JPH11278921A - Engine part and its production - Google Patents

Engine part and its production

Info

Publication number
JPH11278921A
JPH11278921A JP10084599A JP8459998A JPH11278921A JP H11278921 A JPH11278921 A JP H11278921A JP 10084599 A JP10084599 A JP 10084599A JP 8459998 A JP8459998 A JP 8459998A JP H11278921 A JPH11278921 A JP H11278921A
Authority
JP
Japan
Prior art keywords
less
weight
cordierite
oxide
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10084599A
Other languages
Japanese (ja)
Other versions
JP3856939B2 (en
Inventor
Masahiro Sato
政宏 佐藤
Hirohisa Sechi
啓久 瀬知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP08459998A priority Critical patent/JP3856939B2/en
Publication of JPH11278921A publication Critical patent/JPH11278921A/en
Application granted granted Critical
Publication of JP3856939B2 publication Critical patent/JP3856939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide both an engine part having a low thermal conductivity and a high strength at high temperatures and a method for producing the engine part. SOLUTION: This engine part is formed from ceramics obtained by sintering a molded product prepared by compounding 80-95.5 wt.% of a cordierite powder having <=5 μm average particle diameter, 0.5-20 wt.% of a rare earth element oxide having <=2 μm average particle diameter and further <=30 wt.% of at least one kind selected from silicon nitride, silicon carbide and silicon oxynitride at a temperature within the range of 1,200-1,500 deg.C and then cooling the sintered molded product to 1,000 deg.C at <=10 deg.C/min rate. The ceramics contain cordierite crystal grains having <=10 μm average grain diameter, have <=5% porosity of open pores, further contain a compound oxide crystal phase of the rare earth element oxide and silicon oxide deposited on the grain boundary of cordierite crystal grains and have <=5 W/m.K thermal conductivity at ambient temperature and >=80 MPa strength at 800 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ピストン、シリン
ダー、チャンバー等の断熱性が要求される部品として好
適なエンジン部品とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine component suitable as a component requiring heat insulation, such as a piston, a cylinder, a chamber, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来技術】コージェライト系焼結体は、従来から低熱
膨張のセラミックスとして知られており、フィルター、
ハニカム、耐火物などに応用されている。このコージェ
ライト系焼結体は、コージェライト粉末、あるいはコー
ジェライトを形成するMgO、Al2 3 、SiO2
末を配合して、これに焼結助剤として、希土類元素酸化
物や、SiO2 、CaO、MgOなどの添加し、所定形
状に成形後、1000〜1400℃の温度で焼成するこ
とによって製造される(特公昭57−3629号、特開
平2−229760号)。
2. Description of the Related Art Cordierite-based sintered bodies are conventionally known as ceramics having a low thermal expansion, and include filters,
It is applied to honeycombs and refractories. This cordierite-based sintered body is mixed with cordierite powder or MgO, Al 2 O 3 , and SiO 2 powder that forms cordierite, and as a sintering aid, a rare earth element oxide or SiO 2 , CaO, MgO, etc., molded into a predetermined shape, and fired at a temperature of 1000 to 1400 ° C. (JP-B-57-3629, JP-A-2-229760).

【0003】近年、自動車用エンジンは高出力化に伴
い、高温燃焼化が進んでいる。そのため燃焼室周りの高
温化が進み、その断熱性が重要になってきている。また
省エネルギー、高効率化の観点からも熱の発散を防ぐこ
とが重要である。そこで、従来より、チタン酸アルミニ
ウム、コージェライト等の低熱伝導性セラミックスがエ
ンジン部品に用いられてきた。
[0003] In recent years, high-temperature combustion of automobile engines has been progressing along with high output. For this reason, the temperature around the combustion chamber is increasing, and its heat insulating property is becoming important. It is also important to prevent heat dissipation from the viewpoint of energy saving and high efficiency. Therefore, conventionally, low thermal conductive ceramics such as aluminum titanate and cordierite have been used for engine parts.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
のセラミックスは断熱性に優れ、低熱膨張であるため、
耐熱衝撃性にある程度優れるものの、緻密体が得にく
く、強度も40MPa程度と低く、構造部材として使用
できる範囲および条件は限られていた。
However, since these ceramics have excellent heat insulation properties and low thermal expansion,
Although it is excellent in thermal shock resistance to some extent, it is difficult to obtain a dense body, and its strength is as low as about 40 MPa, and the range and conditions that can be used as a structural member are limited.

【0005】一方、高温高強度材料として窒化珪素等の
セラミックスが知られているが、窒化ケイ素セラミック
スは、熱伝導率は30W/m・Kと高く断熱性に乏しい
ものであり、断熱性と、強度特性を兼ね備えた材料はこ
れまで得られていなかった。
On the other hand, ceramics such as silicon nitride are known as a high-temperature high-strength material. However, silicon nitride ceramics have a high thermal conductivity of 30 W / m · K and poor heat insulating properties. A material having strength properties has not been obtained so far.

【0006】従って、本発明は、それ自体低熱伝導性を
有するとともに、高強度を有するエンジン部品と、それ
を安定に製造することのできるエンジン部品の製造方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an engine part having low thermal conductivity itself and high strength, and a method of manufacturing an engine part capable of stably manufacturing the same. is there.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
に対し鋭意研究を重ねた結果、コージェライトに希土類
元素酸化物を適量添加し、その焼結体の粒径を制御する
とともに、コージェライト結晶粒界に特定の結晶相を析
出させることにより、低熱伝導特性を保持しつつ緻密化
を促進し、且つ強度を大幅に高めることができることを
見いだし、本発明に至った。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have added an appropriate amount of a rare earth element oxide to cordierite, and controlled the particle size of the sintered body. It has been found that by precipitating a specific crystal phase at the cordierite crystal grain boundaries, densification can be promoted while maintaining low thermal conductivity, and the strength can be greatly increased, and the present invention has been achieved.

【0008】即ち、本発明のエンジン部品は、コージェ
ライトを80〜95.5重量%、希土類元素(RE)を
酸化物換算で0.5〜20重量%の割合で含み、コージ
ェライト結晶粒子の平均粒径が10μm以下、気孔率が
5%以下であり、前記コージェライト結晶粒子の粒界に
希土類元素酸化物と酸化ケイ素との複合酸化物結晶相が
析出してなるとともに、室温における熱伝導率が5W/
m・K以下であることを特徴とするものであり、特に、
室温から800℃までの抗折強度が80MPa以上であ
ること、さらに、窒化珪素、炭化珪素および酸窒化けい
素の中から選ばれる少なくとも1種を30重量%以下の
割合で含むことを特徴とするものである。
That is, the engine part of the present invention contains 80 to 95.5% by weight of cordierite and 0.5 to 20% by weight of a rare earth element (RE) in terms of oxide, and contains cordierite crystal particles. It has an average particle diameter of 10 μm or less, a porosity of 5% or less, and a composite oxide crystal phase of a rare earth element oxide and silicon oxide precipitates at the grain boundaries of the cordierite crystal particles, and has a thermal conductivity at room temperature. Rate is 5W /
m · K or less,
A flexural strength from room temperature to 800 ° C. is 80 MPa or more, and at least one selected from silicon nitride, silicon carbide, and silicon oxynitride is contained in a proportion of 30% by weight or less. Things.

