JPH11275899A - Speed sensorless vector controller - Google Patents

Speed sensorless vector controller

Info

Publication number
JPH11275899A
JPH11275899A JP10074757A JP7475798A JPH11275899A JP H11275899 A JPH11275899 A JP H11275899A JP 10074757 A JP10074757 A JP 10074757A JP 7475798 A JP7475798 A JP 7475798A JP H11275899 A JPH11275899 A JP H11275899A
Authority
JP
Japan
Prior art keywords
magnetic flux
speed
estimate
primary current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10074757A
Other languages
Japanese (ja)
Other versions
JP3704940B2 (en
Inventor
Kazuya Ogura
和也 小倉
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP07475798A priority Critical patent/JP3704940B2/en
Publication of JPH11275899A publication Critical patent/JPH11275899A/en
Application granted granted Critical
Publication of JP3704940B2 publication Critical patent/JP3704940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vector controller which is capable of performing stable control even in high-speed revolution range, by performing for a motor model, the speed sensorless vector control by the magnetic flux observers on the same level approximate to one another in a discrete system. SOLUTION: A magnetic flux observer obtains a primary current estimate I1- est, a secondary magnetic flux estimate I2- est, and a secondary magnetic flux angle estimate θR- est by converting a continuous operation expression, which reveals the condition of an induction machine into a discrete one, and converting the secondary side into the rotational coordinate of the speed leading amount of a rotor, using the angular velocity of an induction machine. Furthermore, a speed estimation mechanism performs indirect or direct type of speed sensorless vector control using each estimate, by obtaining error torque by the product of the error between the primary current estimate obtained from the magnetic flux observer and the primary current detected value I1- det and the estimate of the secondary magnetic flux, and PI-operating this error torque, thereby obtaining the estimate Wr- est of the angular velocity of the induction machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導電動機のベク
トル制御装置に係り、特に速度検出器を不要にして誘導
電動機を可変速制御する間接型又は直接型の速度センサ
レスベクトル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control device for an induction motor, and more particularly to an indirect or direct type speed sensorless vector control device for controlling an induction motor at a variable speed without using a speed detector.

【0002】[0002]

【従来の技術】誘導電動機の可変速制御には、速度検出
器による速度フィードバックを適用したベクトル制御方
式が採用されている。しかし、使用環境の制限や速度検
出器のメンテナンス性、コストの問題等から速度検出器
に代えて速度推定によるベクトル制御を行う速度センサ
レスベクトル制御方式が注目されている。
2. Description of the Related Art A variable speed control of an induction motor employs a vector control system to which speed feedback by a speed detector is applied. However, a speed sensorless vector control method that performs vector control based on speed estimation instead of the speed detector has been attracting attention due to limitations on the use environment, maintainability of the speed detector, cost, and the like.

【0003】速度センサレスベクトル制御方式には、い
くつかの手法があるが、その1つに誘導電動機のモデル
とオブザーバフィードバックを用いた磁束オブザーバを
適用した方式がある。この磁束オブザーバは、電圧指令
値と電流検出値から一次電流と二次磁束値を推定するも
のであり、これらの推定値から電動機速度を推定してベ
クトル制御を行う。
There are several speed sensorless vector control systems, one of which is a system using an induction motor model and a magnetic flux observer using observer feedback. The magnetic flux observer estimates a primary current and a secondary magnetic flux value from a voltage command value and a current detection value, and performs vector control by estimating a motor speed from these estimated values.

【0004】一方、ベクトル制御方式には、すべり周波
数を用いて出力周波数を計算する間接型と、二次磁束か
ら直接に出力周波数を得る直接型があり、従来では、二
次磁束情報を得るのが困難であったため、間接型ベクト
ル制御方式が主流であった。しかし、二次磁束を推定す
る磁束オブザーバの適用により、直接型ベクトル制御方
式も可能になってきている。特に、トルク精度の観点か
らは間接型に比べて直接型の方が優れており、トルク精
度を問題とする分野では直接型ベクトル制御方式の実現
が要望されている。
On the other hand, the vector control method includes an indirect type in which an output frequency is calculated using a slip frequency and a direct type in which an output frequency is directly obtained from a secondary magnetic flux. Conventionally, secondary magnetic flux information is obtained. Therefore, indirect vector control was the mainstream. However, the application of the magnetic flux observer for estimating the secondary magnetic flux has also enabled the direct vector control method. In particular, the direct type is superior to the indirect type in terms of torque accuracy, and the realization of the direct type vector control method is demanded in the field where torque accuracy is a problem.

【0005】[0005]

【発明が解決しようとする課題】磁束オブザーバをプロ
セッサを使ったディジタル制御で実現する場合、連続系
で表現された電動機モデルを離散系で近似することにな
る。この離散系への近似をオイラー法による一次近似で
行った場合、電動機の高速回転領域で離散化による誤差
が発生し、ベクトル制御が不安定もしくは制御不能にな
ってしまう。
When the magnetic flux observer is realized by digital control using a processor, a motor model represented by a continuous system is approximated by a discrete system. When the approximation to the discrete system is performed by the first-order approximation by the Euler method, an error due to discretization occurs in a high-speed rotation region of the electric motor, and the vector control becomes unstable or uncontrollable.

【0006】また、離散系への近似を高次で行う方法も
提案されているが、パラメータが複雑になったり、演算
時間が長くなってしまうため、他の制御との関係上で不
都合が生じる。
A method of approximating a discrete system to a higher order has also been proposed, but the parameters become complicated and the operation time becomes longer, which causes inconvenience in relation to other controls. .

【0007】本発明の目的は、電動機モデルを離散系で
近似した同一次元磁束オブザーバによる速度センサレス
ベクトル制御を行い、高速回転領域でも安定制御ができ
るベクトル制御装置を提供することにある。
An object of the present invention is to provide a vector control device which performs speed sensorless vector control using the same-dimensional magnetic flux observer that approximates a motor model in a discrete system, and can perform stable control even in a high-speed rotation region.

【0008】[0008]

【課題を解決するための手段】本発明は、高速回転領域
でも安定に磁束推定ができる同一次元磁束オブザーバ
と、このオブザーバから得られる一次電流と二次磁束の
推定値及び一次電流検出値から得る誤差トルクからPI
制御形の速度推定機構により誘導機の角速度推定値を
得、これらオブザーバと速度推定機構を使って間接型又
は直接型の速度センサレスベクトル制御装置を構成する
ものであり、以下の構成を特徴とする。
SUMMARY OF THE INVENTION The present invention provides a magnetic flux observer of the same dimension capable of stably estimating a magnetic flux even in a high-speed rotation region, and obtains an estimated value of primary current and secondary magnetic flux obtained from the observer and a detected value of primary current. Error torque to PI
A control type speed estimating mechanism is used to obtain an estimated value of the angular velocity of the induction machine, and an indirect or direct type speed sensorless vector control device is configured by using these observers and the speed estimating mechanism, and is characterized by the following configuration. .

【0009】誘導電動機の電圧指令値と電流検出値及び
角速度から磁束オブザーバにより誘導電動機の一次電流
と二次磁束を推定し、この推定値から速度推定機構が電
動機速度を推定し、前記各推定値を使って間接型又は直
接型のベクトル制御を行う速度センサレスベクトル制御
装置において、前記磁束オブザーバは、誘導機の状態を
現す連続系の演算式を離散化系に変換し、誘導機の角速
度を使って二次側を回転子の速度進み分の回転座標に変
換することで一次電流推定値と二次磁束推定値及び二次
磁束角度推定値を求め、前記速度推定機構は、前記磁束
オブザーバから得る一次電流推定値と一次電流検出値と
の差と二次磁束推定値との積で誤差トルクを求め、この
誤差トルクをPI制御演算して前記角速度の推定値を求
めることを特徴とする。
A primary current and a secondary magnetic flux of the induction motor are estimated by a magnetic flux observer from a voltage command value, a detected current value and an angular velocity of the induction motor, and a speed estimating mechanism estimates a motor speed from the estimated values. In the speed sensorless vector control device that performs indirect or direct type vector control using the magnetic flux observer, the magnetic flux observer converts a continuous arithmetic expression representing the state of the induction machine into a discretized system, and uses the angular velocity of the induction machine. The secondary side is converted into rotational coordinates corresponding to the speed advance of the rotor to obtain a primary current estimated value, a secondary magnetic flux estimated value, and a secondary magnetic flux angle estimated value, and the speed estimating mechanism is obtained from the magnetic flux observer. An error torque is obtained by a product of a difference between a primary current estimated value and a primary current detected value and a secondary magnetic flux estimated value, and the error torque is obtained by PI control calculation to obtain an estimated value of the angular velocity. That.

【0010】[0010]

【発明の実施の形態】図1は、本発明の実施形態におけ
る磁束オブザーバと速度推定機構のブロック図である。
同図において、磁束オブザーバは、連続系で表現された
電動機モデルの演算式をサンプル周期毎に演算する離散
系で近似した同一次元オブザーバに構成し、二次回路部
分を回転座標系に変換したものである。この磁束オブザ
ーバは、本願出願人は既に提案しており、その概略を以
下に説明する。
FIG. 1 is a block diagram of a magnetic flux observer and a speed estimating mechanism according to an embodiment of the present invention.
In the same figure, the magnetic flux observer is configured as a single-dimensional observer obtained by approximating an arithmetic expression of a motor model expressed in a continuous system by a discrete system that operates for each sample period, and converting a secondary circuit part into a rotating coordinate system. It is. This magnetic flux observer has already been proposed by the present applicant, and its outline will be described below.

【0011】(磁束オブザーバの説明)誘導機の固定子
座標上の状態方程式は、次式で表現される。なお、ベク
トルになるi1は誘導機の一次電流、v1は一次電圧、λ
2は二次磁束である。
(Explanation of the Flux Observer) The state equation on the stator coordinates of the induction machine is expressed by the following equation. It should be noted that the vector i 1 is the primary current of the induction machine, v 1 is the primary voltage, λ
2 is a secondary magnetic flux.

【0012】[0012]

【数1】 (Equation 1)

【0013】ここで、各係数等は以下の通りである。Here, each coefficient and the like are as follows.

【0014】[0014]

【数2】 (Equation 2)

【0015】上記の式において、電圧や電流、磁束成分
は、二軸成分であるが、式の表現を簡略化するためにベ
クトルで表現している。実際には、次式のように、α−
βの二軸成分を意味している。
In the above equations, the voltage, current, and magnetic flux components are biaxial components, but are represented by vectors to simplify the expression. In practice, α-
It means the biaxial component of β.

【0016】[0016]

【数3】 (Equation 3)

【0017】また、誘導機の定数は次の値を表してい
る。
The constants of the induction machine represent the following values.

【0018】R1:一次抵抗 R2:二次抵抗 L1:一次インダクタンス L2:二次インダクタンス M:相互インダクタンス 前記の方程式の各係数をT−I形等価回路に置き換える
ため、T形等価回路定数とT−I形等価回路定数との間
の下記の変換式を前記の状態方程式に代入する。
R 1 : Primary resistance R 2 : Secondary resistance L 1 : Primary inductance L 2 : Secondary inductance M: Mutual inductance T-type equivalent circuit for replacing each coefficient of the above equation with a TI type equivalent circuit. The following conversion equation between the constant and the TI equivalent circuit constant is substituted into the above state equation.

【0019】[0019]

【数4】 (Equation 4)

【0020】この関係式を誘導機の状態方程式の係数に
代入すると、以下のようになる。
When this relational expression is substituted into the coefficient of the state equation of the induction machine, the following is obtained.

【0021】[0021]

【数5】 (Equation 5)

【0022】次に、オブザーバのフィードバック項g1
〜g4を誘導機定数で現すように変更すると、次式にな
る。
Next, the observer feedback term g 1
Changing to reveal to g 4 in the induction machine constants, it becomes the following equation.

【0023】[0023]

【数6】 (Equation 6)

【0024】したがって、これらの式をブロック図で表
すと、図4のものを得ることができる。
Therefore, if these equations are represented in a block diagram, the one shown in FIG. 4 can be obtained.

【0025】さらに、二次磁束を励磁電流成分(λ2
M)に変更するために、前記状態方程式(2−1)の2
列目の要素をM倍し、2行目の要素を1/M倍すると、
次式のようになる。
Further, the secondary magnetic flux is converted into an exciting current component (λ 2 /
M) to change to 2) of the above equation of state (2-1).
When the element in the column is multiplied by M and the element in the second row is multiplied by 1 / M,
It becomes like the following formula.

【0026】[0026]

【数7】 (Equation 7)

【0027】また、オブザーバのフィードバック項g1
〜g4は、次式になる。
The observer feedback term g 1
Gg 4 is given by the following equation.

【0028】[0028]

【数8】 (Equation 8)

【0029】これら式で現せるオブザーバのうち、積分
項の直前に1/Lσと1/M’の項をまとめると図5の
簡略化ブロック図を得ることができる。
If the terms 1 / Lσ and 1 / M ′ are put together immediately before the integral term among the observers expressed by these equations, a simplified block diagram of FIG. 5 can be obtained.

【0030】図6は、前記の7式及び8式に基づいた磁
束オブザーバのブロック図である。この演算ブロックの
離散化を行うため、同図を単純に近似すると図7のよう
に、1サンプル時間だけ遅延させるz-1演算子を用いる
と、積分項1/sは前回値に変化分を加算するブロック
図に近似して表すことができる。
FIG. 6 is a block diagram of a magnetic flux observer based on the above equations (7) and (8). In order to perform discretization of this operation block, when the diagram is simply approximated and a z -1 operator is used which is delayed by one sample time as shown in FIG. It can be represented in an approximation to a block diagram to be added.

【0031】しかし、交流機は正弦波状の電圧や電流が
流れるため、周波数が高くなると、時間に対する変化率
が大きくなる。そのため、正確に正弦波を推定しようと
すると、演算きざみを短くする必要があり、数十Hzの
周波数成分を1%以下の精度まで推定するためには数十
μsという短い演算周期を設定する必要がある。
However, since a sine wave voltage or current flows in the AC machine, the rate of change with time increases as the frequency increases. Therefore, in order to accurately estimate a sine wave, it is necessary to shorten the calculation interval, and to estimate a frequency component of several tens of Hz to an accuracy of 1% or less, it is necessary to set a short calculation cycle of several tens of μs. There is.

【0032】この誤差の要因としては。離散化する際の
誤差が影響しているものと考えられる。特に二次磁束が
回転子と共に回転するという特殊な条件にあり、二次回
路については単純な積分でなく、この回転成分をいかに
正確に演算できるかが問題であるともいえる。
The cause of this error is as follows. It is considered that the discretization error has an effect. In particular, there is a special condition that the secondary magnetic flux rotates together with the rotor, and it can be said that the secondary circuit is not a simple integration but how to accurately calculate the rotation component.

【0033】この問題に対して、一次回路は固定子座標
上で演算するのに対し、二次側は回転座標系に変換して
から積分演算することにより、電源周波数での回転成分
が正確に演算できるため、離散化のきざみ時間を比較的
に長く設定でき、また、推定誤差も小さくなる利点があ
る。
To solve this problem, while the primary circuit operates on the stator coordinates, the secondary side converts to a rotating coordinate system and then performs an integration operation, so that the rotational component at the power supply frequency can be accurately calculated. Since the calculation can be performed, there is an advantage that the interval time for discretization can be set relatively long and the estimation error is reduced.

【0034】しかし、回転座標変換が複数箇所存在する
と、演算量が多くなる。特に、回転座標変換を多く適用
すると、ディジタル演算の桁数の制限によるビット落ち
という演算誤差も発生してしまう。従って、回転座標演
算は極力少ないほうが好ましい。
However, if there are a plurality of rotational coordinate transformations, the amount of calculation increases. In particular, when a large number of rotation coordinate transformations are applied, an arithmetic error such as bit omission due to the limitation of the number of digits in digital arithmetic also occurs. Therefore, it is preferable that the rotation coordinate calculation be as small as possible.

【0035】そこで、演算ブロックの離散化に際して、
固定座標系に基づいた演算方式の一部分に回転座標の概
念を取り入れることには変わりないが、二次側を電源と
同期した回転座標に変換するのではなく、かわりに、回
転子の速度進み分の回転座標変換を適用する。
Therefore, when discretizing the operation block,
The concept of rotating coordinates is still incorporated into a part of the calculation method based on the fixed coordinate system, but instead of converting the secondary side into rotating coordinates synchronized with the power supply, the speed advance of the rotor is used instead. Apply the rotation coordinate transformation of.

【0036】これにより、回転座標変換が1回のみとな
り、演算ブロックを離散化したディジタル演算に磁束推
定の誤差を少なくした磁束オブザーバを実現することが
できる。
This makes it possible to realize a magnetic flux observer in which the rotation coordinate conversion is performed only once, and the error of the magnetic flux estimation is reduced in the digital operation in which the operation block is discretized.

【0037】まず、図6の二次側の積分項にかかってい
るフィードバック項をI,J項に分離すると、図8に示
すブロック図になる。さらに、1/τ2=M’/R2’の
関係より、M’成分をまとめてR2’に変形すると図9
のブロック図になる。
First, when the feedback term related to the integral term on the secondary side in FIG. 6 is separated into I and J terms, a block diagram shown in FIG. 8 is obtained. Further, from the relationship of 1 / τ 2 = M ′ / R 2 ′, when the M ′ components are collectively transformed into R 2 ′, FIG.
It becomes a block diagram.

【0038】[0038]

【数9】 (1/τ2)*(1/M’)=(M’/R2’)*(1/
M’)=R2’ ここで、図9のA部分の回路のみを抽出すると図10の
(b)のようになり、同図の(a)のように、ある初期
値があったとすると、その振幅成分は一定で、位相のみ
ωrで回転するベクトルを意味している。
## EQU9 ## (1 / τ 2 ) * (1 / M ′) = (M ′ / R 2 ′) * (1 /
M ′) = R 2 ′ Here, when only the circuit of the portion A in FIG. 9 is extracted, the result is as shown in FIG. 10B, and if there is a certain initial value as in FIG. in the amplitude component is constant, means a vector rotating in phase only omega r.

【0039】従って、図10の(b)の回路であれば、
離散時間ΔTの間に回転することを表すには、図11の
(b)のようにΔθだけ回転する回転座標変換を適用し
ても等価になる。ここで、回転位相角は次式で計算でき
る。
Therefore, in the circuit shown in FIG.
In order to indicate that the rotation is performed during the discrete time ΔT, it is equivalent to apply a rotation coordinate transformation that rotates by Δθ as shown in FIG. 11B. Here, the rotation phase angle can be calculated by the following equation.

【0040】[0040]

【数10】Δθ=ωr×ΔT しかし、図9のA部分にはそれ以外に入力項u(t)が
あるため、実際には図12のようなブロック構成となっ
ている。これを図11の(a)の回転座標変換と組み合
わせて表すためには、何らかの近似が必要となる。そこ
で、図13のような近似が考えられる。
Δθ = ωr × ΔT However, since there is another input term u (t) in the portion A in FIG. 9, the block configuration is actually as shown in FIG. To represent this in combination with the rotational coordinate transformation of FIG. 11A, some approximation is required. Therefore, an approximation as shown in FIG. 13 can be considered.

【0041】同図の(a)は回転座標変換をする前にu
(t)を加算した構成である。また、(b)は、回転座
標変換をした後でu(t)を加算した構成である。また
(c)は、回転座標変換をの前と後でu(t)にそれぞ
れαと(1一α)の重みを掛けて加算した構成である。
ここで、重み係数αは、1〜0の範囲である。
(A) of FIG.
(T) is added. (B) shows a configuration in which u (t) is added after the rotation coordinate conversion. (C) shows a configuration in which u (t) is multiplied by weights of α and (11−α) before and after the rotation coordinate conversion, respectively, and added.
Here, the weight coefficient α is in the range of 1 to 0.

【0042】なお、(c)が一般形で表したもので、こ
の構成でα=0とすれば(a)と等価になるし、α=1
とすれば(b)と等価になる。
Note that (c) is a general form, and if α = 0 in this configuration, it becomes equivalent to (a), and α = 1
Then, it becomes equivalent to (b).

【0043】図13の3種類の方式は、どの方式につい
ても離散化の際に誤差が入ってしまうが、単純に一次近
似で離散化した場合より、回転を正確に近似している分
だけ精度がよい。
Although any of the three methods shown in FIG. 13 has an error in discretization in any method, the accuracy is increased by the amount of approximation of the rotation more accurately than in the case of discretization by simple linear approximation. Is good.

【0044】この2次回路を、回転座標変換で前述の近
似を行った積分項に置き換え,さらに、他の積分項も一
次近似により離散化すると図1の構成を得ることができ
る。
If the secondary circuit is replaced with an integral term obtained by performing the above-described approximation by rotational coordinate transformation, and other integral terms are discretized by linear approximation, the configuration shown in FIG. 1 can be obtained.

【0045】なお、図9の部分Bに相当するωrJ・i2
・ΔTの項を近似するために、回転座標の前後のデータ
の差分を取る構成としている。また、図1の各記号は、
以下の通りである。
Note that ω r J · i 2 corresponding to the part B in FIG.
In order to approximate the term ΔT, the difference between the data before and after the rotation coordinate is taken. Also, each symbol in FIG.
It is as follows.

【0046】R1:一次抵抗 R2:二次抵抗 Lσ:漏れインダクタンス M’:相互インダクタンス ΔT:磁束オブザーバ演算周期 ωtrq:定格角速度(=ω) k:オブザーバゲイン V1_cmd:電圧指令値(ベクトル) I1_det:一次電流検出値(ベクトル) I1_est:一次電流推定値(ベクトル) I2_est:二次磁束推定値(ベクトル) Wr_est:誘導機の角速度推定値 以上のようにして求められた同一次元磁束オブザーバ
は、回転座標変換を適用し、高速回転領域でも安定に磁
束推定が可能となる。なお、二次磁束推定値I2_es
tからは極座標変換部により二次磁束角度推定値θr_
estを求めることができる。
R1: primary resistance R2: secondary resistance Lσ: leakage inductance M ′: mutual inductance ΔT: magnetic flux observer calculation cycle ωtrq: rated angular velocity (= ω) k: observer gain V1_cmd: voltage command value (vector) I1_det: primary Current detected value (vector) I1_est: Primary current estimated value (vector) I2_est: Secondary magnetic flux estimated value (vector) Wr_est: Angular velocity estimated value of induction machine The same-dimensional magnetic flux observer obtained as described above is subjected to rotational coordinate conversion. Is applied, and the magnetic flux can be stably estimated even in the high-speed rotation region. In addition, the secondary magnetic flux estimated value I2_es
From t, the secondary magnetic flux angle estimation value θr_
est can be determined.

【0047】(速度推定機構の説明)図1における速度
推定機構は、PI(比例積分)制御形の速度適応機能を
持たせることで、高速回転領域でも安定な速度推定がで
きるようにしたものである。
(Description of Speed Estimating Mechanism) The speed estimating mechanism in FIG. 1 has a PI (proportional-integral) control type speed adapting function so that stable speed estimation can be performed even in a high-speed rotation region. is there.

【0048】この速度推定機構の入力は磁束オブザーバ
から得る一次電流推定値I1_estと一次電流検出値
I1_detとの差と二次磁束推定値I2_estとの
積で誤差トルクを求め、この誤差トルクに対して速度推
定比例ゲインKpと速度推定積分ゲインKiによるPI
演算結果として角速度推定値Wr_estを求める。な
お、誤差トルクは、図1で示されるα,β軸のパラメー
タで表現すると、以下の式になる。
The input of this speed estimating mechanism is to obtain an error torque by the product of the difference between the primary current estimated value I1_est obtained from the magnetic flux observer and the primary current detected value I1_det and the secondary magnetic flux estimated value I2_est. PI based on speed estimation proportional gain Kp and speed estimation integral gain Ki
An angular velocity estimated value Wr_est is obtained as a calculation result. The error torque is represented by the following equation when expressed by the parameters of the α and β axes shown in FIG.

【0049】 誤差トルク=α軸電流推定誤差×β軸二次磁束推定値 −β軸電流推定誤差×α軸二次磁束推定値 α軸電流推定誤差:I1_det(α軸)−I1_est(α軸) β軸二次磁束推定値:I2_est(β軸) β軸電流推定誤差:I1_det(β軸)−I1_est(β軸) α軸二次磁束推定値:I2_est(α軸) (第1の実施形態)図2は、本発明の実施形態を示すブ
ロック図であり、間接型速度センサレスベクトル制御装
置を実現するものであり、磁束オブザーバ1及び速度推
定機構2は、図1のブロック図に構成されるディジタル
演算回路又はソフトウェア構成にされる。
Error torque = α-axis current estimation error × β-axis secondary magnetic flux estimation value−β-axis current estimation error × α-axis secondary magnetic flux estimation value α-axis current estimation error: I1_det (α-axis) −I1_est (α-axis) β-axis secondary magnetic flux estimation value: I2_est (β-axis) β-axis current estimation error: I1_det (β-axis) −I1_est (β-axis) α-axis secondary magnetic flux estimation value: I2_est (α-axis) (first embodiment) FIG. 2 is a block diagram showing an embodiment of the present invention, which realizes an indirect-type speed sensorless vector control device. A magnetic flux observer 1 and a speed estimating mechanism 2 are digital signals configured in the block diagram of FIG. An arithmetic circuit or a software configuration is used.

【0050】間接型ベクトル制御装置は、速度制御アン
プ3から得られるトルク指令Trqから誘導機の回路定
数を用いてすべり演算部4にすべり周波数ωslipを
求め、これに誘導機回転数(磁束オブザーバ1による速
度推定値ωr_est)を加算することにより電源角周
波数ω1を求め、さらに積分器5により積分演算するこ
とにより二次磁束推定角度θ1を求め、この二次磁束推
定角度θ1を基準(d軸)として回転座標を固定座標に
変換し、誘導機6の一次電圧制御を行う。
The indirect-type vector control device obtains a slip frequency ωslip from the torque command Trq obtained from the speed control amplifier 3 using the circuit constant of the induction machine in the slip operation section 4, and obtains the slip frequency ωslip from the slip frequency ωslip. The power supply angular frequency ω1 is obtained by adding the estimated speed value ωr_est), and the secondary magnetic flux estimation angle θ1 is obtained by performing an integration operation by the integrator 5, and the secondary magnetic flux estimation angle θ1 is used as a reference (d-axis). To convert the rotation coordinates into fixed coordinates, and perform primary voltage control of the induction machine 6.

【0051】ベクトル制御のための磁束指令λdは、磁
束演算部7により速度(推定速度)に応じた値として求
める。この磁束指令λdと速度制御アンプ3からのトル
ク指令Trqは、係数演算部8、9による係数演算で
d,q軸(α,β座標上で二次磁束がd軸になるよう回
転させて得られる座標)の電流指令Id,Iqとして求
め、電流制御アンプ10においてそれぞれの電流検出値
id,iqとの偏差をPI(比例積分)演算し、電圧指
令vd,vqとして求める。
The magnetic flux command λd for vector control is obtained by the magnetic flux calculator 7 as a value corresponding to the speed (estimated speed). The magnetic flux command λd and the torque command Trq from the speed control amplifier 3 are obtained by rotating the d and q axes (the secondary magnetic flux on the α and β coordinates so as to be the d axis) in the coefficient calculation by the coefficient calculation units 8 and 9. The current control amplifier 10 calculates PI (proportional integration) of the deviation from each of the current detection values id and iq to obtain the voltage commands vd and vq.

【0052】座標変換部11は、電圧指令vd,vqか
ら3相の電圧信号に変換し、これを電力変換器としての
インバータ12により電力増幅して誘導機6の一次電圧
として供給する。電流検出値id,iqは、誘導機6の
3相の一次電流検出値iu,iv,iw(又は2相の検
出値)から座標変換部13によりd,q軸の回転座標系
の電流に変換することで求められる。これら座標変換部
11、13の変換には、二次磁束推定角度θ1が用いら
れる。
The coordinate converter 11 converts the voltage commands vd, vq into three-phase voltage signals, amplifies the power by an inverter 12 as a power converter, and supplies the amplified voltage as the primary voltage of the induction machine 6. The current detection values id and iq are converted from the three-phase primary current detection values iu, iv and iw (or the two-phase detection values) of the induction machine 6 into currents in d- and q-axis rotating coordinate systems by the coordinate conversion unit 13. It is required by doing. The secondary magnetic flux estimation angle θ1 is used for the conversion by the coordinate conversion units 11 and 13.

【0053】3相/2相変換部14は、誘導機の一次電
流検出値からα,β軸(U相をα軸として3相2相変換
した座標)の固定座標系の検出電流ia,ibとして求
め、磁束オブザーバ1に検出電流I1_detとして与
える。また、座標変換部15は、電圧指令vd,vqを
α,β軸の電圧に変換し、磁束オブザーバ1に電圧指令
V1_cmdとして与える。
The three-phase / two-phase converter 14 detects the detected currents ia and ib in the fixed coordinate system on the α and β axes (coordinates obtained by converting the three phases into two phases by using the U phase as the α axis) from the primary current detection value of the induction machine. And given to the magnetic flux observer 1 as a detection current I1_det. Further, the coordinate conversion unit 15 converts the voltage commands vd, vq into voltages of the α and β axes, and gives the voltage commands V1_cmd to the magnetic flux observer 1.

【0054】以上の構成になる間接型速度センサレスベ
クトル制御装置によれば、回転座標変換になる磁束オブ
ザーバ1とPI制御形速度推定機構2により速度センサ
レス構成にしながら高速回転領域でも安定したベクトル
制御ができる。
According to the indirect type speed sensorless vector control device having the above-described configuration, the vector control can be performed stably even in the high-speed rotation region while the speed sensorless configuration is realized by the magnetic flux observer 1 and the PI control type speed estimating mechanism 2 which perform the rotation coordinate conversion. it can.

【0055】(第2の実施形態)図3は、本発明の実施
形態を示すブロック図であり、直接型速度センサレスベ
クトル制御装置を実現するものであり、磁束オブザーバ
1及び速度推定機構2は、図1のブロック図に構成され
るディジタル演算回路又はソフトウェア構成にされる。
(Second Embodiment) FIG. 3 is a block diagram showing an embodiment of the present invention, which realizes a direct type speed sensorless vector control device. A magnetic flux observer 1 and a speed estimation mechanism 2 The digital arithmetic circuit or the software configuration shown in the block diagram of FIG. 1 is used.

【0056】図3が図2と異なる部分は、磁束オブザー
バ1が図1の極座標変換部をもつものとし、速度推定値
ωr_estに代えて、二次磁束角度推定値θr_es
tを基準位相推定値θ1_estとして使用し、図2の
すべり演算部4を省略する。この直接型に適用した本実
施形態では、すべり演算誤差をなくし、トルク制御精度
を向上させることができる。
FIG. 3 differs from FIG. 2 in that the magnetic flux observer 1 has the polar coordinate converter of FIG. 1 and the secondary magnetic flux angle estimated value θr_es is used instead of the velocity estimated value ωr_est.
t is used as the reference phase estimation value θ1_est, and the slip calculation unit 4 in FIG. 2 is omitted. In the present embodiment applied to this direct type, a slip calculation error can be eliminated, and the torque control accuracy can be improved.

【0057】[0057]

【発明の効果】以上のとおり、本発明によれば、誘導機
の状態を現す連続系の演算式を離散化系に変換し、誘導
機の角速度を使って二次側を回転子の速度進み分の回転
座標に変換することで一次電流推定値と二次磁束推定値
及び二次磁束角度推定値を求める同一次元磁束オブザー
バと、このオブザーバに得られる一次電流及び二次磁束
の推定値から得る誤差トルクからPI制御形の速度推定
機構により誘導機の角速度推定値を得、これらオブザー
バと速度推定機構を使って間接型又は直接型の速度セン
サレスベクトル制御装置とするため、高速回転領域でも
安定に磁束推定ができると共に安定な速度推定ができ、
高速回転領域でも安定したベクトル制御ができる。
As described above, according to the present invention, a continuous system expression expressing the state of an induction machine is converted into a discrete system, and the secondary side is advanced by the rotor speed using the angular velocity of the induction machine. It is obtained from the same-dimensional magnetic flux observer that obtains the primary current estimated value, the secondary magnetic flux estimated value, and the secondary magnetic flux angle estimated value by converting into the rotation coordinate of the minute, and the estimated values of the primary current and the secondary magnetic flux obtained in this observer. Estimated angular velocity of the induction machine is obtained from the error torque by a PI control type speed estimation mechanism, and an indirect or direct type speed sensorless vector control device is used using these observers and the speed estimation mechanism. Flux estimation and stable speed estimation are possible.
Stable vector control can be performed even in the high-speed rotation region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における磁束オブザーバと速
度推定機構のブロック図。
FIG. 1 is a block diagram of a magnetic flux observer and a speed estimation mechanism according to an embodiment of the present invention.

【図2】本発明の実施形態を示す間接型ベクトル制御装
置。
FIG. 2 is an indirect vector control device showing an embodiment of the present invention.

【図3】本発明の実施形態を示す直接型ベクトル制御装
置。
FIG. 3 is a direct type vector control apparatus showing an embodiment of the present invention.

【図4】T−1形等価回路を使用した同一次元磁束オブ
ザーバ。
FIG. 4 is a same-dimensional magnetic flux observer using a T-1 type equivalent circuit.

【図5】二次変数を励磁電流成分(λ2/M)に変更し
た同一次元磁束オブザーバ。
FIG. 5 is a same-dimensional magnetic flux observer in which a secondary variable is changed to an exciting current component (λ 2 / M).

【図6】T−1形等価回路を用いた磁束オブザーバのブ
ロック図。
FIG. 6 is a block diagram of a magnetic flux observer using a T-1 type equivalent circuit.

【図7】磁束オブザーバの離散化したブロック図。FIG. 7 is a discretized block diagram of a magnetic flux observer.

【図8】磁束オブザーバの変形過程(1)。FIG. 8 shows a deformation process (1) of a magnetic flux observer.

【図9】磁束オブザーバの変形過程(2)。FIG. 9 shows a deformation process (2) of the magnetic flux observer.

【図10】連続系の回転ベクトルとブロック図。FIG. 10 is a block diagram showing a rotation vector of a continuous system.

【図11】回転座標による回転ベクトルとブロック図。FIG. 11 is a block diagram showing a rotation vector based on rotation coordinates.

【図12】入力を考慮したブロック図。FIG. 12 is a block diagram considering input.

【図13】入力を考慮した回転座標によるブロック図。FIG. 13 is a block diagram based on rotational coordinates in consideration of an input.

【符号の説明】[Explanation of symbols]

1…磁束オブザーバ 2…速度推定機構 4…すべり演算部 6…誘導機 7…磁束演算部 11、13、15…座標変換部 14…3相/2相変換部 DESCRIPTION OF SYMBOLS 1 ... Magnetic flux observer 2 ... Speed estimation mechanism 4 ... Slip calculation part 6 ... Induction machine 7 ... Magnetic flux calculation part 11, 13, 15 ... Coordinate conversion part 14 ... Three-phase / two-phase conversion part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機の電圧指令値と電流検出値及
び角速度から磁束オブザーバにより誘導電動機の一次電
流と二次磁束を推定し、この推定値から速度推定機構が
電動機速度を推定し、前記各推定値を使って間接型又は
直接型のベクトル制御を行う速度センサレスベクトル制
御装置において、 前記磁束オブザーバは、誘導機の状態を現す連続系の演
算式を離散化系に変換し、誘導機の角速度を使って二次
側を回転子の速度進み分の回転座標に変換することで一
次電流推定値と二次磁束推定値及び二次磁束角度推定値
を求め、 前記速度推定機構は、前記磁束オブザーバから得る一次
電流推定値と一次電流検出値との差と二次磁束推定値と
の積で誤差トルクを求め、この誤差トルクをPI制御演
算して前記角速度の推定値を求めることを特徴とする速
度センサレスベクトル制御装置。
1. A primary current and a secondary magnetic flux of an induction motor are estimated by a magnetic flux observer from a voltage command value, a current detection value and an angular velocity of the induction motor, and a speed estimating mechanism estimates a motor speed from the estimated values. In the speed sensorless vector control device that performs indirect or direct vector control using the estimated value, the magnetic flux observer converts a continuous operation formula representing the state of the induction machine into a discretized system, and outputs the angular velocity of the induction machine. Is used to determine the primary current estimated value, the secondary magnetic flux estimated value, and the secondary magnetic flux angle estimated value by converting the secondary side into rotational coordinates corresponding to the speed advance of the rotor, and the speed estimating mechanism is the magnetic flux observer. An error torque is obtained by a product of a difference between a primary current estimation value and a primary current detection value obtained from the above and a secondary magnetic flux estimation value, and PI calculation is performed on the error torque to obtain an estimation value of the angular velocity. Speed sensorless vector control apparatus for.
JP07475798A 1998-03-24 1998-03-24 Speed sensorless vector controller Expired - Lifetime JP3704940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07475798A JP3704940B2 (en) 1998-03-24 1998-03-24 Speed sensorless vector controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07475798A JP3704940B2 (en) 1998-03-24 1998-03-24 Speed sensorless vector controller

Publications (2)

Publication Number Publication Date
JPH11275899A true JPH11275899A (en) 1999-10-08
JP3704940B2 JP3704940B2 (en) 2005-10-12

Family

ID=13556476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07475798A Expired - Lifetime JP3704940B2 (en) 1998-03-24 1998-03-24 Speed sensorless vector controller

Country Status (1)

Country Link
JP (1) JP3704940B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422204B1 (en) * 2001-08-17 2004-03-11 한국철도기술연구원 Magnetic flux angle acquisition method by rotor or induction motor
KR100425726B1 (en) * 2001-08-18 2004-04-03 엘지전자 주식회사 Method for synchronous reluctance motor of sensorless control
KR100428505B1 (en) * 2001-07-06 2004-04-28 삼성전자주식회사 Method of speed speed and flux estimation for induction motor
JP2014200148A (en) * 2013-03-29 2014-10-23 株式会社デンソー Controller for rotary machine
CN114421836A (en) * 2022-01-25 2022-04-29 中国船舶重工集团公司第七二四研究所 Permanent magnet synchronous motor control method based on torque observation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428505B1 (en) * 2001-07-06 2004-04-28 삼성전자주식회사 Method of speed speed and flux estimation for induction motor
KR100422204B1 (en) * 2001-08-17 2004-03-11 한국철도기술연구원 Magnetic flux angle acquisition method by rotor or induction motor
KR100425726B1 (en) * 2001-08-18 2004-04-03 엘지전자 주식회사 Method for synchronous reluctance motor of sensorless control
JP2014200148A (en) * 2013-03-29 2014-10-23 株式会社デンソー Controller for rotary machine
CN114421836A (en) * 2022-01-25 2022-04-29 中国船舶重工集团公司第七二四研究所 Permanent magnet synchronous motor control method based on torque observation

Also Published As

Publication number Publication date
JP3704940B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
JP3410451B2 (en) Speed controller for synchronous reluctance motor
JP4519864B2 (en) AC rotating machine electrical constant measuring method and AC rotating machine control apparatus used for carrying out this measuring method
JP3818086B2 (en) Synchronous motor drive
JP3467961B2 (en) Control device for rotating electric machine
KR100455630B1 (en) Sensorless control method and apparatus of permanent magnet synchronous motor
JP2002320398A (en) Rotor angle detector of dc brushless motor
JP5277787B2 (en) Synchronous motor drive control device
JP2002252995A (en) Controlling apparatus of brushless dc motor
JP3771544B2 (en) Method and apparatus for controlling permanent magnet type synchronous motor
WO2016121373A1 (en) Motor control device, and method for correcting torque constant in such motor control device
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
JP5509538B2 (en) Control device for permanent magnet type synchronous motor
JP3704940B2 (en) Speed sensorless vector controller
JP6664288B2 (en) Motor control device
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP2010022096A (en) Controller for induction motor
JP3674638B2 (en) Induction motor speed estimation method and induction motor drive device
JP2004015858A (en) Sensorless control system of pm motor position
JPS6159071B2 (en)
JPH07123799A (en) Speed sensorless vector control system for induction motor
JP2953044B2 (en) Vector controller for induction motor
JP2762617B2 (en) Vector controller for induction motor
JPH11113300A (en) Induction motor controller
JP2023000458A (en) Motor drive controller, motor drive control method, and motor drive control program
JP4572582B2 (en) Induction motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term