラミックス基板11は緻密なの
で、その気孔率は無視したが、無視できない気孔がセラ
ミックス基板11に見込める場合は、表面積および体積
が測定試験片と同一のダミーを準備し、ダミーの気孔量
を差し引いたものをメタライズ部の気孔量として用いれ
ばよい。
Porosity (A) = K / V Here, since the ceramic substrate 11 made of silicon nitride or the like is dense, its porosity is neglected. However, when non-negligible porosity can be expected in the ceramic substrate 11, the surface area and volume are reduced. The same dummy as the measurement test piece is prepared, and the value obtained by subtracting the amount of porosity of the dummy may be used as the amount of porosity of the metallized portion.

【0024】また、本発明において、バスバー部16上
にアルミナ、窒化アルミニウム、窒化珪素、炭化珪素の
中から選ばれる少なくとも一種以上を主成分とするセラ
ミックス板20を接合したのは、以下の理由による。即
ち、バスバー部16は通常複数の半導体素子搭載部11
からワイヤーボンディングなどで接続されて大電流の通
路として使用されるため、半導体素子搭載部11の金属
板13の2〜10倍の断面積を有する。つまり、バスバ
ー部16は半導体素子搭載部11に比べてセラミックス
基板10との間の熱膨張率に起因する応力の発生が大き
くなる。この応力の発生によるセラミックス基板10の
破壊を防止するためには、バスバー部16の上に応力緩
和のためのセラミックス板20を接合すれば良いことを
見いだしたのであり、本点なくしては、本発明の完成は
なかった。そして、これらの相乗効果により40℃〜150
℃の冷熱環境で繰り返し使用しても不具合の起こらない
高信頼性の大電流プリント配線基板として用いられる放
熱用基板が提供される。
In the present invention, the ceramic plate 20 containing at least one selected from the group consisting of alumina, aluminum nitride, silicon nitride, and silicon carbide is bonded on the bus bar portion 16 for the following reasons. . That is, the bus bar section 16 is usually provided with a plurality of semiconductor element mounting sections 11.
Since it is connected as a large current path by wire bonding or the like, it has a cross-sectional area 2 to 10 times that of the metal plate 13 of the semiconductor element mounting portion 11. In other words, the busbar portion 16 generates more stress due to the coefficient of thermal expansion between the busbar portion 16 and the ceramic substrate 10 than the semiconductor element mounting portion 11. In order to prevent the ceramic substrate 10 from being broken due to the generation of the stress, it has been found that it is sufficient to join the ceramic plate 20 for relaxing the stress on the bus bar portion 16. The invention was not completed. And, due to these synergistic effects,
Provided is a heat-radiating substrate used as a high-reliability large-current printed circuit board that does not cause any trouble even when repeatedly used in a cold environment at a temperature of ° C.

【0025】さらに、上記バスバー部16における、金
属板18とセラミックス基板10及び/又はセラミック
ス板20との間の接合材17、19としては、銀銅ロ
ウ、銀ロウ、アルミロウ、アルミニウム、ポリイミドか
ら選ばれる少なくとも一種以上を使用すれば、有効に接
合することができる。
Further, the joining materials 17 and 19 between the metal plate 18 and the ceramic substrate 10 and / or the ceramic plate 20 in the bus bar portion 16 are selected from silver copper brazing, silver brazing, aluminum brazing, aluminum, and polyimide. If at least one kind is used, it can be joined effectively.

【0026】以上のように本発明の放熱基板は、大電流
を流すための大電流放熱配線基板として好適に用いるこ
とができる。特に、IGBT等のパワー素子を搭載する
パワーモジュール用放熱基板として好適に使用すること
ができる。
As described above, the heat dissipation board of the present invention can be suitably used as a large current heat dissipation wiring board for passing a large current. In particular, it can be suitably used as a heat dissipation board for a power module on which a power element such as an IGBT is mounted.

【0027】[0027]

【実施例】以下に具体的実施例を示す。基板の寸法はす
べてB6サイズとした。厚み1〜3mmのAlNテープ上
にWペーストを15〜40μm 厚みで所望形状にプリン
トし、1750〜1900℃×3時間の条件でN2 −H
2 混合ガス中で同時焼成し、表面にWメタライズ部を設
置したAlNからなるセラミックス基板11を得る。そ
の後、Wメタライズ上に接合材17としてAgロウ、金
属板18として厚み0.5〜1mmのCu板、接合材1
9としてAgロウと、セラミックス板20として厚み1
〜3mmのAlN板を順次重ねて同時に真空炉にて80
0〜860℃で接合し、バスバー部16を形成した。そ
の後、金属板13として厚み0.5mmのAl板を接合
材12としてAlロウで接合して半導体素子搭載部11
を形成し、本発明の放熱用基板を得た。さらにその後、
ハンダ接合により半導体素子15を金属板13上に実装
した。
EXAMPLES Specific examples are shown below. All board dimensions were B6 size. A W paste is printed in a desired shape in a thickness of 15 to 40 μm on an AlN tape having a thickness of 1 to 3 mm, and N 2 -H is applied at 1750 to 1900 ° C. for 3 hours.
2 Simultaneous firing in a mixed gas to obtain a ceramic substrate 11 made of AlN having a W metallized portion provided on the surface. Then, on the W metallization, an Ag brazing material as the bonding material 17, a Cu plate having a thickness of 0.5 to 1 mm as the metal plate 18, a bonding material 1
9 as Ag brazing, and ceramic plate 20 as thickness 1
33 mm AlN plates are sequentially stacked and simultaneously placed in a vacuum furnace for 80
The joining was performed at 0 to 860 ° C. to form the bus bar portion 16. Thereafter, an Al plate having a thickness of 0.5 mm as a metal plate 13 is joined with an Al brazing material as a joining material 12, and the semiconductor element mounting portion 11
Was formed to obtain a heat dissipation substrate of the present invention. And then
The semiconductor element 15 was mounted on the metal plate 13 by solder bonding.

【0028】さらに、セラミックス基板1、バスバー部
16を成す金属板18、接合材17、セラミックス板2
0の材質を表1に示すように、種々に変化させたものを
同様に試作し、冷熱試験を行った。
Further, the ceramic substrate 1, the metal plate 18 forming the bus bar portion 16, the joining material 17, the ceramic plate 2
As shown in Table 1, various materials having different material Nos. 0 were prototyped in the same manner and subjected to a thermal test.

【0029】冷熱試験は、-40 ℃と150 ℃の二種類の液
槽を用意し、各液槽に放熱用基板を30分間ずつ放置する
サイクル(1 サイクル1 時間)を繰り返す耐久試験を行
い、クラックが発生するまでのサイクル数を求めた。
In the cooling / heating test, two kinds of liquid tanks of -40 ° C. and 150 ° C. were prepared, and a durability test in which a cycle (one cycle and one hour) in which the heat radiation substrate was left in each liquid tank for 30 minutes was performed. The number of cycles until cracks occurred was determined.

【0030】結果を表1に示すように、バスバー部16
にセラミックス板20を接合した本発明実施例では、こ
の苛酷なサイクル試験を1000サイクル迄クリアーしてお
り、試験後の抵抗値にもなんら影響はみられなかった。
一方、上記セラミックス板20を接合していない比較例
では、1000サイクルをクリアーせずにクラックの発生な
どがみられるた。
The results are shown in Table 1.
In the example of the present invention in which the ceramic plate 20 was bonded to the substrate, the severe cycle test was cleared up to 1000 cycles, and the resistance value after the test was not affected at all.
On the other hand, in the comparative example in which the ceramic plate 20 was not bonded, cracks were observed without clearing 1000 cycles.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上のように本発明によれば、アルミ
ナ、窒化アルミニウム、窒化珪素、炭化珪素の中から選
ばれる少なくとも一種以上を主成分とするセラミックス
基板の両面または片面に、金属からなる半導体素子搭載
部とバスバー部とを備え、かつ前記バスバー部上にアル
ミナ、窒化アルミニウム、窒化珪素、炭化珪素の中から
選ばれる少なくとも一種以上を主成分とするセラミック
ス板を接合することにより、バスバー部を成す金属層と
セラミックス基板との熱膨張差に基づく応力の発生を緩
和し、クラックの発生やその進展を防ぎ、配線導体の断
線を防止できる。
As described above, according to the present invention, a metal substrate is formed on both surfaces or one surface of a ceramic substrate mainly containing at least one selected from alumina, aluminum nitride, silicon nitride, and silicon carbide. By providing an element mounting portion and a bus bar portion, and by joining a ceramic plate containing at least one or more selected from alumina, aluminum nitride, silicon nitride, and silicon carbide on the bus bar portion, the bus bar portion is formed. The generation of stress based on the difference in thermal expansion between the formed metal layer and the ceramic substrate can be reduced, cracks can be prevented from occurring and developing, and disconnection of the wiring conductor can be prevented.

【0033】そのため、100A以上の大電流を流すことが
可能で、しかも、-40 ℃〜150 ℃の冷熱環境で繰り返し
使用しても不具合の起こらない高信頼性の放熱用基板が
提供される。
Therefore, a highly reliable heat-dissipating substrate which can flow a large current of 100 A or more and which does not cause any trouble even when repeatedly used in a cold environment of -40 ° C. to 150 ° C. is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放熱用基板を示す斜視図である。FIG. 1 is a perspective view showing a heat dissipation substrate of the present invention.

【図2】従来の放熱用基板を示す斜視図である。FIG. 2 is a perspective view showing a conventional heat dissipation substrate.

【符号の説明】[Explanation of symbols]

10:セラミックス基板 11:半導体素子搭載部 12:接合材 13:金属板 14:ハンダ層 15:半導体素子 16:バスバー部 17,19:接合材 18:金属板 20:セラミックス板 10: Ceramic substrate 11: Semiconductor element mounting part 12: Bonding material 13: Metal plate 14: Solder layer 15: Semiconductor element 16: Bus bar part 17, 19: Bonding material 18: Metal plate 20: Ceramic plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミナ、窒化アルミニウム、窒化珪素、
炭化珪素の中から選ばれる少なくとも一種以上を主成分
とするセラミックス基板の両面または片面に、金属から
なる半導体素子搭載部とバスバー部とを備え、かつ前記
バスバー部上にアルミナ、窒化アルミニウム、窒化珪
素、炭化珪素の中から選ばれる少なくとも一種以上を主
成分とするセラミックス板を接合したことを特徴とする
放熱用基板。
An alumina, aluminum nitride, silicon nitride,
A semiconductor element mounting portion made of metal and a bus bar portion are provided on both surfaces or one surface of a ceramics substrate containing at least one or more selected from silicon carbide as a main component, and alumina, aluminum nitride, and silicon nitride are provided on the bus bar portion. A heat dissipation substrate, wherein a ceramic plate containing at least one selected from silicon carbide as a main component is bonded.
【請求項2】前記バスバー部と、セラミックス基板及び
/又はセラミックス板との間に、銀銅ロウ、銀ロウ、ア
ルミロウ、アルミニウム、ポリイミドから選ばれる少な
くとも一種以上の接合材を備えたことを特徴とする請求
項1記載の放熱用基板。
2. The method according to claim 1, wherein at least one kind of a joining material selected from silver copper brazing, silver brazing, aluminum brazing, aluminum, and polyimide is provided between the bus bar portion and the ceramic substrate and / or the ceramic plate. The heat dissipation substrate according to claim 1.
JP15044498A 1998-05-29 1998-05-29 Substrate for heat radiation Pending JPH11346037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15044498A JPH11346037A (en) 1998-05-29 1998-05-29 Substrate for heat radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15044498A JPH11346037A (en) 1998-05-29 1998-05-29 Substrate for heat radiation

Publications (1)

Publication Number Publication Date
JPH11346037A true JPH11346037A (en) 1999-12-14

Family

ID=15497077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15044498A Pending JPH11346037A (en) 1998-05-29 1998-05-29 Substrate for heat radiation

Country Status (1)

Country Link
JP (1) JPH11346037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1711040A1 (en) * 2005-03-30 2006-10-11 Toyota Jidosha Kabushiki Kaisha Circuit device and manufacturing method thereof
JP2010227809A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1711040A1 (en) * 2005-03-30 2006-10-11 Toyota Jidosha Kabushiki Kaisha Circuit device and manufacturing method thereof
CN100390989C (en) * 2005-03-30 2008-05-28 丰田自动车株式会社 Circuit device and manufacturing method thereof
US7446406B2 (en) 2005-03-30 2008-11-04 Toyota Jidosha Kabushiki Kaisha Circuit device and manufacturing method thereof
JP2010227809A (en) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus

Similar Documents

Publication Publication Date Title
EP1416533B1 (en) Method for forming a direct aluminium bonded substrate and method for forming a power device including same
US6912130B2 (en) Combined member of aluminum-ceramics
US6579623B2 (en) Composite material member for semiconductor device and insulated and non-insulated semiconductor devices using composite material member
KR102186331B1 (en) Resistor and production method for resistor
JPH11346037A (en) Substrate for heat radiation
JP3793562B2 (en) Ceramic circuit board
JPH0823145A (en) Substrate for hybrid ic
JP2000294888A (en) Heat radiative wiring board
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JP2000138319A (en) Wiring board
JP3862632B2 (en) Metal-based multilayer circuit board and hybrid integrated circuit using the same
JP3583019B2 (en) Joint structure of heat dissipation wiring board
JP3426827B2 (en) Semiconductor device
JP2001135753A (en) Semiconductor module substrate and manufacturing method for the same
JPS63173348A (en) Semiconductor device
JP3257953B2 (en) Method for manufacturing substrate for hybrid integrated circuit
JP4339976B2 (en) Power module board
JP3850312B2 (en) Semiconductor element storage package and semiconductor device
JPH0823052A (en) Thick film hybrid ic board provided with lead terminal
JPH11312850A (en) Heat-dissipating wiring substrate
JPS5961054A (en) Semiconductor device
JPH10275879A (en) Semiconductor package
JP2002076213A (en) Semiconductor device module
JP3872391B2 (en) Package for storing semiconductor elements
JP2003197825A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A02 Decision of refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A02