【0009】また、本発明のエンジン部品の製造方法
は、平均粒径5μm以下のコージェライト粉末を80〜
95.5重量%、平均粒径2μm以下の希土類元素酸化
物を0.5〜20重量%の割合で配合した成形体を、1
200〜1500℃の温度範囲で焼結した後、1000
℃までを10℃/min以下の速度で冷却することを特
徴とするものであり、さらには、窒化珪素、炭化珪素お
よび酸窒化けい素の中から選ばれる少なくとも1種を3
0重量%以下の割合で添加することを特徴とするもので
ある。
Further, according to the method for manufacturing an engine part of the present invention, a cordierite powder having an average particle size of 5 μm or less is used
A molded article containing 95.5% by weight of a rare earth element oxide having an average particle diameter of 2 μm or less at a ratio of 0.5 to 20% by weight was prepared as 1
After sintering in the temperature range of 200 to 1500 ° C, 1000
Cooling to 10 ° C. at a rate of 10 ° C./min or less. Further, at least one selected from silicon nitride, silicon carbide and silicon oxynitride is cooled to 3 ° C.
It is characterized in that it is added in a proportion of 0% by weight or less.

【0010】[0010]

【発明の実施の形態】本発明のエンジン部品は、組成
上、2MgO・2Al2 3 ・5SiO2 で表される複
合酸化物のコージェライトを80〜99.5重量%、特
に85〜95重量%の割合で含有するとともに、このコ
ージェライト結晶相は、平均粒径が1〜10μm、好ま
しくは1〜5μmの微細な結晶粒子として存在すること
が重要であり、このような微粒な結晶構造によって、低
熱伝導性を損なわず、強度を向上させることができる。
Engine parts of the embodiment of the present invention, the composition on the cordierite complex oxide represented by 2MgO · 2Al 2 O 3 · 5SiO 2 80~99.5 % by weight, in particular 85 to 95 weight %, And it is important that the cordierite crystal phase exists as fine crystal particles having an average particle size of 1 to 10 μm, preferably 1 to 5 μm. The strength can be improved without deteriorating the low thermal conductivity.

【0011】また、この焼結体中には、焼結助剤成分と
して希土類元素を酸化物換算で0.5〜20重量%、特
に5〜15重量%の割合で含有するものである。このよ
うなこれらは、焼結過程でコージェライトの一部と反応
し、焼結助剤として働き、低温での焼結を可能とし、組
織を微粒化するとともに緻密化を促進する。希土類元素
としては、Y、Yb,Er、Sm等が挙げられる。
The sintered body contains a rare earth element as a sintering aid component in an amount of 0.5 to 20% by weight, especially 5 to 15% by weight in terms of oxide. These react with a part of cordierite in the sintering process, act as a sintering aid, enable sintering at a low temperature, reduce the size of the structure, and promote densification. Examples of the rare earth element include Y, Yb, Er, and Sm.

【0012】なお、上記コージェライトおよび希土類元
素の量を上記の比率に限定したのは、コージェライトが
99.5重量%よりも多い、言い換えれば上記希土類元
素量が0.5重量%よりも少ないと、緻密化が阻害さ
れ、焼結温度を高くする必要があり、その結果、コージ
ェライトの結晶粒径が大きくなり、低熱伝導性、高強度
が達成されない。また、コージェライト量が80重量%
よりも少ない、言い換えれば上記希土類元素量が20重
量%よりも大きいと、粒成長が促進され、かつ粒界相が
多くなるため、低熱伝導性や高温での高強度が達成され
ない。
The reason why the amount of the cordierite and the rare earth element is limited to the above ratio is that the amount of the cordierite is more than 99.5% by weight, in other words, the amount of the rare earth element is less than 0.5% by weight. In this case, densification is hindered, and the sintering temperature must be increased. As a result, the crystal grain size of cordierite increases, and low thermal conductivity and high strength cannot be achieved. In addition, the amount of cordierite is 80% by weight.
If the amount is less than that, in other words, if the amount of the rare earth element is more than 20% by weight, grain growth is promoted and the grain boundary phase is increased, so that low thermal conductivity and high strength at high temperatures cannot be achieved.

【0013】また、このセラミックスは、開気孔率が5
%以下、特に3%以下の緻密体からなることが重要であ
り、開気孔率が5%よりも大きいと、気孔が破壊源とな
り、強度が低下する。
The ceramic has an open porosity of 5%.
% Or less, particularly 3% or less is important. If the open porosity is more than 5%, the pores serve as a fracture source and the strength is reduced.

【0014】また、このセラミックスにおいては、コー
ジェライト結晶相の粒界に希土類元素酸化物と酸化ケイ
素との複合酸化物結晶相が析出してなることも重要であ
る。
In this ceramic, it is also important that a composite oxide crystal phase of a rare earth oxide and silicon oxide precipitates at the grain boundaries of the cordierite crystal phase.

【0015】このように粒界に上記結晶相が析出するこ
とにより、高温強度を高めることができる。希土類元素
酸化物(RE2 3 )と酸化ケイ素(SiO2 )との複
合酸化物結晶相としては、モノシリケート(RE2 Si
5 )、ダイシリケート(RE2 Si2 7 )等が挙げ
られる。
As described above, the high-temperature strength can be increased by the precipitation of the crystal phase at the grain boundaries. As a composite oxide crystal phase of a rare earth element oxide (RE 2 O 3 ) and silicon oxide (SiO 2 ), monosilicate (RE 2 Si)
O 5 ) and disilicate (RE 2 Si 2 O 7 ).

【0016】本発明によれば、上記の構成によって、室
温において5W/m・K以下、特に3W/m・K以下の
低熱伝導性とともに、室温から800℃の温度範囲にお
いて、JIS−R−1601に基づく4点曲げ抗折強度
において、80MPa以上、特に100MPa以上の高
強度化を達成することができる。
According to the present invention, according to the above-described structure, the JIS-R-1601 can be obtained at room temperature to 800 ° C. with low thermal conductivity of 5 W / m · K or less, particularly 3 W / m · K or less at room temperature. In the four-point bending buckling strength based on the above, high strength of 80 MPa or more, particularly 100 MPa or more can be achieved.

【0017】また、本発明によれば、更に強度を高める
上で、上記セラミックス中に、窒化珪素、炭化珪素およ
び酸窒化けい素の群から選ばれる少なくとも1種を30
重量%以下、好ましくは10〜20重量%の割合で含有
させることが望ましい。
According to the present invention, in order to further increase the strength, at least one selected from the group consisting of silicon nitride, silicon carbide and silicon oxynitride is contained in the ceramics.
It is desirable that the content is not more than 10% by weight, preferably 10 to 20% by weight.

【0018】但し、これらの含有量が30重量%を超え
ると、低熱伝導性が失われてしまうために望ましくな
い。
However, if the content exceeds 30% by weight, low thermal conductivity is lost, which is not desirable.

【0019】このようなセラミックスは、エンジン部品
として用いられる。そこで、図1のエンジンの概略断面
図を示した。図1において、本発明におけるセラミック
スは、ピストンクラウン1、シリンダライナ2、ピスト
ン耐摩環3、シリンダヘッドライナ4、チャンバ5、さ
らには、排気ポートライナ6などにも好適に採用され
る。特に、ピストンクラウンとして最も好適である。
Such ceramics are used as engine parts. Thus, a schematic sectional view of the engine of FIG. 1 is shown. In FIG. 1, the ceramic according to the present invention is suitably used for a piston crown 1, a cylinder liner 2, a piston ring 3, a cylinder head liner 4, a chamber 5, and an exhaust port liner 6. In particular, it is most suitable as a piston crown.

【0020】上記のようなセラミックスを作製するに
は、まず、平均粒子径5μm以下、好ましくは3μm以
下のコージェライト粉末を80〜95.5重量%、好ま
しくは85〜95重量%、平均粒径2μm以下、特に1
μm以下の希土類元素酸化物を0.5〜20重量%、好
ましくは5〜15重量%の割合で添加混合する。また、
強度改善のために、窒化珪素、炭化珪素、酸窒化けい素
の中から少なくとも1種を30重量%以下、特に10〜
20重量%の割合で添加混合する。
In order to prepare the above ceramics, first, cordierite powder having an average particle size of 5 μm or less, preferably 3 μm or less is 80 to 95.5% by weight, preferably 85 to 95% by weight, and the average particle size is 2 μm or less, especially 1
A rare earth element oxide having a size of not more than μm is added and mixed at a ratio of 0.5 to 20% by weight, preferably 5 to 15% by weight. Also,
In order to improve the strength, at least one of silicon nitride, silicon carbide, and silicon oxynitride is not more than 30% by weight, especially
Add and mix at a ratio of 20% by weight.

【0021】そして、上記の比率で各成分を配合した
後、ボールミルなどにより十分に混合し、所定形状に所
望の成形手段、例えば、金型プレス,冷間静水圧プレ
ス,押出し成形等により任意の形状に成形後、焼成す
る。
After the components are blended in the above ratio, they are sufficiently mixed by a ball mill or the like, and are optionally formed into a predetermined shape by a desired molding means, for example, a die press, a cold isostatic press, an extrusion molding or the like. After forming into a shape, it is fired.

【0022】焼成は、大気中もしくは、真空、Ar、N
2 などの不活性ガス雰囲気中で1200〜1500℃、
好ましくは1250〜1400℃の温度範囲で1〜10
時間程度焼結することにより、相対密度95%以上に緻
密化することができる。
The firing is performed in the air or in vacuum, Ar, N
1200 to 1500 ° C in an inert gas atmosphere such as 2 ,
It is preferably 1 to 10 in a temperature range of 1250 to 1400 ° C.
By sintering for about an hour, the relative density can be increased to 95% or more.

【0023】このときの焼成温度が1200℃よりも低
いと緻密化できず、1500℃を越えると、成形体が溶
融したり、粒成長を伴い、低熱伝導性、高強度の特性を
損なう。
If the firing temperature at this time is lower than 1200 ° C., densification cannot be achieved, and if it exceeds 1500 ° C., the molded body is melted or accompanied by grain growth, which impairs the properties of low thermal conductivity and high strength.

【0024】また、セラミックスの粒界に希土類元素酸
化物と酸化ケイ素との複合酸化物結晶相が析出させるた
めには、焼成後の冷却過程で、最高焼成温度から100
0℃までの温度領域を10℃/min以下、特に5℃/
min以下の速度で冷却すればよい。この温度領域の冷
却速度が10℃/minよりも速いと粒界に希土類元素
酸化物と酸化ケイ素との複合酸化物結晶相を析出させる
ことが困難である。なお、徐冷温度領域は、最高焼成温
度から1000℃以下の領域まで拡大しても何ら差し支
えない。
In order for the composite oxide crystal phase of the rare earth element oxide and silicon oxide to precipitate at the grain boundaries of the ceramic, the temperature must be increased from the maximum firing temperature to 100 ° C. during the cooling process after firing.
The temperature range up to 0 ° C. is 10 ° C./min or less, especially 5 ° C./min.
What is necessary is just to cool at a speed of min or less. If the cooling rate in this temperature range is higher than 10 ° C./min, it is difficult to precipitate a composite oxide crystal phase of a rare earth element oxide and silicon oxide at a grain boundary. Note that the annealing temperature range may be expanded from the maximum firing temperature to a range of 1000 ° C. or less.

【0025】[0025]

【実施例】平均粒径が1〜6μmのコージライト粉末
と、平均粒径が0.5〜3μmの希土類元素酸化物粉
末、さらに平均粒径が1μm以下の窒化珪素、炭化珪
素、酸窒化珪素の各粉末を用いて、表1に示す組成にな
るように調合後、ボールミルで24時間混合した後、1
t/cm2 の圧力で金型成形した。そして、その成形体
をアルミナの匣鉢に入れて大気中もしくは窒化珪素、炭
化珪素、酸窒化珪素を含むものは窒素雰囲気中、表1の
条件で焼成した後、さらに1000℃までの温度領域を
表1の冷却速度で冷却した。
EXAMPLE Cordierite powder having an average particle size of 1 to 6 μm, rare earth element oxide powder having an average particle size of 0.5 to 3 μm, and silicon nitride, silicon carbide and silicon oxynitride having an average particle size of 1 μm or less After mixing each powder to obtain the composition shown in Table 1, mixing with a ball mill for 24 hours,
Molding was performed at a pressure of t / cm 2 . Then, the molded body is placed in an alumina sagger, and the one containing silicon nitride, silicon carbide, and silicon oxynitride is fired under the conditions shown in Table 1 in the air or in a nitrogen atmosphere. It cooled at the cooling rate of Table 1.

【0026】得られたセラミックスを研磨し、10mm
φ×3mm、3×4×15mmの大きさに研削加工し、
この試料の室温、800℃のJISR1601に基づく
4点曲げ強度を測定した。また、レーザーフラッシュ法
(試料厚み3mm)により室温における熱伝導率を測定
した。また焼結体を鏡面加工し、走査型電子顕微鏡写真
からインタセプト法に基づきコージェライト結晶相の平
均粒径を測定した。さらに、X線回折測定によって、セ
ラミックス中の結晶相を同定した。結果は、表1に示し
た。
The obtained ceramic is polished and 10 mm
Grind to a size of φ × 3mm, 3 × 4 × 15mm,
The four-point bending strength of this sample at room temperature and 800 ° C. based on JISR1601 was measured. Further, the thermal conductivity at room temperature was measured by a laser flash method (sample thickness: 3 mm). The sintered body was mirror-finished, and the average particle size of the cordierite crystal phase was measured from a scanning electron micrograph based on the intercept method. Further, the crystal phase in the ceramic was identified by X-ray diffraction measurement. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表1、2の結果から明らかなように、従来
のコージェライトト焼結体である試料No.1では、熱伝
導率が3W/m・Kと低熱伝導率であるが、800℃に
おける強度が30MPaと低い。
As is clear from the results shown in Tables 1 and 2, Sample No. 1 which is a conventional cordierite sintered body has a low thermal conductivity of 3 W / m · K, Is as low as 30 MPa.

【0030】これに対して、本発明に基づき、希土類元
素酸化物を所定比率で添加するとともに、コージェライ
ト結晶の平均粒径、開気孔率、粒界結晶相を制御するこ
とにより、熱伝導率を5W/m・Kを達成しながら、8
00℃における強度を80MPa以上に高めることがで
きた。
On the other hand, according to the present invention, by adding a rare earth element oxide at a predetermined ratio and controlling the average grain size, open porosity, and grain boundary crystal phase of cordierite crystals, the thermal conductivity is increased. While achieving 5W / m · K
The strength at 00 ° C. could be increased to 80 MPa or more.

【0031】しかし、希土類元素量が酸化物換算で20
重量%よりも多い試料No.8や0.5重量%より低い試
料No.9では、結晶粒径が10μmを越え、800℃に
おける強度が80MPaよりも低く、熱伝導率も5W/
m・Kを超えるものであった。
However, the amount of the rare earth element is 20 in terms of oxide.
In Sample No. 8 having a weight percentage higher than 8% and Sample No. 9 having a weight percentage lower than 0.5% by weight, the crystal grain size exceeded 10 μm, the strength at 800 ° C. was lower than 80 MPa, and the thermal conductivity was 5 W /
m · K.

【0032】また、原料粉末に粒径の大きいコージェラ
イト粉末や希土類元素酸化物粉末を用いた試料No.1
2,15でも、コージェライト結晶粒径が10μmを越
え、800℃における強度が強度が80MPaよりも低
く、熱伝導率も5W/m・K以上のものであった。
A sample No. 1 using a cordierite powder or a rare earth oxide powder having a large particle diameter as a raw material powder.
Even in Nos. 2 and 15, the cordierite crystal grain size exceeded 10 μm, the strength at 800 ° C. was lower than 80 MPa, and the thermal conductivity was 5 W / m · K or more.

【0033】また、添加成分を適量配合した系に、窒化
珪素、炭化珪素、酸窒化珪素を添加することにより強度
の向上が見られた。しかし、その量が30重量%を越え
る試料No.26では、熱伝導率が5W/m・Kを越えて
しまい目的に適さないものであった。
Further, by adding silicon nitride, silicon carbide, and silicon oxynitride to a system containing an appropriate amount of the additive component, an improvement in strength was observed. However, in Sample No. 26 whose amount exceeded 30% by weight, the thermal conductivity exceeded 5 W / m · K, which was not suitable for the purpose.

【0034】また、焼成温度については、1200℃よ
りも低い試料No.22では、緻密化することができず開
気孔率が大きく、1500℃よりも高い試料No.23で
は、強度の低下、熱伝導率の向上がみられた。
Regarding the sintering temperature, the sample No. 22 lower than 1200 ° C. cannot be densified and the open porosity is large, and the sample No. 23 higher than 1500 ° C. An improvement in conductivity was observed.

【0035】さらに、冷却速度が10℃/minよりも
速い試料No.29では、粒界に希土類元素酸化物と酸化
ケイ素との結晶相が析出しておらず、その結果、低熱伝
導性を有するものの、800℃における強度が不十分で
あった。
Further, in Sample No. 29, in which the cooling rate was higher than 10 ° C./min, no crystal phase of the rare earth element oxide and silicon oxide was precipitated at the grain boundaries, and as a result, it had low thermal conductivity. However, the strength at 800 ° C. was insufficient.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明のエンジン用
部品は、コージェライトの優れた低熱伝導率を維持しつ
つ、800℃の高温での強度を高めることができる。そ
の結果、断熱性に優れしかも高い強度が要求されるピス
トン、シリンダ等のエンジン部品等として用いることに
より、エンジンにおける信頼性を高めることができる。
As described in detail above, the engine component of the present invention can increase the strength at a high temperature of 800 ° C. while maintaining the excellent low thermal conductivity of cordierite. As a result, the reliability of the engine can be improved by using it as an engine component such as a piston or a cylinder that requires excellent heat insulation and high strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エンジンの概略断面図である。FIG. 1 is a schematic sectional view of an engine.

【符号の説明】[Explanation of symbols]

1 ピストンクラウン 2 シリンダライナ 3 ピストン耐摩環 4 シリンダヘッドライナ 5 チャンバ 6 排気ポートライナ DESCRIPTION OF SYMBOLS 1 Piston crown 2 Cylinder liner 3 Piston wear ring 4 Cylinder head liner 5 Chamber 6 Exhaust port liner

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】コージェライトを80〜95.5重量%、
希土類元素(RE)を酸化物換算で0.5〜20重量%
の割合で含み、コージェライト結晶粒子の平均粒径が1
0μm以下、開気孔率が5%以下であり、前記コージェ
ライト結晶粒子の粒界に希土類元素酸化物と酸化ケイ素
との複合酸化物結晶相が析出してなるとともに、室温に
おける熱伝導率が5W/m・K以下のセラミックスから
なることを特徴とするエンジン部品。
1. A cordierite comprising 80 to 95.5% by weight,
0.5 to 20% by weight of rare earth element (RE) as oxide
And the average particle size of the cordierite crystal particles is 1
0 μm or less, the open porosity is 5% or less, and a composite oxide crystal phase of a rare earth element oxide and silicon oxide precipitates at the grain boundaries of the cordierite crystal particles, and the thermal conductivity at room temperature is 5 W / M · K or less of ceramics.
【請求項2】前記セラミックスの室温から800℃まで
の抗折強度が80MPa以上であることを特徴とする請
求項1記載のするエンジン部品。
2. The engine part according to claim 1, wherein the flexural strength of the ceramic from room temperature to 800 ° C. is 80 MPa or more.
【請求項3】前記セラミックスが、窒化珪素、炭化珪素
および酸窒化けい素の中から選ばれる少なくとも1種を
30重量%以下の割合で含むことを特徴とする請求項1
記載のエンジン部品。
3. The ceramic according to claim 1, wherein the ceramic contains at least one kind selected from silicon nitride, silicon carbide and silicon oxynitride in a proportion of 30% by weight or less.
Engine parts as described.
【請求項4】平均粒径5μm以下のコージェライト粉末
を80〜95.5重量%、平均粒径2μm以下の希土類
元素酸化物を0.5〜20重量%の割合で配合した成形
体を、1200〜1500℃の温度範囲で焼結した後、
1000℃までを10℃/min以下の速度で冷却する
ことを特徴とするエンジン部品の製造方法。
4. A compact comprising 80 to 95.5% by weight of cordierite powder having an average particle diameter of 5 μm or less and 0.5 to 20% by weight of a rare earth element oxide having an average particle diameter of 2 μm or less, After sintering in the temperature range of 1200 to 1500 ° C,
A method for manufacturing an engine component, comprising cooling to 1000 ° C. at a rate of 10 ° C./min or less.
【請求項5】窒化珪素、炭化珪素および酸窒化けい素の
中から選ばれる少なくとも1種を30重量%以下の割合
で添加することを特徴とする請求項4記載のエンジン部
品の製造方法。
5. The method according to claim 4, wherein at least one selected from silicon nitride, silicon carbide and silicon oxynitride is added in a proportion of 30% by weight or less.
JP08459998A 1998-03-30 1998-03-30 Engine parts and manufacturing method thereof Expired - Fee Related JP3856939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08459998A JP3856939B2 (en) 1998-03-30 1998-03-30 Engine parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08459998A JP3856939B2 (en) 1998-03-30 1998-03-30 Engine parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11278921A true JPH11278921A (en) 1999-10-12
JP3856939B2 JP3856939B2 (en) 2006-12-13

Family

ID=13835160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08459998A Expired - Fee Related JP3856939B2 (en) 1998-03-30 1998-03-30 Engine parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3856939B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285801A (en) * 2001-03-27 2002-10-03 Kyocera Corp Combination member and part for gas turbine
JP2005314215A (en) * 2004-03-29 2005-11-10 Ngk Insulators Ltd Dense cordierite sintered body and method of manufacturing the same
JP2011007158A (en) * 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd Spark ignition type internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285801A (en) * 2001-03-27 2002-10-03 Kyocera Corp Combination member and part for gas turbine
JP4712997B2 (en) * 2001-03-27 2011-06-29 京セラ株式会社 Combined member, manufacturing method thereof, and gas turbine component
JP2005314215A (en) * 2004-03-29 2005-11-10 Ngk Insulators Ltd Dense cordierite sintered body and method of manufacturing the same
JP2011007158A (en) * 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd Spark ignition type internal combustion engine

Also Published As

Publication number Publication date
JP3856939B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP5444387B2 (en) Semiconductor device heat sink
JPH09268072A (en) Production of silicon nitride sintered compact
JP3856939B2 (en) Engine parts and manufacturing method thereof
JP3810183B2 (en) Silicon nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3207065B2 (en) Silicon nitride sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JPH1179848A (en) Silicon carbide sintered compact
JP2004010381A (en) Surface-coated silicon nitride sintered compact
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP3667145B2 (en) Silicon nitride sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3003000B2 (en) Aluminum nitride polytype sintered body and method for producing the same
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JPH05163066A (en) Sintered material of siliceous nitrite
JP3207044B2 (en) Silicon nitride sintered body
JP2736427B2 (en) Silicon nitride sintered body and method for producing the same
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JPH05339061A (en) Silicon nitride sintered body and its production
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof
JPH0840774A (en) Silicon nitride sintered product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees