JP5509538B2 - Control device for permanent magnet type synchronous motor - Google Patents

Control device for permanent magnet type synchronous motor Download PDF

Info

Publication number
JP5509538B2
JP5509538B2 JP2008124550A JP2008124550A JP5509538B2 JP 5509538 B2 JP5509538 B2 JP 5509538B2 JP 2008124550 A JP2008124550 A JP 2008124550A JP 2008124550 A JP2008124550 A JP 2008124550A JP 5509538 B2 JP5509538 B2 JP 5509538B2
Authority
JP
Japan
Prior art keywords
current
value
frequency
voltage
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008124550A
Other languages
Japanese (ja)
Other versions
JP2009278691A (en
Inventor
尚史 野村
康 松本
岳志 黒田
信夫 糸魚川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2008124550A priority Critical patent/JP5509538B2/en
Publication of JP2009278691A publication Critical patent/JP2009278691A/en
Application granted granted Critical
Publication of JP5509538B2 publication Critical patent/JP5509538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、永久磁石形同期電動機の制御装置に関し、詳しくは、永久磁石形同期電動機の磁極位置を演算する場合に電動機のインダクタンスを高精度に測定するための技術に関するものである。   The present invention relates to a control device for a permanent magnet type synchronous motor, and more particularly to a technique for measuring the inductance of the motor with high accuracy when calculating the magnetic pole position of the permanent magnet type synchronous motor.
永久磁石形同期電動機(以下、PMSMともいう)の制御装置をコストダウンするため、磁極位置検出器を使わないで運転する、いわゆるセンサレス制御技術が実用化されている。この種のセンサレス制御技術としては様々な方式が提案されているが、回転子の永久磁石によって電動機の端子間に誘導される誘起電圧を利用して磁極位置を演算する方式が多く採用されている。   In order to reduce the cost of a control device for a permanent magnet type synchronous motor (hereinafter also referred to as PMSM), a so-called sensorless control technique that operates without using a magnetic pole position detector has been put into practical use. Various methods have been proposed as this type of sensorless control technology, but many methods are used to calculate the magnetic pole position using the induced voltage induced between the motor terminals by the permanent magnet of the rotor. .
ここで、誘起電圧を利用して磁極位置を演算するためには、電動機の正確なインダクタンス値が必要である。
電動機のインダクタンスは、交番交流電流を電動機に流したときの電流と端子電圧との関係から測定することができ、例えば、特許文献1に記載された技術がある。
Here, in order to calculate the magnetic pole position using the induced voltage, an accurate inductance value of the electric motor is required.
The inductance of the electric motor can be measured from the relationship between the current when the alternating alternating current is passed through the electric motor and the terminal voltage. For example, there is a technique described in Patent Document 1.
特許文献1には、実施形態5として、正弦波の交番交流電流指令値を与え、その時の電流検出値から正弦波成分と余弦波成分とを検出し、これらの各成分に対して指令値との偏差を演算し、これらの偏差を積分調節器(積分補償器)により増幅して電圧指令値の正弦波成分と余弦波成分とを制御することが記載されている。
これにより、電動機の電流を指令値に制御することができると共に、電動機のインダクタンスは、前記電流検出値、端子電圧及び交番電流の角周波数から演算することが可能である。
In Patent Document 1, as Embodiment 5, a sine wave alternating alternating current command value is given, and a sine wave component and a cosine wave component are detected from the current detection value at that time. Are calculated, and these deviations are amplified by an integral regulator (integral compensator) to control the sine wave component and the cosine wave component of the voltage command value.
Thereby, the current of the motor can be controlled to the command value, and the inductance of the motor can be calculated from the detected current value, the terminal voltage, and the angular frequency of the alternating current.
また、特許文献1には、実施形態6として、電動機に正弦波の交番交流電圧を印加し、このときの電流検出値の余弦波成分、交流電圧の振幅及び角周波数からインダクタンスを演算することが記載されており、交流電圧の振幅は所定の変化率に従って増加させ、交流電流の大きさが所定値に到達した時点で交流電圧の振幅を一定とし、この状態でインダクタンスを測定している。
この方法では、前述した特許文献1の実施形態5のような電流フィードバック制御を行っていないため、電動機の電気定数が不明な場合にも安定に電流制御を行えるという特徴がある。
In Patent Document 1, as Embodiment 6, a sinusoidal alternating AC voltage is applied to the motor, and the inductance is calculated from the cosine wave component of the current detection value, the amplitude of the AC voltage, and the angular frequency. The amplitude of the AC voltage is increased according to a predetermined rate of change, and the amplitude of the AC voltage is made constant when the magnitude of the AC current reaches a predetermined value, and the inductance is measured in this state.
Since this method does not perform the current feedback control as in the fifth embodiment of Patent Document 1 described above, there is a feature that the current control can be stably performed even when the electric constant of the motor is unknown.
特開2006−262643号公報(段落[0077]〜[0087],[0088]〜[0097]、図11,図12等)Japanese Unexamined Patent Publication No. 2006-262643 (paragraphs [0077] to [0087], [0088] to [0097], FIG. 11, FIG. 12, etc.)
電動機のインダクタンスを高精度に測定するためには、交流電流が指令値に一致するように高精度に制御するのが望ましい。また、インダクタンスの測定時間を短縮するためには、電流の応答を速くする必要がある。
このような観点に立って特許文献1を検討した場合、前述した実施形態5において、電流の応答を速くするためには、前記積分調節器を最適調整すればよいが、電動機の電気定数が未知の場合には、その実現は困難である。また、交流電流の正弦波成分、余弦波成分と交流電圧の正弦波成分、余弦波成分との間に線形性がないため、この点でも積分調節器の最適調整は困難である。
In order to measure the inductance of the electric motor with high accuracy, it is desirable to control with high accuracy so that the alternating current matches the command value. Also, in order to shorten the inductance measurement time, it is necessary to increase the current response.
When Patent Document 1 is examined from such a viewpoint, in the fifth embodiment described above, in order to increase the current response, the integral regulator may be optimally adjusted, but the electric constant of the motor is unknown. In this case, it is difficult to realize it. Further, since there is no linearity between the sine wave component and cosine wave component of the alternating current and the sine wave component and cosine wave component of the AC voltage, it is difficult to optimally adjust the integral controller in this respect.
更に、特許文献1の実施形態6によれば、電動機の電気定数が未知の場合にも電流制御を安定に実現可能である。しかしながら、インダクタンスの測定時間を短縮するためには、交流電圧の振幅の変化率を最適に設計する必要があり、電動機の電気定数が未知の場合には、その実現は困難と考えられる。   Furthermore, according to Embodiment 6 of Patent Document 1, current control can be stably realized even when the electric constant of the electric motor is unknown. However, in order to shorten the inductance measurement time, it is necessary to optimally design the rate of change in the amplitude of the AC voltage. If the electrical constant of the motor is unknown, it is considered difficult to realize this.
そこで、本発明の解決課題は、電動機の電気定数が不明な場合にもインダクタンスの測定精度を向上させ、更に、インダクタンスの測定時間を短縮可能とした永久磁石形同期電動機の制御装置を提供することにある。   Therefore, a problem to be solved by the present invention is to provide a control device for a permanent magnet type synchronous motor that can improve the measurement accuracy of the inductance even when the electric constant of the motor is unknown, and further can shorten the measurement time of the inductance. It is in.
上記課題を解決するため、請求項1に係る発明は、永久磁石形同期電動機の端子電圧及び電流をベクトルとしてとらえ、
前記端子電圧を制御することにより、電動機の電流を、所定のベクトル方向に交番する高周波電流成分を含む電流指令値に制御する電流制御手段と、
電動機の電流検出値及び第3の電圧指令値から電動機のインダクタンスを測定するインダクタンス測定手段と、を備え、
前記電流制御手段は、
前記電流指令値と前記電流検出値との偏差を増幅して第1の電圧指令値を演算する手段と、
前記高周波電流成分、前記電動機のリアクタンス推定値及び電機子抵抗推定値から第2の電圧指令値を演算する手段と、
前記第1の電圧指令値と前記第2の電圧指令値との和から前記第3の電圧指令値を演算し、この第3の電圧指令値を前記端子電圧の指令値とする手段と、を有し、
前記インダクタンス測定手段は、
前記電流検出値から前記高周波電流成分と同じ角周波数の高周波電流を検出する第1検出手段と、
前記第3の電圧指令値から前記高周波電流成分と同じ角周波数の高周波電圧を検出する第2検出手段と、
前記第1検出手段により得た高周波電流検出値と前記第2検出手段により得た高周波電圧検出値とから、コンダクタンス及びサセプタンスを推定するパラメータ推定手段と、
前記パラメータ推定手段により得たコンダクタンス推定値及びサセプタンス推定値から前記リアクタンス推定値及び前記電機子抵抗推定値を演算するインピーダンス演算手段と、
前記リアクタンス推定値及び前記高周波電流成分の角周波数から電動機のインダクタンスを演算する手段と、を有するものである。
In order to solve the above problem, the invention according to claim 1 regards the terminal voltage and current of the permanent magnet type synchronous motor as vectors,
Current control means for controlling the terminal voltage to control a current of the motor to a current command value including a high-frequency current component alternating in a predetermined vector direction;
An inductance measuring means for measuring the inductance of the motor from the current detection value of the motor and the third voltage command value ;
The current control means includes
Means for amplifying a deviation between the current command value and the current detection value to calculate a first voltage command value;
Means for calculating a second voltage command value from the high frequency current component, the estimated reactance value of the electric motor and the estimated armature resistance value;
The sum the third voltage command value calculated from the first voltage command value and the second voltage command value, and means for the voltage command value of the third command value of the terminal voltage, the Have
The inductance measuring means includes
First detection means for detecting a high-frequency current having the same angular frequency as the high-frequency current component from the current detection value;
Second detection means for detecting a high-frequency voltage having the same angular frequency as the high-frequency current component from the third voltage command value;
Parameter estimation means for estimating conductance and susceptance from the high-frequency current detection value obtained by the first detection means and the high-frequency voltage detection value obtained by the second detection means;
Impedance calculating means for calculating the reactance estimated value and the armature resistance estimated value from the conductance estimated value and the susceptance estimated value obtained by the parameter estimating means;
Means for calculating the inductance of the motor from the reactance estimated value and the angular frequency of the high-frequency current component.
請求項2に係る発明は、請求項1に記載した制御装置において、
前記パラメータ推定手段は、
前記高周波電流検出値と前記高周波電圧検出値とから前記高周波電圧検出値と同位相の電流である有効電流を検出する手段と、
前記高周波電圧検出値と前記コンダクタンス推定値とから有効電流を推定する有効電流推定手段と、
この有効電流推定手段により得た有効電流推定値と前記有効電流の検出値との偏差を増幅して前記コンダクタンス推定値を演算する手段と、
前記高周波電流検出値と前記高周波電圧検出値とから前記高周波電圧検出値と90度の位相差を持った電流である無効電流を検出する手段と、
前記高周波電圧検出値と前記サセプタンス推定値とから無効電流を推定する無効電流推定手段と、
この無効電流推定手段により得た無効電流推定値と前記無効電流の検出値との偏差を増幅して前記サセプタンス推定値を演算する手段と、
を備えたものである。
The invention according to claim 2 is the control device according to claim 1,
The parameter estimation means includes
Means for detecting an effective current that is a current in phase with the high-frequency voltage detection value from the high-frequency current detection value and the high-frequency voltage detection value;
Effective current estimation means for estimating an effective current from the high-frequency voltage detection value and the conductance estimation value;
Means for amplifying a deviation between the effective current estimated value obtained by the effective current estimating means and the detected value of the active current to calculate the conductance estimated value;
Means for detecting a reactive current which is a current having a phase difference of 90 degrees from the high frequency voltage detection value from the high frequency current detection value and the high frequency voltage detection value;
Reactive current estimation means for estimating reactive current from the high-frequency voltage detection value and the susceptance estimation value;
Means for amplifying a deviation between the reactive current estimated value obtained by the reactive current estimating means and the detected value of the reactive current to calculate the susceptance estimated value;
It is equipped with.
本発明においては、高周波電流指令値、リアクタンス推定値及び電機子抵抗推定値から高周波電流による電圧降下を演算し、この電圧降下(電圧補償値)を第2の電圧指令値として用いて第3の電圧指令値をフィードフォワード補償する。また、高周波電流検出値と、第3の電圧指令値に基づく高周波電圧検出値とから演算した有効電流検出値と無効電流検出値とがそれぞれの指令値に一致するように電機子巻線のコンダクタンスとサセプタンスを推定し、これらの推定値を用いてリアクタンス推定値及び電機子抵抗推定値を演算する。
これにより、リアクタンス推定値及び電機子抵抗推定値は、最終的には真値に収束するので、高周波電流による電圧降下を正確に演算してこの電圧降下が補償された第3の電圧指令値に従って電動機を制御することにより、電動機の電気定数が不明な場合にも高周波電流を高精度に制御し、インダクタンスの測定精度を向上させることができる。また、電流を高応答に制御可能であるため、インダクタンスの測定時間を短縮することができる。
In the present invention, the voltage drop due to the high-frequency current is calculated from the high-frequency current command value, the reactance estimated value, and the armature resistance estimated value, and this voltage drop (voltage compensation value) is used as the second voltage command value. Feed-forward compensation for voltage command value. Further, the conductance of the armature winding is set such that the effective current detection value and the reactive current detection value calculated from the high frequency current detection value and the high frequency voltage detection value based on the third voltage command value match the respective command values. And the susceptance are estimated, and the estimated reactance value and the estimated armature resistance value are calculated using these estimated values.
As a result, the estimated reactance value and the estimated armature resistance finally converge to the true value, so that the voltage drop due to the high-frequency current is accurately calculated, and this voltage drop is compensated according to the third voltage command value. By controlling the electric motor, even when the electric constant of the electric motor is unknown, the high-frequency current can be controlled with high accuracy, and the inductance measurement accuracy can be improved. In addition, since the current can be controlled with high response, the inductance measurement time can be shortened.
以下、図に沿って本発明の実施形態を説明する。
まず、PMSMは、回転子のd軸(回転子の磁極方向)とd軸から90度進んだq軸とに従って電流制御を行うことにより、高精度なトルク制御を実現可能である。しかしながら、磁極位置検出器を持たない場合にはd,q軸を直接検出できないので、d,q軸に対応して角速度(=速度演算値)ωで回転する直交回転座標系のγ,δ軸を制御装置側に推定して制御演算を行っている。
このγ,δ軸の定義を図3に示す。図3において、ωはd,q軸の回転角速度、θerrはd,q軸とγ,δ軸との角度誤差(位置演算誤差)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, PMSM can realize highly accurate torque control by performing current control according to the d-axis of the rotor (the magnetic pole direction of the rotor) and the q-axis advanced 90 degrees from the d-axis. However, if the magnetic pole position detector is not provided, the d and q axes cannot be directly detected. Therefore, γ and δ of the orthogonal rotation coordinate system that rotates at the angular velocity (= speed calculation value) ω 1 corresponding to the d and q axes. The control calculation is performed by estimating the axis to the control device side.
The definition of the γ and δ axes is shown in FIG. In FIG. 3, ω r is the rotational angular velocity of the d and q axes, and θ err is the angular error (position calculation error) between the d and q axes and the γ and δ axes.
次に、図1は、請求項1に相当する本発明の実施形態を示す制御ブロック図である。このブロック図は、PMSMの磁極と平行方向のインダクタンスであるd軸インダクタンスを測定するためのものである。   Next, FIG. 1 is a control block diagram showing an embodiment of the present invention corresponding to claim 1. This block diagram is for measuring a d-axis inductance that is an inductance parallel to the magnetic pole of the PMSM.
まず、図1における主回路の構成を説明すると、50は三相交流電源であり、整流回路60は電源50の三相交流電圧を整流して直流電圧に変換する。この直流電圧はPWMインバータからなる電力変換器70に供給され、後述するPWM回路13からのゲート信号により内部の半導体スイッチング素子を制御することで、永久磁石形同期電動機80を駆動するための所定の三相交流電圧に変換される。   First, the configuration of the main circuit in FIG. 1 will be described. Reference numeral 50 denotes a three-phase AC power source, and the rectifier circuit 60 rectifies the three-phase AC voltage of the power source 50 and converts it into a DC voltage. This DC voltage is supplied to a power converter 70 composed of a PWM inverter, and a predetermined signal for driving the permanent magnet type synchronous motor 80 is controlled by controlling an internal semiconductor switching element by a gate signal from a PWM circuit 13 described later. Converted to three-phase AC voltage.
次に、制御装置の構成及び作用は以下の通りである。
電流座標変換器14は、u相電流検出器11u、w相電流検出器11wによってそれぞれ検出した相電流検出値i,iを、γ,δ軸の角度θに基づいてγ,δ軸電流検出値iγ,iδに座標変換する。なお、上記角度θは、インダクタンス測定を開始する前に演算した磁極位置θ10とする。これにより、γ,δ軸をd,q軸に一致させることができる。
Next, the configuration and operation of the control device are as follows.
The current coordinate converter 14 converts the phase current detection values i u and i w detected by the u-phase current detector 11u and the w-phase current detector 11w, respectively, into the γ and δ axes based on the angle θ 1 of the γ and δ axes. Coordinates are converted to current detection values i γ and i δ . The angle θ 1 is the magnetic pole position θ 10 calculated before starting the inductance measurement. Thereby, the γ and δ axes can be matched with the d and q axes.
磁極位置θ10の演算方法は任意であり、例えば、特開2001−190093号公報に記載されている技術を応用することにより、電流の振幅を一定に制御して電流ベクトルに回転子を引き込ませ、このときの電流ベクトルの角度から磁極位置を求める方法や、特許第3312472号公報に記載されているように、電動機に印加する交番電圧ベクトルや交番電流ベクトルの平行成分または直交成分から印加ベクトルと磁束軸との間の相差角を検出し、この相差角から直接または間接に磁極位置を検出する方法を用いても良い。 Calculation method of the magnetic pole position theta 10 is arbitrary, for example, by applying the technique described in JP-A-2001-190093, retract the rotor current vector to control the amplitude of the current constant The method of obtaining the magnetic pole position from the angle of the current vector at this time, or as described in Japanese Patent No. 3321472, the applied vector from the parallel component or the orthogonal component of the alternating voltage vector or alternating current vector applied to the motor A method of detecting the phase difference angle with the magnetic flux axis and detecting the magnetic pole position directly or indirectly from the phase difference angle may be used.
再び図1において、積分器30は、高周波電流指令値の角周波数ωを積分して高周波電流指令値の位相θを演算する。高周波電流指令演算器31は、γ軸高周波電流振幅指令値Iγh 及び上記位相θからγ軸高周波電流指令値iγh を数式1により演算する。 In FIG. 1 again, the integrator 30 integrates the angular frequency ω h of the high frequency current command value to calculate the phase θ h of the high frequency current command value. The high-frequency current command calculator 31 calculates the γ-axis high-frequency current command value i γh * from the γ-axis high-frequency current amplitude command value I γh * and the phase θ h using Equation 1.
加算器32は、直流電流指令値(γ軸基本波電流振幅指令値)Iγf とγ軸高周波電流指令値iγh とを加算してγ軸電流指令値iγ を演算する。直流電流指令値Iγf は、零または正の一定値とする。直流電流指令値Iγf を正の一定値に設定した場合、回転子が外力により回転するのを防止することができる。 The adder 32 adds the direct current command value (γ-axis fundamental wave current amplitude command value) I γf * and the γ-axis high-frequency current command value i γh * to calculate the γ-axis current command value i γ * . The direct current command value I γf * is set to zero or a constant positive value. When the DC current command value I γf * is set to a positive constant value, the rotor can be prevented from rotating due to an external force.
減算器19は、γ軸電流指令値iγ と前記γ軸電流検出値iγとの偏差を求め、この偏差を、比例積分調節器からなるγ軸電流調節器20により増幅して第1のγ軸電圧指令値vγACR を演算する。
また、電圧補償値演算器33により、γ軸高周波電流振幅指令値Iγh 、位相θ、電動機80の電機子抵抗推定値Rγhest及びリアクタンス推定値Xγhestを用いて高周波電流による電圧降下(電圧補償値)を求め、これを第2のγ軸電圧指令値vγhFF として設定する。具体的には、数式2の演算を行う。
The subtractor 19 obtains a deviation between the γ-axis current command value i γ * and the detected γ-axis current value i γ, and amplifies the deviation by a γ-axis current regulator 20 including a proportional-plus-integral regulator. The γ-axis voltage command value v γACR * is calculated.
Further, the voltage compensation value calculator 33 uses the γ-axis high-frequency current amplitude command value I γh * , the phase θ h , the armature resistance estimated value R γhest of the motor 80 and the reactance estimated value X γhest to cause a voltage drop ( Voltage compensation value) is obtained, and this is set as the second γ-axis voltage command value v γhFF * . Specifically, the calculation of Formula 2 is performed.
なお、数式2における電機子抵抗推定値Rγhest及びリアクタンス推定値Xγhestの演算方法については後述する。
加算器21により、第1のγ軸電圧指令値vγACR と第2のγ軸電圧指令値vγhFF とを加算してフィードフォワード補償を行い、第3のγ軸電圧指令値vγ を演算する。一方、δ軸電圧指令値vδ は零に制御する。
これらのγ,δ軸電圧指令値vγ ,vδ は、電圧座標変換器15によって角度θ(=θ10)に基づき相電圧指令値v ,v ,v に変換される。
PWM回路13は、相電圧指令値v ,v ,v と電圧検出器12により検出した電力変換器70の直流入力電圧Edcとから、電力変換器70の出力電圧を相電圧指令値v ,v ,v に制御するためのゲート信号を生成して電力変換器70に供給する。
上述した制御装置の演算処理により、γ軸電流iγをγ軸電流指令値iγ に制御することができる。
In addition, the calculation method of the armature resistance estimated value R γhest and the reactance estimated value X γhest in Formula 2 will be described later.
The adder 21 adds the first γ-axis voltage command value v γACR * and the second γ-axis voltage command value v γhFF * to perform feedforward compensation, and the third γ-axis voltage command value v γ *. Is calculated. On the other hand, the δ-axis voltage command value v δ * is controlled to zero.
These γ and δ-axis voltage command values v γ * and v δ * are converted into phase voltage command values v u * , v v * and v w * by the voltage coordinate converter 15 based on the angle θ 1 (= θ 10 ). Converted.
The PWM circuit 13 phase-converts the output voltage of the power converter 70 from the phase voltage command values v u * , v v * , v w * and the DC input voltage E dc of the power converter 70 detected by the voltage detector 12. A gate signal for controlling the voltage command values v u * , v v * , and v w * is generated and supplied to the power converter 70.
The γ-axis current i γ can be controlled to the γ-axis current command value i γ * by the arithmetic processing of the control device described above.
次に、電機子抵抗推定値Rγhest及びリアクタンス推定値Xγhestの演算方法について説明する。
第1検出手段としてのフーリエ級数演算器34は、γ軸電流iγと高周波電流指令値の位相θとから、γ軸電流iγの角周波数ωの余弦波成分Iγhaと正弦波成分Iγhbとを検出する。一方、第2検出手段としてのフーリエ級数演算器35は、γ軸電圧指令値vγ と高周波電流指令値の位相θとから、γ軸電圧指令値vγ の角周波数ωの余弦波成分Vγhaと正弦波成分Vγhbとを検出する。
Next, a calculation method of the armature resistance estimated value R γhest and the reactance estimated value X γhest will be described.
Fourier series calculator 34 as the first detection means, gamma-axis current i gamma and high-frequency current command value of the phase θ from is h, the angular frequency of the gamma-axis current i gamma omega h cosine wave component I Ganmaha and sinusoidal components I γhb is detected. On the other hand, Fourier series calculator 35 as the second detection means, gamma-axis voltage value v gamma * and from the phase theta h of the high-frequency current command value, gamma-axis voltage cosine of command value v gamma * angular frequency omega h A wave component V γha and a sine wave component V γhb are detected.
パラメータ推定手段36は、γ軸電流iγの余弦波成分Iγhaと正弦波成分Iγhb、及び、γ軸電圧指令値vγ の余弦波成分Vγhaと正弦波成分Vγhbとから、コンダクタンス推定値Gγhestとサセプタンス推定値Bγhestとを演算する。このパラメータ推定手段36の詳細については、後述する。 The parameter estimation means 36 calculates the conductance from the cosine wave component I γha and sine wave component I γhb of the γ-axis current i γ and the cosine wave component V γha and sine wave component V γhb of the γ-axis voltage command value v γ *. An estimated value G γhest and a susceptance estimated value B γhest are calculated. Details of the parameter estimation means 36 will be described later.
インピーダンス演算器37は、コンダクタンス推定値Gγhestとサセプタンス推定値Bγhestとから、電機子抵抗推定値Rγhestとリアクタンス推定値Xγhestとを、それぞれ数式3,数式4により演算する。 The impedance calculator 37 calculates an armature resistance estimated value R γhest and a reactance estimated value X γhest from the conductance estimated value G γhest and the susceptance estimated value B γhest according to the equations 3 and 4, respectively.
インダクタンス演算器38は、リアクタンス推定値Xγhestと角周波数ωとから、d軸インダクタンスの測定値Ldestを数式5により演算する。 The inductance calculator 38 calculates the measured value L dest of the d-axis inductance using Equation 5 from the reactance estimated value X γhest and the angular frequency ω h .
次に、前記パラメータ推定手段36の詳細について説明する。図2は、請求項2に相当するパラメータ推定手段36の構成を示すブロック図である。
図2に示すパラメータ推定手段は、高周波電圧振幅と電機子巻線のコンダクタンスとの積が、高周波電圧と同相の電流(以下、有効電流と定義する)の大きさに等しく、高周波電圧振幅と電機子巻線のサセプタンスとの積が、高周波電圧と90度位相がずれた電流(以下、無効電流と定義する)の大きさに等しいことを利用して上記コンダクタンス及びサセプタンスを真値に収束させるものである。
Next, details of the parameter estimation means 36 will be described. FIG. 2 is a block diagram showing a configuration of the parameter estimation means 36 corresponding to claim 2. In FIG.
In the parameter estimation means shown in FIG. 2, the product of the high-frequency voltage amplitude and the conductance of the armature winding is equal to the magnitude of the current in phase with the high-frequency voltage (hereinafter referred to as an effective current). Utilizing the fact that the product of the susceptance of the child winding is equal to the magnitude of the current that is 90 degrees out of phase with the high-frequency voltage (hereinafter referred to as reactive current), the conductance and susceptance are converged to true values. It is.
図2において、振幅演算器101は、γ軸電圧指令値vγ に含まれる高周波電圧の振幅Vγhcを、γ軸電圧指令値vγ の余弦波成分Vγhaと正弦波成分Vγhbとから、数式6により演算する。 2, the amplitude calculator 101, the amplitude V Ganmahc of the high-frequency voltage included in gamma-axis voltage value v gamma *, and gamma-axis voltage value v gamma * of the cosine wave component V Ganmaha the sine wave component V Ganmahb From the above, the calculation is performed using Equation 6.
有効電流・無効電流検出器102は、有効電流検出値Iγpowdetと無効電流検出値Iγvardetとを、高周波電圧と高周波電流との関係を利用して、それぞれ数式7,数式8により演算する。 The effective current / reactive current detector 102 calculates the effective current detection value I γpowdet and the reactive current detection value I γvardet according to Equations 7 and 8, respectively, using the relationship between the high frequency voltage and the high frequency current.
一方、数式9,数式10に示すように、高周波電圧振幅Vγhcとコンダクタンス推定値Gγhestとの積、及び、高周波電圧振幅Vγhcとサセプタンス推定値Bγhestとの積を、それぞれ乗算器103a,103bにより求め、有効電流推定値Iγpowestと無効電流推定値Iγvarestとを演算する。 On the other hand, as shown in Equations 9 and 10, the products of the high-frequency voltage amplitude V γhc and the conductance estimated value G γhest and the products of the high-frequency voltage amplitude V γhc and the susceptance estimated value B γhest are multiplied by the multipliers 103a and 103a, respectively. The effective current estimated value I γpost and the reactive current estimated value I γvarest are calculated by 103b .
減算器104aにより有効電流推定値Iγpowestと有効電流検出値Iγpowdetとの偏差Iγpowerrを演算し、これをパラメータ推定器105aにより増幅してコンダクタンス推定値Gγhestを演算する。具体的には、数式11を用いる。 The subtractor 104a calculates the deviation I γpowerr between the effective current estimated value I γpower and the effective current detected value I γpower, and the parameter estimator 105a amplifies it to calculate the conductance estimated value G γhest . Specifically, Formula 11 is used.
なお、数式11及び下記の数式12において、Γはパラメータ推定積分ゲイン、ρは正規化係数である。
同様に、減算器104bにより、無効電流推定値Iγvarestと無効電流検出値Iγvardetとの偏差Iγbarerrを演算し、これをパラメータ推定器105bにより増幅してサセプタンス推定値Bγhestを演算する。具体的には、数式12を用いる。
In Equation 11 and Equation 12 below, Γ is a parameter estimation integral gain, and ρ is a normalization coefficient.
Similarly, the subtractor 104b calculates a deviation I γbarerr between the reactive current estimated value I γvarest and the reactive current detected value I γvardet, and a parameter estimator 105b amplifies it to calculate a susceptance estimated value B γhest . Specifically, Formula 12 is used.
以上の演算処理により、コンダクタンス推定値Gγhestとサセプタンス推定値Bγhestを真値に収束させることができる。これにより、図1のインピーダンス演算器37によって演算される電機子抵抗推定値Rγhest及びリアクタンス推定値Xγhestは速やかに真値に収束する。
従って、電圧補償値演算器33は、前述した数式2に基づき高周波電流による電圧降下を正確に演算して第2のγ軸電圧指令値vγhFF を出力すると共に、このγ軸電圧指令値vγhFF により補償した第3のγ軸電圧指令値vγ を用いて電力変換器70を介し電動機80を制御することにより、電動機80の電気定数が未知である場合にも電流を高応答に制御することができる。
Through the above arithmetic processing, the conductance estimated value G γhest and the susceptance estimated value B γhest can be converged to true values. Thereby, the armature resistance estimated value R γhest and reactance estimated value X γhest calculated by the impedance calculator 37 in FIG. 1 quickly converge to true values.
Therefore, the voltage compensation value calculator 33 accurately calculates the voltage drop due to the high-frequency current based on Equation 2 described above, and outputs the second γ-axis voltage command value v γhFF * , and this γ-axis voltage command value v By controlling the motor 80 via the power converter 70 using the third γ-axis voltage command value v γ * compensated by γhFF *, the current can be made highly responsive even when the electric constant of the motor 80 is unknown. Can be controlled.
なお、図1に示した実施形態は、d軸インダクタンスを測定するためのものであるが、回転子の磁極と直交方向のインダクタンスであるq軸インダクタンスを測定する場合は、同様にして、δ軸方向に交流電流を流し、このときのδ軸電流iδとδ軸電圧指令値vδ とからq軸インダクタンスを測定すればよい。詳細な説明は省略する。 The embodiment shown in FIG. 1 is for measuring the d-axis inductance, but when measuring the q-axis inductance that is the inductance in the direction orthogonal to the magnetic pole of the rotor, the δ-axis is similarly used. An alternating current may be passed in the direction, and the q-axis inductance may be measured from the δ-axis current i δ and the δ-axis voltage command value v δ * at this time. Detailed description is omitted.
本発明の実施形態を示す制御ブロック図である。It is a control block diagram which shows embodiment of this invention. 図1におけるパラメータ推定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the parameter estimation means in FIG. γ,δ軸の定義を示す図である。It is a figure which shows the definition of (gamma) and (delta) axis | shaft.
符号の説明Explanation of symbols
50 三相交流電源
60 整流回路
70 電力変換器
80 永久磁石形同期電動機(PMSM)
11u u相電流検出器
11w w相電流検出器
12 電圧検出器
13 PWM回路
14 電流座標変換器
15 電圧座標変換器
19 減算器
20 γ軸電流調節器
21 加算器
30 積分器
31 高周波電流指令演算器
32 加算器
33 電圧補償値演算器
34 フーリエ級数演算器
35 フーリエ級数演算器
36 パラメータ推定手段
37,38 インピーダンス演算器
101 振幅演算器
102 有効電流・無効電流検出器
103a,103b 乗算器
104a,104b 減算器
105a,105b パラメータ推定器
50 Three-phase AC power supply 60 Rectifier circuit 70 Power converter 80 Permanent magnet synchronous motor (PMSM)
11u u-phase current detector 11w w-phase current detector 12 voltage detector 13 PWM circuit 14 current coordinate converter 15 voltage coordinate converter 19 subtractor 20 γ-axis current regulator 21 adder 30 integrator 31 high-frequency current command calculator 32 Adder 33 Voltage Compensation Value Calculator 34 Fourier Series Calculator 35 Fourier Series Calculator 36 Parameter Estimator 37, 38 Impedance Calculator 101 Amplitude Calculator 102 Active Current / Reactive Current Detector 103a, 103b Multiplier 104a, 104b Subtraction 105a, 105b Parameter estimator

Claims (2)

  1. 永久磁石形同期電動機の端子電圧及び電流をベクトルとしてとらえ、
    前記端子電圧を制御することにより、電動機の電流を、所定のベクトル方向に交番する高周波電流成分を含む電流指令値に制御する電流制御手段と、
    電動機の電流検出値及び第3の電圧指令値から電動機のインダクタンスを測定するインダクタンス測定手段と、
    を備え、
    前記電流制御手段は、
    前記電流指令値と前記電流検出値との偏差を増幅して第1の電圧指令値を演算する手段と、
    前記高周波電流成分、前記電動機のリアクタンス推定値及び電機子抵抗推定値から第2の電圧指令値を演算する手段と、
    前記第1の電圧指令値と前記第2の電圧指令値との和から前記第3の電圧指令値を演算し、この第3の電圧指令値を前記端子電圧の指令値とする手段と、
    を有し、
    前記インダクタンス測定手段は、
    前記電流検出値から前記高周波電流成分と同じ角周波数の高周波電流を検出する第1検出手段と、
    前記第3の電圧指令値から前記高周波電流成分と同じ角周波数の高周波電圧を検出する第2検出手段と、
    前記第1検出手段により得た高周波電流検出値と前記第2検出手段により得た高周波電圧検出値とから、コンダクタンス及びサセプタンスを推定するパラメータ推定手段と、
    前記パラメータ推定手段により得たコンダクタンス推定値及びサセプタンス推定値から前記リアクタンス推定値及び前記電機子抵抗推定値を演算するインピーダンス演算手段と、
    前記リアクタンス推定値及び前記高周波電流成分の角周波数から電動機のインダクタンスを演算する手段と、
    を有することを特徴とする永久磁石形同期電動機の制御装置。
    Taking the terminal voltage and current of a permanent magnet synchronous motor as vectors,
    Current control means for controlling the terminal voltage to control a current of the motor to a current command value including a high-frequency current component alternating in a predetermined vector direction;
    Inductance measuring means for measuring the inductance of the motor from the current detection value of the motor and the third voltage command value ;
    With
    The current control means includes
    Means for amplifying a deviation between the current command value and the current detection value to calculate a first voltage command value;
    Means for calculating a second voltage command value from the high frequency current component, the estimated reactance value of the electric motor and the estimated armature resistance value;
    Calculating the third voltage command value from the sum of the second voltage command value and the first voltage command value, and means for the voltage command value of the third command value of the terminal voltage,
    Have
    The inductance measuring means includes
    First detection means for detecting a high-frequency current having the same angular frequency as the high-frequency current component from the current detection value;
    Second detection means for detecting a high-frequency voltage having the same angular frequency as the high-frequency current component from the third voltage command value;
    Parameter estimation means for estimating conductance and susceptance from the high-frequency current detection value obtained by the first detection means and the high-frequency voltage detection value obtained by the second detection means;
    Impedance calculating means for calculating the reactance estimated value and the armature resistance estimated value from the conductance estimated value and the susceptance estimated value obtained by the parameter estimating means;
    Means for calculating the inductance of the motor from the reactance estimate and the angular frequency of the high-frequency current component;
    A control device for a permanent magnet type synchronous motor.
  2. 請求項1に記載した制御装置において、
    前記パラメータ推定手段は、
    前記高周波電流検出値と前記高周波電圧検出値とから前記高周波電圧検出値と同位相の電流である有効電流を検出する手段と、
    前記高周波電圧検出値と前記コンダクタンス推定値とから有効電流を推定する有効電流推定手段と、
    この有効電流推定手段により得た有効電流推定値と前記有効電流の検出値との偏差を増幅して前記コンダクタンス推定値を演算する手段と、
    前記高周波電流検出値と前記高周波電圧検出値とから前記高周波電圧検出値と90度の位相差を持った電流である無効電流を検出する手段と、
    前記高周波電圧検出値と前記サセプタンス推定値とから無効電流を推定する無効電流推定手段と、
    この無効電流推定手段により得た無効電流推定値と前記無効電流の検出値との偏差を増幅して前記サセプタンス推定値を演算する手段と、
    を備えたことを特徴とする永久磁石形同期電動機の制御装置。
    The control device according to claim 1,
    The parameter estimation means includes
    Means for detecting an effective current that is a current in phase with the high-frequency voltage detection value from the high-frequency current detection value and the high-frequency voltage detection value;
    Effective current estimation means for estimating an effective current from the high-frequency voltage detection value and the conductance estimation value;
    Means for amplifying a deviation between the effective current estimated value obtained by the effective current estimating means and the detected value of the active current to calculate the conductance estimated value;
    Means for detecting a reactive current which is a current having a phase difference of 90 degrees from the high frequency voltage detection value from the high frequency current detection value and the high frequency voltage detection value;
    Reactive current estimation means for estimating reactive current from the high-frequency voltage detection value and the susceptance estimation value;
    Means for amplifying a deviation between the reactive current estimated value obtained by the reactive current estimating means and the detected value of the reactive current to calculate the susceptance estimated value;
    A control device for a permanent magnet type synchronous motor.
JP2008124550A 2008-05-12 2008-05-12 Control device for permanent magnet type synchronous motor Active JP5509538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124550A JP5509538B2 (en) 2008-05-12 2008-05-12 Control device for permanent magnet type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124550A JP5509538B2 (en) 2008-05-12 2008-05-12 Control device for permanent magnet type synchronous motor

Publications (2)

Publication Number Publication Date
JP2009278691A JP2009278691A (en) 2009-11-26
JP5509538B2 true JP5509538B2 (en) 2014-06-04

Family

ID=41443604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124550A Active JP5509538B2 (en) 2008-05-12 2008-05-12 Control device for permanent magnet type synchronous motor

Country Status (1)

Country Link
JP (1) JP5509538B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335356B2 (en) * 2010-12-06 2016-05-10 Mitsubishi Electric Corporation Inductance measuring device and measuring method for synchronous motor
WO2012129797A1 (en) * 2011-03-30 2012-10-04 深圳市英威腾电气股份有限公司 Inductance parameter identification method of synchronous motor and implementation system thereof
JP2015080344A (en) * 2013-10-17 2015-04-23 株式会社荏原製作所 Driving device for motor
KR20160085574A (en) 2015-01-08 2016-07-18 삼성전자주식회사 Motor driving apparatus and controlling method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435975B2 (en) * 1996-04-10 2003-08-11 株式会社明電舎 Current control unit of rotating electric machine and control device using the same
JP4086369B2 (en) * 1998-07-10 2008-05-14 東洋電機製造株式会社 Control method of synchronous motor
JP4086370B2 (en) * 1998-07-31 2008-05-14 東洋電機製造株式会社 Control method of synchronous motor
JP4670162B2 (en) * 2001-03-08 2011-04-13 富士電機システムズ株式会社 Control device for synchronous motor
JP4730073B2 (en) * 2005-12-02 2011-07-20 株式会社日立製作所 Permanent magnet synchronous motor vector controller, inverter module, and permanent magnet synchronous motor motor constant display system

Also Published As

Publication number Publication date
JP2009278691A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP3695436B2 (en) Position sensorless motor control method and apparatus
JP3914108B2 (en) DC brushless motor control device
JP2002320398A (en) Rotor angle detector of dc brushless motor
JP5428202B2 (en) Control device for permanent magnet type synchronous motor
JP3914107B2 (en) DC brushless motor control device
JP6220941B2 (en) Induction motor parameter estimation method
JP5861819B2 (en) Control device for permanent magnet type synchronous motor
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5120621B2 (en) Control device for permanent magnet type synchronous motor
JP2010200515A (en) Device for estimating magnet temperature of motor
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP5509538B2 (en) Control device for permanent magnet type synchronous motor
JP5223109B2 (en) Control device for permanent magnet type synchronous motor
JP5104219B2 (en) Control device for permanent magnet type synchronous motor
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
JP5731355B2 (en) Control device for induction motor for vehicle drive
JP5757205B2 (en) Control device for permanent magnet type synchronous motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP6626309B2 (en) Control device for compensating iron loss of AC motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP2004023804A (en) Motor controller
JP6128330B2 (en) Control device for permanent magnet type synchronous motor
JP4119184B2 (en) DC brushless motor rotor angle detector

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5509538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250