JPH05163066A - Sintered material of siliceous nitrite - Google Patents

Sintered material of siliceous nitrite

Info

Publication number
JPH05163066A
JPH05163066A JP3334946A JP33494691A JPH05163066A JP H05163066 A JPH05163066 A JP H05163066A JP 3334946 A JP3334946 A JP 3334946A JP 33494691 A JP33494691 A JP 33494691A JP H05163066 A JPH05163066 A JP H05163066A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
silicon nitride
phase
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3334946A
Other languages
Japanese (ja)
Other versions
JP3140122B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03334946A priority Critical patent/JP3140122B2/en
Publication of JPH05163066A publication Critical patent/JPH05163066A/en
Application granted granted Critical
Publication of JP3140122B2 publication Critical patent/JP3140122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered material having excellent high-temperature strength and excellent oxidation resistance characteristics from a low temperature to a high temperature. CONSTITUTION:A mixture comprising silicon nitride, an oxide of light rare earth element, an oxide of heavy rare earth element and silicon oxide is molded, sintered and subjected to given heat treatment to form a sintered material comprising a silicon nitride crystal phase as a main phase and a crystal phase shown by the formula RE2Si2O7 (RE; rare earth element) composed of a heavy rare earth element, a light rare earth element, silicon and oxygen at a grain boundary of the silicon nitride phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ、特に、自動車用部品やガスタ−ビンエン
ジン用部品等に使用される窒化珪素質焼結体及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body which is excellent in strength characteristics from room temperature to high temperature and is particularly used for automobile parts, gas turbine engine parts and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、窒化珪素質焼結体は、耐熱
性、耐熱衝撃性および耐酸化性に優れることからエンジ
ニアリングセラミックス、特にタ−ボロ−タ−等の熱機
関用として応用が進められている。この窒化珪素質焼結
体は、一般には窒化珪素に対してY2 3 、Al2 3
あるいはMgOなどの焼結助剤を添加することにより高
密度で高強度の特性が得られている。このような窒化珪
素質焼結体に対しては、さらにその使用条件が高温化す
るに際して、高温における強度および耐酸化性のさらな
る改善が求められている。かかる要求に対して、これま
で焼結助剤の検討や焼成条件等を改善する等各種の改良
が試みられている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies are excellent in heat resistance, thermal shock resistance and oxidation resistance, and therefore, their application has been promoted for engineering ceramics, especially for heat engines such as turbochargers. ing. This silicon nitride sintered material is generally used for Y 2 O 3 , Al 2 O 3 and silicon nitride.
Alternatively, by adding a sintering aid such as MgO, high density and high strength characteristics are obtained. Further improvement in strength and oxidation resistance at high temperature is required for such a silicon nitride-based sintered body when the operating conditions thereof further increase in temperature. In order to meet such demands, various improvements have been attempted so far, such as examination of sintering aids and improvement of firing conditions.

【0003】その中で、従来より焼結助剤として用いら
れてきたAl2 3 等の低融点酸化物が高温特性を劣化
させるという見地から、窒化珪素に対してY2 3 等の
希土類元素および酸化珪素からなる単純な3元系の組成
からなる焼結体が提案されている。また、かかる焼結体
の粒界にSi3 4 −RE2 3 −SiO2 からなるY
AM相、アパタイト相、ワラストナイト相、シリコンオ
キシナイトライド相、ダイシリケート相等の結晶相を析
出させることにより粒界の高融点化および安定化を図る
ことが提案されている。
In view of the fact that low melting point oxides such as Al 2 O 3 which have been conventionally used as a sintering aid deteriorate the high temperature characteristics, rare earth elements such as Y 2 O 3 are used for silicon nitride. A sintered body having a simple ternary composition of elements and silicon oxide has been proposed. In addition, Y composed of Si 3 N 4 —RE 2 O 3 —SiO 2 is added to the grain boundary of the sintered body.
It has been proposed to increase the melting point and stabilize the grain boundaries by precipitating a crystal phase such as an AM phase, an apatite phase, a wollastonite phase, a silicon oxynitride phase, or a disilicate phase.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、粒界
を結晶化することにより、粒界が非晶質である場合に比
較して高温特性は改善されるものの、安定な結晶相の生
成を行うことができず、しかも、所定の結晶相が析出す
ると同時に結晶化に寄与しなかった成分により低融点の
粒界相が形成されてしまうために、結晶化による充分な
効果が得られていないのが現状であった。
However, by crystallizing the grain boundary, high temperature characteristics are improved as compared with the case where the grain boundary is amorphous, but a stable crystal phase is generated. In addition, a grain boundary phase having a low melting point is formed by a component that does not contribute to crystallization at the same time when a predetermined crystal phase is precipitated, and thus a sufficient effect due to crystallization is not obtained. Was the current situation.

【0005】そのために、かかる焼結体を実用化する実
用的には未だ不十分であり、さらなる強度の改良、およ
び耐酸化特性の改良が要求されている。
Therefore, it is still insufficient for practical use of such a sintered body, and further improvement in strength and improvement in oxidation resistance are required.

【0006】よって、本発明は、特に耐酸化性の観点か
ら室温から高温まで自動車用部品やガスタ−ビンエンジ
ン用部品等で使用されるに充分な強度特性、特に、室温
から1400℃の高温までの抗折強度に優れ、さらに低
温から高温までの耐酸化特性に優れた窒化珪素質焼結体
を提供することを目的とするものである。
Therefore, the present invention has strength properties sufficient to be used in automobile parts, gas turbine engine parts and the like from room temperature to high temperature, particularly from the viewpoint of oxidation resistance, particularly from room temperature to high temperature of 1400 ° C. It is an object of the present invention to provide a silicon nitride-based sintered body excellent in bending strength and excellent in oxidation resistance from low temperature to high temperature.

【0007】[0007]

【問題点を解決するための手段】本発明者は、焼結体の
強度特性及び耐酸化特性を高めるためには、焼結体の組
成および窒化珪素相の粒界に存在する副相を制御するこ
とが重要であるという見地に基づき検討を重ねた結果、
窒化珪素を主体とし、これに軽希土類酸化物と重希土類
酸化物を複合添加し、さらに酸化珪素を添加し、これを
成形焼成し、さらに冷却中、または、冷却後熱処理を施
すことで酸化珪素と希土類元素を含む結晶質の粒界相、
特にRE2 Si2 7 (RE:希土類元素)で表され、
希土類元素が軽希土類元素と重希土類元素から構成され
る結晶相を析出させることにより室温から高温まで優れ
た強度特性を有し、さらに低温から1400℃まで優れ
た耐酸化特性を有する焼結体が得られることを知見し
た。
In order to improve the strength characteristics and the oxidation resistance characteristics of the sintered body, the present inventor controls the composition of the sintered body and the subphase existing in the grain boundary of the silicon nitride phase. As a result of repeated studies based on the viewpoint that it is important to
Silicon nitride is the main component, to which light rare earth oxides and heavy rare earth oxides are added in combination, silicon oxide is added, and this is molded and fired, and then heat-treated during cooling or after cooling to give silicon oxide. And a crystalline grain boundary phase containing a rare earth element,
In particular, it is represented by RE 2 Si 2 O 7 (RE: rare earth element),
By precipitating a crystalline phase in which a rare earth element is composed of a light rare earth element and a heavy rare earth element, a sintered body having excellent strength characteristics from room temperature to high temperature and further excellent oxidation resistance characteristics from low temperature to 1400 ° C. It was found that it can be obtained.

【0008】以下、本発明を詳述する。The present invention will be described in detail below.

【0009】本発明の窒化珪素質焼結体は、組成上は窒
化珪素を主成分としこれに添加成分として、希土類元素
酸化物および過剰酸素を含むものである。本発明によれ
ば、前記希土類元素が軽希土類元素と重希土類元素とか
らなることが大きな特徴である。軽希土類元素とは、原
子番号57〜63のランタニド系元素で、具体的にはL
a、Ce、Nd、Sm等で、一方、重希土類元素とは原
子番号64〜71のランタニド系元素で、元素番号39
のイットリウムは重希土類元素酸化物に含む。
The silicon nitride-based sintered body of the present invention is composed of silicon nitride as a main component in terms of composition, and contains a rare earth element oxide and excess oxygen as additional components. According to the present invention, it is a great feature that the rare earth element is composed of a light rare earth element and a heavy rare earth element. The light rare earth element is a lanthanide element having an atomic number of 57 to 63, specifically L
a, Ce, Nd, Sm, etc., on the other hand, the heavy rare earth element is a lanthanide element having an atomic number of 64 to 71, and an element number of 39.
Yttrium is included in heavy rare earth oxides.

【0010】また、前記過剰酸素とは焼結体中の全酸素
量から焼結体中の希土類元素(RE)が化学量論的に酸
化物(RE2 3 )を形成した場合に元素に結合してい
る酸素を除く残りの酸素量であり、そのほとんどは窒化
珪素原料に含まれる酸素、あるいは、SiO2 等の添加
として混入するものであり、本発明では全てSiO2
して存在するものとして考慮する。
The excess oxygen is an element when the rare earth element (RE) in the sintered body forms an oxide (RE 2 O 3 ) stoichiometrically from the total amount of oxygen in the sintered body. It is the amount of oxygen remaining excluding bound oxygen, most of which is mixed in as oxygen contained in the silicon nitride raw material or addition of SiO 2 or the like, and in the present invention, it is assumed that all exist as SiO 2. Consider.

【0011】また、本発明の窒化珪素室焼結体は、組織
的には窒化珪素結晶相を主相とするものであり、そのほ
とんどはβ−Si3 4 からなり、その粒界には前述の
軽希土類元素と重希土類元素の酸化物と過剰酸素(酸化
珪素として存在すると考えられる)が存在するが、本発
明によれば、この粒界相が主としてRE2 Si2 7
表される結晶からなることも重要である。この結晶相
は、軽希土類元素化合物と重希土類元素化合物の複合酸
化物として存在するか、または、重希土類元素化合物の
中に軽希土類元素が固溶した形で存在する。また、この
結晶相は焼結過程では、窒化珪素粒子との反応により低
融点の液相として存在し、焼結性を高めるが、冷却後そ
のまま、粒界相にガラス相として残存すると高温強度を
低下させてしまうと同時に耐酸化特性を劣化させてしま
う。よって、所定の冷却過程あるいは熱処理により上記
結晶相を析出させることにより、高温強度を高めると同
時に耐酸化特性を高めることができる。
The silicon nitride chamber sintered body of the present invention has a silicon nitride crystal phase as a main phase structurally, and most of it is composed of β-Si 3 N 4 , and its grain boundaries are Although there are the above-mentioned oxides of light rare earth elements and heavy rare earth elements and excess oxygen (which is considered to exist as silicon oxide), according to the present invention, this grain boundary phase is mainly represented by RE 2 Si 2 O 7. It is also important to be composed of crystals. This crystal phase exists as a composite oxide of a light rare earth element compound and a heavy rare earth element compound, or exists as a solid solution of a light rare earth element in the heavy rare earth element compound. Further, this crystal phase exists as a liquid phase having a low melting point due to the reaction with silicon nitride particles during the sintering process, and enhances the sinterability, but when it remains as a glass phase in the grain boundary phase as it is after cooling, it has high temperature strength. At the same time, the oxidation resistance is deteriorated. Therefore, by precipitating the crystalline phase by a predetermined cooling process or heat treatment, it is possible to increase the high temperature strength and simultaneously improve the oxidation resistance.

【0012】また、上記結晶相を析出させるために焼結
体中の過剰酸素の酸化珪素換算量(SiO2 )の周期律
表第3a族元素(RE)の酸化物換算量(RE2 3
に対するモル比率(SiO2 /RE2 3 )が2.0以
上、特に2.0〜5.0であることが必要である。これ
は上記比率が2.0未満では、粒界相にRE2 Si2
7 以外にRE−Si−O−Nからなる微量のガラス層が
存在しやすく、高温強度を低下させると共に耐酸化特性
を劣化させる。また、完全に結晶化させてもRE10Si
2 234 やRE10(SiO4 6 2 等で記述されて
いるアパタイト相や、RE4 Si2 7 2 で記述され
るYAM相が析出し、耐酸化特性を劣化させてしまうた
めである。
Further, in order to precipitate the above crystal phase, the amount of excess oxygen in the sintered body in terms of silicon oxide (SiO 2 ) in terms of silicon oxide (RE) in terms of oxide of the group 3a element (RE) in the periodic table (RE 2 O 3) )
The molar ratio (SiO 2 / RE 2 O 3 ) of 2.0 or more with respect, it is necessary that especially 2.0 to 5.0. This is because when the above ratio is less than 2.0, RE 2 Si 2 O is contained in the grain boundary phase.
In addition to 7 , a trace amount of a glass layer made of RE-Si-O-N tends to be present, which reduces high temperature strength and deteriorates oxidation resistance. In addition, even if completely crystallized, RE 10 Si
The apatite phase described by 2 O 23 N 4 or RE 10 (SiO 4 ) 6 N 2 or the like and the YAM phase described by RE 4 Si 2 O 7 N 2 are precipitated to deteriorate the oxidation resistance. This is because it ends up.

【0013】本発明によれば、粒界に主としてRE2
2 7 結晶を析出させるが、モル比率(SiO2 /R
2 3 )が2.0以上で、およそ2.5以下では結晶
相はRE2 Si2 7 結晶のみ析出するが、モル比率が
2.5より大きくなるとRE2 Si2 7 結晶以外にわ
ずかにSi2 2 Oが析出することがあるが、耐酸化性
の点からは、何ら問題ない。しかし、Si2 2 Oを主
体とする結晶相が析出すると破壊靱性値が低下するとい
う問題が生じるためにモル比率は2.0〜2.5である
ことが望ましい。
According to the present invention, RE 2 S is mainly formed at grain boundaries.
i 2 O 7 crystals are deposited, but the molar ratio (SiO 2 / R
When the E 2 O 3 ) is 2.0 or more and about 2.5 or less, only the RE 2 Si 2 O 7 crystal precipitates in the crystal phase, but when the molar ratio is more than 2.5, other than the RE 2 Si 2 O 7 crystal. Although a slight amount of Si 2 N 2 O may be precipitated, there is no problem from the viewpoint of oxidation resistance. However, when a crystal phase mainly composed of Si 2 N 2 O is precipitated, there arises a problem that the fracture toughness value is lowered. Therefore, the molar ratio is preferably 2.0 to 2.5.

【0014】また、本発明の窒化珪素質焼結体によれ
ば、Al2 3 、MgO、CaO等の低融点の金属酸化
物が存在すると粒界の結晶化が阻害されるとともに高温
強度を劣化させるためにこれらの酸化物は合量で0.5
重量%以下に制御することが望ましい。
According to the silicon nitride sintered body of the present invention, the presence of a low-melting metal oxide such as Al 2 O 3 , MgO, or CaO hinders the crystallization of the grain boundaries and increases the high temperature strength. The total amount of these oxides is 0.5 for deterioration.
It is desirable to control the content to be not more than weight%.

【0015】次に、本発明に窒化珪素質焼結体を製造す
る方法について説明すると、まず、原料粉末として窒化
珪素粉末を主成分とし、添加成分として軽希土類元素酸
化物粉末と重希土類元素酸化物粉末および酸化珪素粉末
を添加する他に、または添加成分として前記希土類元素
酸化物と酸化珪素からなる化合物粉末、または窒化珪素
と前記希土類元素酸化物と酸化珪素とからなる化合物粉
末を用いることもできる。
Next, a method of manufacturing a silicon nitride sintered body according to the present invention will be described. First, silicon nitride powder is used as a raw material powder as a main component, and light rare earth element oxide powder and heavy rare earth element oxide are added as additive components. In addition to adding the powder of the oxides and the powder of silicon oxide, it is also possible to use the compound powder of the rare earth element oxide and silicon oxide or the compound powder of the silicon nitride, the rare earth element oxide and the silicon oxide as an additive component. it can.

【0016】用いる窒化珪素粉末は、それ自体α−Si
3 4 、β−Si3 4 のいずれでもよく、それらの粒
径は0.4〜1.2μmが適当である。
The silicon nitride powder used is itself α-Si.
Either 3 N 4 or β-Si 3 N 4 may be used, and their particle size is preferably 0.4 to 1.2 μm.

【0017】本発明によれば、これらの粉末を用いて、
窒化珪素が70〜97モル%、軽希土類元素酸化物と重
希土類元素酸化物、酸化珪素の合計が3〜30モル%
で、軽希土類元素酸化物と重希土類元素酸化物の合量
(RE2 3 )と、酸化珪素(SiO2 )とのSiO2
/RE2 3 で表されるモル比が2.0以上になるよう
に調製、混合する。この時の酸化珪素量(SiO2 )と
は、窒化珪素粉末に含まれる不純物酸素をSiO2 換算
した量と添加する酸化珪素粉末、または、珪素含有化合
物中の珪素量の酸化珪素換算量との合量である。
According to the invention, using these powders,
70 to 97 mol% of silicon nitride, 3 to 30 mol% of total of light rare earth element oxide, heavy rare earth element oxide, and silicon oxide
In, SiO 2 of the total amount of light rare earth element oxides and heavy rare earth element oxide and (RE 2 O 3), silicon oxide (SiO 2)
Prepare and mix so that the molar ratio represented by / RE 2 O 3 is 2.0 or more. At this time, the amount of silicon oxide (SiO 2 ) means the amount of impurity oxygen contained in the silicon nitride powder converted into SiO 2 and the added silicon oxide powder, or the amount of silicon in the silicon-containing compound converted into silicon oxide. It is the total amount.

【0018】このようにして得られた混合粉末を公知の
成形方法、例えば、プレス成形、鋳込み成形、押出し成
形、射出成形、冷間静水圧成形などにより所望の形状に
成形した後、得られた成形体を公知の焼成方法、例え
ば、ホットプレス方法、常圧焼成、窒素ガス圧力焼成、
さらには、これらの焼成後のHIP焼成、および、ガラ
スシ−ルHIP焼成等で焼成し、緻密な焼結体を得る。
この時の焼成温度は、高温すぎると窒化珪素結晶が粒成
長し強度が低下するため、1900℃以下、特に、16
50〜1850℃の窒素ガス含有非酸化性雰囲気である
ことが望ましい。
The mixed powder thus obtained was molded into a desired shape by a known molding method such as press molding, cast molding, extrusion molding, injection molding, cold isostatic molding, and then obtained. A known firing method for the molded body, for example, a hot pressing method, normal pressure firing, nitrogen gas pressure firing,
Further, HIP calcination after these calcinations, glass seal HIP calcination and the like are carried out to obtain a dense sintered body.
If the firing temperature at this time is too high, the silicon nitride crystal grains grow and the strength decreases, so that the firing temperature is 1900 ° C. or less, particularly 16 ° C.
A nitrogen gas-containing non-oxidizing atmosphere at 50 to 1850 ° C. is desirable.

【0019】次に、焼成終了後、冷却過程で熱処理を施
すか、または得られた焼結体を非酸化性雰囲気中で熱処
理する。熱処理方法として、まず、焼結体の粒界に生成
しているガラスの軟化温度Tgと、窒化珪素とRE2
2 7 への結晶化温度Tcの間で一旦保持し、RE2
Si2 7 の結晶核を発生させる。その後、結晶化温度
Tcと、窒化珪素結晶とRE2 Si2 7 結晶の共晶温
度Teの間で保持しRE2 Si2 7 の結晶核を成長さ
せて熱処理を行うことにより、RE2 Si2 7 結晶の
生成を促進し、界面に存在するアモルファス層の生成を
抑制することができる。
Next, after firing, heat treatment is performed in the cooling process, or the obtained sintered body is heat treated in a non-oxidizing atmosphere. As the heat treatment method, first, the softening temperature Tg of the glass formed at the grain boundaries of the sintered body, silicon nitride and RE 2 S
i 2 O 7 was once held during the crystallization temperature Tc, and RE 2
Si 2 O 7 crystal nuclei are generated. Thereafter, a crystallization temperature Tc, by performing heat treatment by growing the crystal nuclei of RE 2 Si 2 O 7 held between the eutectic temperature Te of the silicon nitride crystal and RE 2 Si 2 O 7 crystals, RE 2 Generation of Si 2 O 7 crystals can be promoted and generation of an amorphous layer existing at the interface can be suppressed.

【0020】上記軟化温度Tg、結晶化温度Tcおよび
共晶温度Teを求める方法としては、前述した方法と同
様な方法で焼成した後、室温まで急冷し、粒界相がガラ
ス相である焼結体を作製し、この焼結体から薄片を切出
し、分析電子顕微鏡を用いてこの粒界相のガラス組成を
UTW−EDX法により求める。次にこのガラス組成と
同じ組成になるように調整した混合粉末を成形焼成後、
急冷し、ガラスを作製し、DTA法によりこのガラスの
軟化温度Tg、結晶化温度Tcを求めることができ、さ
らに、窒化珪素粉末とRE2 Si2 7 粉末の混合粉末
を用いDTA法により両者のタイライン上の共晶温度T
eを求めることができる。
The softening temperature Tg, the crystallization temperature Tc, and the eutectic temperature Te are determined by firing in the same manner as described above, followed by rapid cooling to room temperature and sintering in which the grain boundary phase is a glass phase. A body is produced, thin pieces are cut out from this sintered body, and the glass composition of this grain boundary phase is determined by the UTW-EDX method using an analytical electron microscope. Next, after molding and firing the mixed powder adjusted to have the same composition as this glass composition,
The glass is rapidly cooled to prepare a glass, and the softening temperature Tg and crystallization temperature Tc of this glass can be determined by the DTA method. Furthermore, a mixed powder of silicon nitride powder and RE 2 Si 2 O 7 powder can be used to perform both Temperature T on the tie line of
e can be obtained.

【0021】本発明者等の実験によれば、各種の窒化珪
素とRE2 Si2 7 から構成されるガラスの軟化温度
Tgは約950℃前後、結晶化温度Tcは1100℃前
後である。また、共晶温度Teは1550℃前後の温度
である。したがって、熱処理温度として、一段目の温度
を1050℃近辺に設定し、二段目の温度を1400℃
前後に設定することが好ましい。
According to experiments conducted by the present inventors, the softening temperature Tg of a glass composed of various silicon nitrides and RE 2 Si 2 O 7 is about 950 ° C., and the crystallization temperature Tc is about 1100 ° C. Further, the eutectic temperature Te is a temperature around 1550 ° C. Therefore, as the heat treatment temperature, the temperature of the first step is set to around 1050 ° C and the temperature of the second step is set to 1400 ° C.
It is preferable to set them before and after.

【0022】[0022]

【作用】窒化珪素質焼結体の特性を決定する大きな要因
として、焼結体中に粒界の組成および組織が挙げられ
る。高温において高強度であるためには粒界が結晶化し
ていることが重要であるが、一般的には、粒界のガラス
層を完全に結晶化することは難しい。粒界に多量にアモ
ルファス層が存在すると高温強度の劣化につながるとと
もに、アモルファス層中に窒素が固溶しているために焼
結体の耐酸化性も低下する。
The major factor that determines the characteristics of the silicon nitride sintered material is the composition and structure of the grain boundaries in the sintered material. It is important that the grain boundaries are crystallized in order to have high strength at high temperature, but it is generally difficult to completely crystallize the glass layer at the grain boundaries. The presence of a large amount of amorphous layer at the grain boundary leads to deterioration of high temperature strength, and also because the solid solution of nitrogen in the amorphous layer reduces the oxidation resistance of the sintered body.

【0023】本発明によれば、この粒界相にRE2 Si
2 7 で表される結晶相を析出させ、これにより、室温
から高温における強度劣化を小さくすることができると
ともに室温から高温までの優れた耐酸化性を付与するこ
とができる。
According to the present invention, RE 2 Si is incorporated into this grain boundary phase.
By precipitating a crystal phase represented by 2 O 7 , strength deterioration at room temperature to high temperature can be reduced, and excellent oxidation resistance from room temperature to high temperature can be imparted.

【0024】さらに、前記粒界結晶相を構成する希土類
元素のうち軽希土類元素は重希土類に比べてイオン半径
が大きいために、窒化珪素原料中に存在し結晶化の段階
で、窒化珪素との界面に生成するアモルファス相に残存
し、高温強度を低下させる不純物元素を固溶させやすい
性質を有する。しかし、軽希土類元素のみでは耐酸化特
性が低いという問題があり、また、重希土類元素のみで
は、高温強度が不充分という問題がある。そこで、重希
土類元素酸化物と軽希土類元素を組み合わせることによ
り上記の問題が解消されるとともに、高温強度を高める
ことができる。
Further, among the rare earth elements forming the grain boundary crystal phase, the light rare earth element has a larger ionic radius than the heavy rare earth element, so that it exists in the silicon nitride raw material and is mixed with silicon nitride at the crystallization stage. It has the property of easily dissolving the impurity element that remains in the amorphous phase generated at the interface and reduces the high temperature strength. However, there is a problem that the oxidation resistance is low only with light rare earth elements, and there is a problem that the high temperature strength is insufficient only with heavy rare earth elements. Therefore, by combining a heavy rare earth element oxide and a light rare earth element, the above problems can be solved and the high temperature strength can be increased.

【0025】かかる点から、軽希土元素(REl)と重
希土元素(REh)は、REh/RElで示されるモル
比率が1以上であることが好ましい。
From this point of view, the light rare earth element (REl) and the heavy rare earth element (REh) preferably have a molar ratio represented by REh / REl of 1 or more.

【0026】[0026]

【実施例】原料粉末として窒化珪素粉末(BET比表面
積9m2 /g、α率98%、酸素量1.2重量%)と、
重希土類元素酸化物(REh)粉末、軽希土類元素酸化
物(REl)粉末および酸化珪素粉末を用いて表1に示
す組成になるように調合後、1t/cm2 で金型成形し
た。
EXAMPLE A silicon nitride powder (BET specific surface area 9 m 2 / g, α ratio 98%, oxygen amount 1.2% by weight) was used as a raw material powder,
A heavy rare earth element oxide (REh) powder, a light rare earth element oxide (REl) powder, and a silicon oxide powder were mixed to have a composition shown in Table 1, and then molded with 1 t / cm 2 .

【0027】これらの成形体を炭化珪素質の匣鉢に入れ
て、組成変動を少なくするために、雰囲気を制御し10
気圧の窒素ガス気流中、1850℃、4時間の条件で焼
成した。さらに、試料No.13を除く試料に対して1気
圧の窒素中で1050℃で12時間、引き続き1400
℃で24時間の熱処理を行った。
These moldings were placed in a silicon carbide jar and the atmosphere was controlled to reduce the composition fluctuation.
Firing was performed in a nitrogen gas stream at atmospheric pressure at 1850 ° C. for 4 hours. Furthermore, for samples other than sample No. 13, 12 hours at 1050 ° C. in nitrogen at 1 atm, followed by 1400
Heat treatment was performed at 24 ° C. for 24 hours.

【0028】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し試料を作製した。この試
料についてアルキメデス法に基づく比重測定、JIS−
R1601に基づく室温および1000℃での4点曲げ
抗折強度試験を実施した。また、試料を900℃空気
中、または1400℃空気中に100時間暴露し、重量
増加量と試料の表面積から単位表面積当たりの重量変化
を求めた。焼結体組成は、試料を粉砕し、酸素量は最終
的にCO2 に変換して赤外線吸収法で定量し、窒素量は
熱伝導度測定により、珪素、周期律表第3a族元素は発
光分光分析により求めた。結果は、表2に示した。
The obtained sintered body was ground to a shape specified in JIS-R1601 to prepare a sample. Specific gravity measurement based on Archimedes method, JIS-
A four-point bending transverse strength test was carried out at room temperature and 1000 ° C. based on R1601. Further, the sample was exposed to 900 ° C. air or 1400 ° C. air for 100 hours, and the weight change per unit surface area was determined from the weight increase amount and the surface area of the sample. For the composition of the sintered body, a sample was crushed, the oxygen amount was finally converted into CO 2 and quantified by an infrared absorption method, and the nitrogen amount was measured by thermal conductivity to determine that silicon and elements of Group 3a of the periodic table emit light. It was determined by spectroscopic analysis. The results are shown in Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1および表2の結果によると、軽希土類
元素と重希土類元素を複合させていないNo.1、No.
7、No.19はやや緻密化不足であり、さらに高温強度
あるいは耐酸化性が低下していた。また、SiO2/R
2 3 が2未満のNo.14、No.15試料は、耐酸化
特性が劣化していた。SiO2 /RE2 3 が2以上で
も粒界相にRE2 Si2 7 に結晶化していないNo.
13は高温強度が劣化していた。
According to the results shown in Tables 1 and 2, No. 1 and No. 1 in which the light rare earth element and the heavy rare earth element are not compounded.
No. 7, No. 19 was slightly insufficient in densification, and the high temperature strength or oxidation resistance was further lowered. In addition, SiO 2 / R
The samples No. 14 and No. 15 having E 2 O 3 of less than 2 had deteriorated oxidation resistance. Even if SiO 2 / RE 2 O 3 is 2 or more, the grain boundary phase is not crystallized into RE 2 Si 2 O 7 .
No. 13 had deteriorated high temperature strength.

【0032】これらの比較例に対し、本発明の焼結体は
いずれも優れた抗折強度、耐酸化特性を示していた。
In contrast to these comparative examples, the sintered bodies of the present invention all showed excellent bending strength and oxidation resistance.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の窒化珪素質
焼結体によれば、2種以上の希土類元素を有するダイシ
リケート結晶相を析出させることにより、高温における
強度および耐酸化性を高めることができる。
As described in detail above, according to the silicon nitride sintered body of the present invention, by precipitating the disilicate crystal phase having two or more kinds of rare earth elements, the strength and oxidation resistance at high temperature can be improved. Can be increased.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素結晶相を主相とし、その粒界に重
希土類元素、軽希土類元素、珪素および酸素から構成さ
れ、RE2 Si2 7(RE:希土類元素)で表される
結晶相を含有することを特徴とする窒化珪素質焼結体。
1. A crystal which has a silicon nitride crystal phase as a main phase and is composed of heavy rare earth elements, light rare earth elements, silicon and oxygen at its grain boundaries and is represented by RE 2 Si 2 O 7 (RE: rare earth element). A silicon nitride sintered body containing a phase.
【請求項2】全希土類元素の酸化物換算量(RE
2 3 )と、焼結体中の過剰酸素の酸化珪素(Si
2 )換算量とのSiO2 /RE2 3 で表されるモル
比が2.0以上である請求項1記載の窒化珪素質焼結
体。
2. An oxide conversion amount of all rare earth elements (RE
2 O 3 ) and silicon oxide (Si) of excess oxygen in the sintered body.
The silicon nitride sintered body according to claim 1, wherein the molar ratio represented by SiO 2 / RE 2 O 3 with respect to the O 2 ) conversion amount is 2.0 or more.
JP03334946A 1991-12-18 1991-12-18 Silicon nitride sintered body Expired - Fee Related JP3140122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03334946A JP3140122B2 (en) 1991-12-18 1991-12-18 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03334946A JP3140122B2 (en) 1991-12-18 1991-12-18 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH05163066A true JPH05163066A (en) 1993-06-29
JP3140122B2 JP3140122B2 (en) 2001-03-05

Family

ID=18283006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03334946A Expired - Fee Related JP3140122B2 (en) 1991-12-18 1991-12-18 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP3140122B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327426A (en) * 1999-05-21 2000-11-28 Ngk Spark Plug Co Ltd Heating resistor, heating resistor for ceramic heater and ceramic heater using the same
JP5238161B2 (en) * 2004-11-26 2013-07-17 京セラ株式会社 Silicon nitride sintered body and method for manufacturing the same, member for molten metal, member for hot working, member for excavation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327426A (en) * 1999-05-21 2000-11-28 Ngk Spark Plug Co Ltd Heating resistor, heating resistor for ceramic heater and ceramic heater using the same
JP5238161B2 (en) * 2004-11-26 2013-07-17 京セラ株式会社 Silicon nitride sintered body and method for manufacturing the same, member for molten metal, member for hot working, member for excavation

Also Published As

Publication number Publication date
JP3140122B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JP3140122B2 (en) Silicon nitride sintered body
JPH09268069A (en) Highly heat conductive material and its production
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JPH1179848A (en) Silicon carbide sintered compact
JPH1121175A (en) Silicon nitride sintered compact
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2746759B2 (en) Silicon nitride sintered body
JPH11278921A (en) Engine part and its production
JPH1059773A (en) Silicon nitride sintered compact and its production
JP2783711B2 (en) Silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees