KR100422204B1 - Magnetic flux angle acquisition method by rotor or induction motor - Google Patents

Magnetic flux angle acquisition method by rotor or induction motor Download PDF

Info

Publication number
KR100422204B1
KR100422204B1 KR10-2001-0049582A KR20010049582A KR100422204B1 KR 100422204 B1 KR100422204 B1 KR 100422204B1 KR 20010049582 A KR20010049582 A KR 20010049582A KR 100422204 B1 KR100422204 B1 KR 100422204B1
Authority
KR
South Korea
Prior art keywords
equation
rotor
axis
stator
magnetic flux
Prior art date
Application number
KR10-2001-0049582A
Other languages
Korean (ko)
Other versions
KR20030015701A (en
Inventor
변윤섭
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR10-2001-0049582A priority Critical patent/KR100422204B1/en
Publication of KR20030015701A publication Critical patent/KR20030015701A/en
Application granted granted Critical
Publication of KR100422204B1 publication Critical patent/KR100422204B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

본 발명은 유도전동기 회전자의 자속각 획득방법에 관한 것으로, 특히 유도전동기를 벡터제어 할 경우 필수적으로 사용되는 회전자의 자속각의 획득방법에 관한 것이다.The present invention relates to a method for acquiring a magnetic flux angle of a rotor of an induction motor, and more particularly, to a method of acquiring a magnetic flux angle of a rotor which is essentially used when vector controlling an induction motor.

Description

유도전동기 회전자의 자속각 획득방법{MAGNETIC FLUX ANGLE ACQUISITION METHOD BY ROTOR OR INDUCTION MOTOR}Magnetic flux angle acquisition method of induction motor rotor {MAGNETIC FLUX ANGLE ACQUISITION METHOD BY ROTOR OR INDUCTION MOTOR}

본 발명은 유도전동기 회전자의 자속각 획득방법에 관한 것으로, 특히 유도전동기를 벡터제어 할 경우 필수적으로 사용되는 회전자 자속각의 획득방법에 관한 것이다.The present invention relates to a method of acquiring a magnetic flux angle of a rotor of an induction motor, and more particularly, to a method of acquiring a rotor magnetic flux angle, which is essentially used when vector controlling an induction motor.

일반적으로, 벡터제어기법은 유도전동기의 회전자 자속각을 알아내고, 이를 통해 고정자 전류를 자속성분과 토크성분으로 분리, 독립제어하므로서 유도전동기를 직류전동기와 같은 정도의 높은 제어응답특성을 갖게 한 것인바,In general, the vector control method finds the rotor flux angle of the induction motor, and separates the stator current into the magnetic flux component and torque component, and independently controls the induction motor to have the same high control response characteristics as the DC motor. Bar,

종래의 벡터제어방식은 회전자 자속각을 구하는 방식에 따라 도 1 내지 도 2에서와 같이 직접벡터제어와 간접벡터제어로 크게 구분되고 있다.The conventional vector control method is largely divided into direct vector control and indirect vector control as shown in FIGS. 1 to 2 according to a method of obtaining a rotor magnetic flux angle.

여기서, 회전자 자속을 직접측정할 경우, 홀센서나 자속측정코일을 통하여회전자자속의 정보를 얻게 되나, 이 경우 슬롯리플과 자기 통로의 포화에 의해 측정자속이 왜곡되고, 저속에서 자속측정이 부정확하며, 홀센서 등의 장착이 쉽지 않은 문제때문에 자속관측기를 구성하거나 슬립속도를 계산하고 여기에 전동기 속도를 더하여 적분하는 식의 간접적인 방식이 널리 사용되고 있다.Here, when the rotor flux is directly measured, the information of the rotor flux is obtained through the Hall sensor or the magnetic flux measurement coil.In this case, the magnetic flux is distorted due to the saturation of the slot ripple and the magnetic path, and the magnetic flux measurement is inaccurate at low speed. In addition, the indirect method of integrating the magnetic flux sensor or calculating the slip speed and integrating the motor speed is widely used because of the difficulty in installing the hall sensor.

이에, 기존의 간접적인 방식은 회전자 자속각을 추정할 때 유도 전동기의 파라메타 중 회전자 인덕턴스, 고정자 인덕턴스, 상호 인덕턴스, 고정자/회전자 저항 등의 정보를 필요로 하게 된다.Thus, the conventional indirect method requires information such as rotor inductance, stator inductance, mutual inductance, stator / rotor resistance among parameters of the induction motor when estimating the rotor flux angle.

이중 가장 중요한 파라메타는 회전자 저항이나 고정자 저항이고 인덕턴스의 중요성을 덜한 편이다. 저항요소들의 경우 외부의 온도나 몸체의 온도상승에 따라 그 값이 크게 변하는 특징을 가지고 있으며, 인덕턴스의 경우 실제 현장에서 자속명령이 일정하게 주어지기 때문에, 자속레벨에 따른 인덕턴스의 변화나 온도변화에 따른 인덕턴스의 변화는 작다. 이런 이유로 주변 환경에 의해 회전자 자속각 추정기에서 설정한 저항 값과 실제 값과의 오차가 발생하게 되면 결국 정확한 자속의 위치를 추정하지 못하게되어 제어성능을 크게 저하시킨다.The most important parameters are rotor resistance or stator resistance, and inductance is less important. In the case of the resistive element, the value changes greatly according to the external temperature or the temperature rise of the body.In the case of the inductance, since the magnetic flux command is given at the actual site, the inductance or temperature change according to the magnetic flux level is changed. The change in inductance is small. For this reason, if an error occurs between the resistance value set in the rotor flux angle estimator and the actual value due to the surrounding environment, the accurate magnetic flux position cannot be estimated.

따라서 지금까지의 벡터제어를 위한 많은 연구들은 이들 저항 값을 정확히 추정하는 것에 중점을 두어왔다.Thus, many studies for vector control have focused on estimating these resistance values accurately.

여기서, 유도 전동기 모델은 회전좌표축등가회로에서 다음과 같이 표현할 수 있다.Here, the induction motor model is the rotational coordinate axis In an equivalent circuit, it can be expressed as

이다. to be.

기존의 간접 벡터 제어에서 회전자 자속각을 추정하는 방법은 다음과 같다.Rotor flux angle in conventional indirect vector control The method of estimating is as follows.

식(5), (6)에서 회전자 전류Rotor current in equations (5) and (6) Is

위 식(3), (4)에서 회전자전류를 제거하기 식(9), (10)을 대입하면,Rotor current in equations (3) and (4) above If you substitute equations (9) and (10),

여기서,이다.here, to be.

비간섭 제어시 조건식은In non-interference control, the conditional expression is

이다.to be.

식(12)에서 비간섭 조건식(13)를 이용하여 식(14)를 얻고In Eq. (12), Equation (14) is obtained using the non-interfering condition Equation (13).

식(11)에서 비간섭 조건식(13)를 이용하여 슬립속도계산 식(15)을 얻어In equation (11), the slip speed calculation equation (15) is obtained using the non-interference condition equation (13).

슬립속도 식(15)을 다시 정리하면,In summary, slip speed equation (15)

슬립속도에 모터 회전속도 더하여 회전각 각속도를 구하고,Find the angle of rotation angle by adding motor rotation speed to slip speed,

최종적으로 회전자 자속각을 식(18)과 같이 구한다.Finally, the rotor flux angle is obtained as in Eq. (18).

위의 식(16)을 살펴보면 알 수 있듯이 회전자 저항이 변동하면 회전자 자속각계산에 직접적으로 영향을 준다.As you can see from equation (16) above, rotor resistance This fluctuation directly affects the rotor flux angle calculation.

기존의 직접 벡터 제어에서 회전자 자속각을 추정하는 방법은 다음과 같다.Rotor flux angle from conventional direct vector control The method of estimating is as follows.

고정좌표축에서 우선 고정자 전압, 전류로부터 고정자 자속을 구하고From the stator axis, first find the stator flux from the stator voltage and current.

이를 통해 회전자 자속을 구한다.From this the rotor flux is obtained.

여기서, here,

이다. to be.

회전자 자속으로 부터 다음과 같이 회전자 자속각을 구한다.From the rotor flux, find the rotor flux angle as follows.

이 방법에서 보면 식(19)의 고정자 자속 계산식에서 고정자 저항가 변동하면 회전자 자속각에 영향을 준다.In this method, stator resistance in the stator flux calculation formula (19) Fluctuating affects the rotor flux angle.

따라서, 이와 같이 유도전동기를 직류전동기와 같은 높은 제어응답특성을 갖도록 하는데 필요한 회전자 자속각을 기존의 방법으로 구할 경우 회전자 저항이나 고정자 저항값에 대한 부정확한 정보나 그 값의 변동이 제어특성을 저하시킬 수 있기 때문에 실제 유도전동기에 벡터제어를 응용할 경우 특히 운전 중 직접적으로 측정이 불가능한 회전자 저항의 추정 방법을 보강하여 사용하고 있다.Therefore, when the rotor flux angle required to make the induction motor have a high control response characteristic such as a DC motor is obtained by the conventional method, the inaccurate information about the rotor resistance or the stator resistance value or the variation of the value is controlled. Since the vector control is applied to the actual induction motor, the method of estimating the rotor resistance, which cannot be measured directly during operation, is reinforced.

이에, 본 발명은 종래 벡터 제어방법이 갖는 제반적인 문제점을 해결하고자 창안된 것으로,Accordingly, the present invention was devised to solve the general problems of the conventional vector control method,

본 발명의 목적은 회전자 저항값이나 고정자 저항값을 사용하지 않고 회전자 자속각을 구할 수 있도록 하여 정밀한 유도전동기 제어를 행할 수 있는 유도전동기 회전자의 자속각 획득방법을 제공함에 있다.It is an object of the present invention to provide a magnetic flux angle obtaining method of an induction motor rotor capable of precise induction motor control by allowing the rotor magnetic flux angle to be obtained without using the rotor resistance value or the stator resistance value.

상기한 목적을 달성하기 위한 본 발명의 구체적인 수단으로는;As a specific means of the present invention for achieving the above object;

전동기의 회전자 자속각을 계산을 하는데 있어서 회전자 저항 값이나 고정자 저항 값을 사용하지 않고 구하기 위한 식(22)에서 식(32)에 이르는 회전자 자속각 추정방법Rotor flux angle estimation method from equation (22) to equation (32) for calculating rotor flux angle of motor without using rotor resistance or stator resistance

회전좌표축등가회로에서 고정자측의 q축과 d축 전압관계식에서Rotary coordinate axis In the equation of q-axis and d-axis voltages on the stator side of the equivalent circuit

상기 q축 전압관계식에 d축 고정자 전류를 곱하여 과도식 1을 구하는 1과정과;The d-axis stator current in the q-axis voltage relationship Multiplying 1 to obtain transient 1;

상기 d축 전압관계식에 q축 고정자 전류를 곱하여 과도식 2를 구하는 2과정과;Q-axis stator current in the d-axis voltage relationship Multiplying to obtain transient 2;

고정자측 저항이 포함 된 항을 제거하기 위해 상기 1,2과정을 통해 얻어진 과도식1에서 과도식 2를 감산하는 3과정과;Stator side resistance A third process of subtracting the transient equation 2 from the transient equation 1 obtained through the first and second processes to remove the included term;

상기 3과정을 통해 얻어진 값을 통해 동기각속도을 도출하는 4과정과;Synchronous angular velocity through the values obtained through the above three steps 4 process of deriving;

고정자측 자속을 고정자 전류에 관한 식으로 변환을 위해 정상상태에서 비간섭제어 조건식을 고려하여 고정자측의 q축,d축 자속식을 구하는 5과정과;5 steps of obtaining the q-axis and d-axis magnetic flux equations on the stator side in consideration of the non-interference control condition in the steady state to convert the magnetic flux from the stator side into an equation relating to the stator current;

상기 4과정을 통해 얻어진 동기각속도를 구하는 식에 5과정의 q축,d축 자속식을 대입하여 동기각속도식을 구하므로서, 고정자 저항이나 회전자 저항이 배제된 회전자 자속각를 얻게 되는 6과정;으로 이루어짐을 특징으로 하는 유도전동기 회전자의 자속각 획득방법을 구비하므로서 구현된다.Synchronous angular velocity obtained through the above 4 steps The rotor flux angle without stator resistance and rotor resistance is obtained by substituting the magnetic flux equation of q-axis and d-axis in 5 steps into the equation It is implemented by having a magnetic flux angle acquisition method of the induction motor rotor, characterized in that consisting of 6 steps to obtain.

도 1은 기존 간접벡터제어 블록선도.1 is an existing indirect vector control block diagram.

도 2는 기존 직접벡터제어 블록선도.2 is a conventional direct vector control block diagram.

도 3은 본 발명의 벡터제어 블록선도.3 is a vector control block diagram of the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면에 의거 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 벡터제어 블록선도이다.3 is a vector control block diagram of the present invention.

이에, 본 발명에 따른 유도전동기 회전자 자속각 추정방법은 벡터제어에서 회전자 자속각을 추정하는 방법은 다음과 같다.Therefore, the rotor flux angle estimation method of the induction motor according to the present invention is the rotor flux angle in the vector control The method of estimating is as follows.

회전좌표축등가회로에서 고정자측 전압관계식은Rotary coordinate axis In the equivalent circuit, the stator side voltage relation is

식(22)에를 곱하면In equation (22) Multiply by

식(23)에를 곱하면In equation (23) Multiply by

고정자측 저항이 포함된 항을 제거하기 위해 식(24)-식(25)을 하면Stator side resistance Equation (24) -Equation (25) to remove this term

식(26)식을 동기각속도에 대해 정리하면 식(27)식이 된다.Equation (26) Synchronous Angular Velocity If we sum up, it becomes Formula (27).

식(27)에서 고정자측 자속을 고정자 전류에 관한 식으로 변환을 위해 정상상태에서 비간섭제어 조건식(28)을 고려하면 고정자측 자속은 식(29), 식(30)과 같이 정리된다.In consideration of the non-interference control conditional expression (28) in the steady state for converting the stator side magnetic flux into the equation relating to the stator current in the equation (27), the stator side magnetic flux is summarized as in the equations (29) and (30).

따라서 식(27)에 식(29), (30)을 대입함으로써 동기각 속도식(31)이 구해지고 지령전류가 급격히 변하지 않는다면 식(32)와 같이 약식 된다.Therefore, by substituting equations (29) and (30) into equation (27), the synchronous angular velocity equation (31) is obtained and the command current If is not changed rapidly, it is shortened as Eq. (32).

따라서, 회전자 자속각로 구할 수 있다.Thus, rotor flux angle silver Can be obtained as

상기 식(31)에서 볼 수 있듯이 식 자체에 고정자 저항이나 회전자 저항을 볼 수 없다.As can be seen in Equation (31), no stator resistance or rotor resistance can be seen in the equation itself.

이에, 유도전동기의 회전자 자속각 계산시 이들 저항값의 부정확성이나 그 값의 변화에 따른 영향력을 배제시킬 수 있다.Therefore, in the calculation of the rotor magnetic flux angle of the induction motor, it is possible to exclude the inaccuracy of these resistance values or the influence of the change of the values.

이상과 같이, 본 발명에 따른 유도전동기 회전자 자속각 획득방법은 유도전동기 벡터제어가 산업전반에 폭넓게 사용되고 있는 시점에서 기존의 벡터제어시스템으로 보다 정밀한 제어를 위해 회전자 저항값이나 고정자 저항값 또한 이들의 변동을 정확히 알려고 노력해왔던 많은 어려움을 제거시킴과 동시에 이들을 부정확하게 추정함으로 해서 가져왔던 제어특성저하를 최소화할 수 있어 유도전동기를 보다 폭넓은 환경조건에서 보다 정밀한 유도전동기 제어에 활용할 수 있는 장점이 있다.As described above, the method of obtaining the magnetic flux angle of the induction motor rotor according to the present invention also provides a rotor resistance value or a stator resistance value for more precise control with the existing vector control system at the time when the induction motor vector control is widely used in the industry. It can eliminate the many difficulties that have been made to accurately know the fluctuations of them and at the same time minimize the deterioration of control characteristics brought about by inaccurate estimation of them so that the induction motor can be used for more precise induction motor control in a wider range of environmental conditions. There is this.

Claims (2)

회전좌표축등가회로에서 고정자측의 q축과 d축 전압관계식Rotary coordinate axis Relation between q-axis and d-axis voltage on stator side in equivalent circuit 에서 in 상기 q축 전압관계식인 상기 식(22)에 d축 고정자 전류를 곱하여D-axis stator current in Equation (22) which is the q-axis voltage relationship Multiply by 상기 식(24)를 구하는 1과정과;1 step of obtaining the above formula (24); 상기 d축 전압관계식인 상기 식(23)에 q축 고정자 전류를 곱하여The q-axis stator current in Equation (23), which is the d-axis voltage relationship Multiply by 상기 식(25)를 구하는 2과정과;Two steps of obtaining the equation (25); 고정자측 저항이 포함된 항을 제거하기 위해 상기 1,2과정을 통해 얻어진 상기 식(24)에서 상기 식(25)를 감산하여Stator side resistance To remove the term contained in the formula (24) by subtracting the formula (24) obtained through the first and second processes 상기 식(26)을 구하는 3과정과;Three steps of obtaining the equation (26); 상기 3과정을 통해 얻어진 값을 통해 동기각속도 Synchronous angular velocity through the values obtained through the above three steps 를 도출하는 4과정과;4 process of deriving; 고정자측 자속을 고정자 전류에 관한 식으로 변환을 위해 정상상태에서 비간섭제어 조건식인 상기 식(28)을 고려하여 고정자측의 q축,d축 자속식인 상기 식(29), 상기 식(30)을 각각 구하는 5과정과;The equation (29) and the equation (30), which are the q-axis and d-axis magnetic flux equations on the stator side, considering the equation (28), which is a non-interference control conditional expression in the steady state, for converting the stator-side magnetic flux into an equation relating to the stator current. 5 steps to obtain each; 상기 4과정을 통해 얻어진 동기각속도를 구하는 상기 식(27)에 상기 5과정의 q축,d축 자속식인 상기 식(29), 상기 식(30)을 대입하여 동기 각속도식Synchronous angular velocity obtained through the above 4 steps Synchronous angular velocity equation by substituting Eq. (29) and Eq. 을 구하고, 이에 따라 고정자 저항이나 회전자 저항이 제거된 회전자 자속각 Rotor flux angle without stator resistance or rotor resistance 를 구하는 6과정;으로 이루어짐을 특징으로 하는 유도전동기 회전자의 자속각 획득방법.Obtaining the magnetic flux angle of the induction motor rotor, characterized in that consisting of; 6 steps to obtain. 삭제delete
KR10-2001-0049582A 2001-08-17 2001-08-17 Magnetic flux angle acquisition method by rotor or induction motor KR100422204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0049582A KR100422204B1 (en) 2001-08-17 2001-08-17 Magnetic flux angle acquisition method by rotor or induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0049582A KR100422204B1 (en) 2001-08-17 2001-08-17 Magnetic flux angle acquisition method by rotor or induction motor

Publications (2)

Publication Number Publication Date
KR20030015701A KR20030015701A (en) 2003-02-25
KR100422204B1 true KR100422204B1 (en) 2004-03-11

Family

ID=27719544

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0049582A KR100422204B1 (en) 2001-08-17 2001-08-17 Magnetic flux angle acquisition method by rotor or induction motor

Country Status (1)

Country Link
KR (1) KR100422204B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443388B1 (en) * 2008-01-23 2014-09-24 엘지전자 주식회사 motor, controlling apparatus for the motor, controlling method for the motor, and washing machine
KR101394556B1 (en) * 2013-02-27 2014-05-14 창원대학교 산학협력단 Apparatus and method for rotor position sensor fault detection of permanent magnet synchronous motor
DE102014221058A1 (en) 2014-05-28 2015-12-03 Hyundai Motor Co. Device for diagnosing the engine power of a vehicle and corresponding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930006454A (en) * 1991-09-18 1993-04-21 강진구 Rotor resistance estimation method of induction motor
JPH11275899A (en) * 1998-03-24 1999-10-08 Meidensha Corp Speed sensorless vector controller
KR20020082946A (en) * 2001-04-24 2002-11-01 엘지산전 주식회사 Apparatus for speed presumption of induction motor
KR20020085637A (en) * 2001-05-09 2002-11-16 엘지산전 주식회사 Apparatus for vector control of induction motor
KR20030005818A (en) * 2001-07-10 2003-01-23 엘지전자 주식회사 Apparatus for rotary velocity control of synchronous reluctance motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930006454A (en) * 1991-09-18 1993-04-21 강진구 Rotor resistance estimation method of induction motor
JPH11275899A (en) * 1998-03-24 1999-10-08 Meidensha Corp Speed sensorless vector controller
KR20020082946A (en) * 2001-04-24 2002-11-01 엘지산전 주식회사 Apparatus for speed presumption of induction motor
KR20020085637A (en) * 2001-05-09 2002-11-16 엘지산전 주식회사 Apparatus for vector control of induction motor
KR20030005818A (en) * 2001-07-10 2003-01-23 엘지전자 주식회사 Apparatus for rotary velocity control of synchronous reluctance motor

Also Published As

Publication number Publication date
KR20030015701A (en) 2003-02-25

Similar Documents

Publication Publication Date Title
EP1086525B1 (en) Method of minimizing errors in rotor angle estimate in synchronous machine
US6281659B1 (en) Induction motor drive and a parameter estimation method thereof
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
US11404984B2 (en) Parameter learning for permanent magnet synchronous motor drives
US6509711B1 (en) Digital rotor flux observer
CN102647144B (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
US9270215B2 (en) Method and device for compensating for load factors in permanently excited motors
Chatterjee A simple leakage inductance identification technique for three-phase induction machines under variable flux condition
KR100422204B1 (en) Magnetic flux angle acquisition method by rotor or induction motor
JP4701481B2 (en) Electric motor control device
JP2008286779A (en) Torque estimator for ipm motor
JP3707659B2 (en) Constant identification method for synchronous motor
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
CN108155841B (en) Sensorless speed estimation method for induction motor
JP2002078390A (en) Motor controller
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JPH0651803A (en) Device and method for discrete time type ac motor control
Yousfi et al. Comparison of two position and speed estimation techniques used in PMSM sensorless vector control
CN110855206A (en) Motor current limitation for permanent magnet synchronous motor
CN116846284B (en) EPS system motor rotor angle centering data identification processing method
CN110611473A (en) Method and device for determining the temperature of a rotor
CN114844408B (en) Online identification method for phase resistance of switched reluctance motor based on sliding mode observer
JPH10229700A (en) Controller for electric rotary machine
JP4434402B2 (en) Control device and control method for synchronous motor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120222

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee