JPH11274086A - Method for growing iii-v compound semiconductor and heterojunction bipolar transistor - Google Patents

Method for growing iii-v compound semiconductor and heterojunction bipolar transistor

Info

Publication number
JPH11274086A
JPH11274086A JP7678198A JP7678198A JPH11274086A JP H11274086 A JPH11274086 A JP H11274086A JP 7678198 A JP7678198 A JP 7678198A JP 7678198 A JP7678198 A JP 7678198A JP H11274086 A JPH11274086 A JP H11274086A
Authority
JP
Japan
Prior art keywords
carbon
growth
compound semiconductor
layer
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7678198A
Other languages
Japanese (ja)
Other versions
JP3408419B2 (en
Inventor
Koichiro Fujita
耕一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP07678198A priority Critical patent/JP3408419B2/en
Publication of JPH11274086A publication Critical patent/JPH11274086A/en
Application granted granted Critical
Publication of JP3408419B2 publication Critical patent/JP3408419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a carbon-added III-V compound semiconductor layer and a heterojunction bipolar transistor that is capable of preventing elimination of a group V element from the carbon-added III-V compound semiconductor layer, when the growth is stopped after growing the carbon-added III-V compound semiconductor layer and prevent the inactivation of carbon in the carbon-added III-V compound semiconductor layer. SOLUTION: This method for growing III-V compound semiconductor includes a process, where at least a carbon-added III-V compound semiconductor layer is formed on a semiconductor substrate and the growth is stopped by providing an organic compound containing group V element and a carrier gas after growing the carbon-added III-V compound semiconductor. Since the hole carrier density of the base layer of the heterojunction bipolar transistor produced by this growth method can be improved, the maximum oscillation frequency can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機金属気相成長
法を用いるIII−V族化合物半導体の成長方法及びそ
の方法で作製したヘテロ接合バイポーラトランジスタに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a group III-V compound semiconductor using metal organic chemical vapor deposition and a heterojunction bipolar transistor manufactured by the method.

【0002】[0002]

【従来の技術】現在、超高速電子デバイス素子として有
望なGaAs系のヘテロ接合バイポーラトランジスタが
盛んに開発されている。GaAs系ヘテロ接合バイポー
ラトランジスタは、コレクタ層にn型GaAs、ベース
層にp型GaAs、エミッタ層にn型AlGaAsを用
いたものが一般的である。
2. Description of the Related Art Currently, GaAs-based heterojunction bipolar transistors, which are promising as ultrahigh-speed electronic device elements, are being actively developed. GaAs heterojunction bipolar transistors generally use n-type GaAs for the collector layer, p-type GaAs for the base layer, and n-type AlGaAs for the emitter layer.

【0003】しかしながら、p型GaAsベース層とn
型AlGaAsエミッタ層を成長させる際には、ベース
層であるp型GaAsの最適な成長温度とエミッタ層で
あるn型AlGaAsの最適な成長温度とが異なる。従
って、ベース層とエミッタ層を異なる温度で成長させる
必要があり、ベース層を成長させた後、成長温度を変更
する間、成長を中断する必要がある。例えば、特開平9
−17737号公報には、炭素添加半導体層を成長させ
た後、500℃〜600℃の基板温度を保持して成長中
断を行った後、別の半導体層を成長させる技術が記載さ
れている。
However, a p-type GaAs base layer and n-type
When growing the type AlGaAs emitter layer, the optimum growth temperature of p-type GaAs as the base layer is different from the optimum growth temperature of n-type AlGaAs as the emitter layer. Therefore, it is necessary to grow the base layer and the emitter layer at different temperatures, and it is necessary to suspend the growth while changing the growth temperature after growing the base layer. For example, JP-A-9
Japanese Patent Application Publication No. 17737 describes a technique for growing a carbon-added semiconductor layer, suspending the growth while maintaining a substrate temperature of 500 ° C. to 600 ° C., and then growing another semiconductor layer.

【0004】また、ベース層成長工程とエミッタ層成長
工程との間で成長を中断することで、ベース層の材料ガ
スとエミッタ層の材料ガスとが混合されることを防ぐ。
このことにより、ベース層とエミッタ層との界面が急峻
になり、作製されるHBTの性能が向上する。従って、
ベース層の成長とエミッタ層の成長との間で成長中断す
ることが広く行われている。
In addition, by interrupting the growth between the base layer growth step and the emitter layer growth step, mixing of the base layer material gas and the emitter layer material gas is prevented.
Thereby, the interface between the base layer and the emitter layer becomes steep, and the performance of the manufactured HBT is improved. Therefore,
It is widely practiced to interrupt the growth between the growth of the base layer and the growth of the emitter layer.

【0005】[0005]

【発明が解決しようとする課題】しかし、成長中断時に
は、通常400℃以上の基板温度を保持して成長中断を
行うことが行われている。しかし、GaAsベース層を
成長した後、400℃以上の基板温度としてベース層の
表面をさらしておくと、GaAsベース層から砒素の脱
離が生じるという問題がある。このことによってベース
エミッタ界面の質が劣化することから、作製されたHB
Tの性能において電流増幅率の低下の原因となる。
However, when the growth is interrupted, the growth is usually interrupted while maintaining the substrate temperature at 400 ° C. or higher. However, if the surface of the base layer is exposed at a substrate temperature of 400 ° C. or more after the growth of the GaAs base layer, arsenic is desorbed from the GaAs base layer. As a result, the quality of the base-emitter interface deteriorates.
This causes a decrease in the current amplification factor in the performance of T.

【0006】この問題を解決する方法として、砒素の脱
離を防ぐために砒素原料ガスであるAsH3を成長中断
中に供給し続けるという方法が考えられる。
As a method of solving this problem, a method of continuing to supply AsH 3 , which is an arsenic source gas, during growth interruption in order to prevent arsenic desorption, can be considered.

【0007】しかし、AsH3は解離する際に多くの活
性水素を発生させることが知られている。活性水素と
は、炭素等の原子と容易に結合する化学的に活性な原子
である。従って、ベース層を炭素添加半導体とした場合
には、活性水素がベース層に取り込まれて、ドナーであ
る炭素と活性水素が結合して、この結果炭素を不活性化
し、ベース層のホールキャリア濃度を低下させることが
分かった。
[0007] However, it is known that AsH 3 generates a lot of active hydrogen when dissociated. Active hydrogen is a chemically active atom that readily bonds to atoms such as carbon. Therefore, when the base layer is made of a carbon-added semiconductor, active hydrogen is taken into the base layer, and carbon as a donor is combined with active hydrogen, thereby inactivating carbon and increasing the hole carrier concentration of the base layer. Was found to decrease.

【0008】一方、移動体通信用の高出力電流HBTで
は、ベース層のホールキャリア濃度が2×1019cm-3
以上が必要とされており、また、将来実用化されるミリ
波通信に利用されるHBTは5×1019cm-3以上のよ
り高いホールキャリア濃度が要求される。しかし、活性
水素の発生はこのような高濃度炭素添加層を形成するこ
との大きな障害となる。
On the other hand, in a high output current HBT for mobile communication, the hole carrier concentration in the base layer is 2 × 10 19 cm −3.
The above is required, and a higher hole carrier concentration of 5 × 10 19 cm −3 or more is required for an HBT used for millimeter wave communication to be put into practical use in the future. However, generation of active hydrogen is a major obstacle to forming such a high-concentration carbon-added layer.

【0009】従って、本発明の目的は、炭素添加III
−V族化合物半導体層を成長後、成長中断を行う際に、
炭素添加III−V族化合物半導体層からV族元素の脱
離を防ぎ、かつ、炭素添加III−V族化合物半導体層
中の炭素の不活性化を防止することのできる炭素添加I
II−V族化合物半導体層の成長方法及びヘテロ接合バ
イポーラトランジスタを得ることを目的とする。
Accordingly, an object of the present invention is to provide a carbon-added III
-After growing the group V compound semiconductor layer, when performing the growth interruption,
Carbon addition I which can prevent desorption of a group V element from a carbon addition III-V compound semiconductor layer and prevent inactivation of carbon in the carbon addition III-V compound semiconductor layer
An object of the present invention is to provide a method for growing a II-V compound semiconductor layer and a heterojunction bipolar transistor.

【0010】[0010]

【課題を解決するための手段】本発明のIII−V族化
合物半導体の成長方法は、半導体基板上に、少なくとも
炭素添加III−V族化合物半導体層を形成し、前記炭
素添加III−V族化合物半導体を成長後、V族元素を
含む有機化合物とキャリアガスとを供給して成長中断を
行う工程を含むことを特徴とする。
According to the method of growing a III-V compound semiconductor of the present invention, at least a carbon-added III-V compound semiconductor layer is formed on a semiconductor substrate, and the carbon-added III-V compound semiconductor layer is formed. After growing the semiconductor, the method includes a step of supplying an organic compound containing a group V element and a carrier gas to interrupt the growth.

【0011】また、前記炭素添加III−V族化合物半
導体層は、As元素を含み、前記V族元素を含む有機化
合物は、砒素と炭素との結合を含む有機砒素化合物であ
ることを特徴とする。
Further, the carbon-added III-V compound semiconductor layer contains an As element, and the organic compound containing a Group V element is an organic arsenic compound containing a bond between arsenic and carbon. .

【0012】特に好ましい有機砒素化合物は、トリメチ
ル砒素あるいはトリエチル砒素である。
A particularly preferred organic arsenic compound is trimethylarsenic or triethylarsenic.

【0013】本発明のヘテロ接合バイポーラトランジス
タは、上記の成長方法で作製されたベース層及びエミッ
タ層を含む半導体積層構造を有することを特徴とする。
A heterojunction bipolar transistor according to the present invention is characterized by having a semiconductor laminated structure including a base layer and an emitter layer manufactured by the above-described growth method.

【0014】[0014]

【発明の実施の形態】(実施例1)本実施例では、成長
中断時の雰囲気によって、炭素添加p型半導体層のホー
ルキャリア濃度がどのように変わるかについて試料1〜
3の3種の試料を作製して調べた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) In this embodiment, samples 1 to 3 show how the hole carrier concentration of the carbon-doped p-type semiconductor layer changes depending on the atmosphere during the growth interruption.
Three types of samples were prepared and examined.

【0015】まず、半絶縁性GaAs基板上に、原料ガ
スとしてトリメチルガリウム(TMGa)とトリメチル
砒素(TMAs)とを基板温度590℃、V/III比
3.5、III族原料ガスの供給量を1.4sccm、
リアクター内圧力60Torrで炭素添加p型GaAs
層を0.5μm成長する。
First, on a semi-insulating GaAs substrate, trimethylgallium (TMGa) and trimethylarsenic (TMAs) are supplied as source gases at a substrate temperature of 590 ° C., a V / III ratio of 3.5, and a supply amount of a group III source gas. 1.4 sccm,
Carbon-added p-type GaAs at reactor pressure of 60 Torr
The layer is grown 0.5 μm.

【0016】次に、試料1として、基板温度590℃の
まま、AsH3とキャリアガスである水素ガスの雰囲気
中で5分間保持する。また、試料2として、基板温度5
90℃のまま、ターシャリーブチルアルシン(TBA
s)とキャリアガスである水素ガスの雰囲気中で5分間
保持する。また、試料3として、基板温度590℃のま
ま、トリメチルアルシン(TMAs)とキャリアガスで
ある水素ガスの雰囲気中で5分間保持する。その後、炭
素添加p型GaAs層の上に、キャップ層としてノンド
ープAlGaAs層を0.05μm成長する。
Next, the sample 1 is kept at a substrate temperature of 590 ° C. for 5 minutes in an atmosphere of AsH 3 and hydrogen gas as a carrier gas. Further, as a sample 2, a substrate temperature of 5
Keep tertiary butyl arsine (TBA) at 90 ° C.
s) and a hydrogen gas as a carrier gas for 5 minutes. Sample 3 is kept at 590 ° C. for 5 minutes in an atmosphere of trimethylarsine (TMAs) and hydrogen gas as a carrier gas. Thereafter, a non-doped AlGaAs layer as a cap layer is grown to a thickness of 0.05 μm on the carbon-doped p-type GaAs layer.

【0017】それぞれの試料のホールキャリア濃度を測
定した結果を図1に示す。図1に示すようにTBAsと
水素ガスとの雰囲気中で成長中断を行った試料2は、A
sH3と水素ガスとの雰囲気中で成長中断を行った試料
1よりホールキャリア濃度が大きく、添加した炭素の不
活性化を抑制できた。また、TMAsと水素ガスとの雰
囲気中で成長中断した試料3は、TBAsと水素ガスと
の雰囲気中で成長中断を行った試料2よりも更にホール
キャリア濃度が大きく、添加した炭素の不活性化を抑制
できた。
FIG. 1 shows the results of measuring the hole carrier concentration of each sample. As shown in FIG. 1, the sample 2 in which the growth was interrupted in an atmosphere of TBAs and hydrogen gas was A
The hole carrier concentration was higher than that of Sample 1 in which the growth was interrupted in an atmosphere of sH 3 and hydrogen gas, and the inactivation of the added carbon could be suppressed. Further, the sample 3 in which the growth was interrupted in the atmosphere of TMAs and hydrogen gas had a higher hole carrier concentration than the sample 2 in which the growth was interrupted in the atmosphere of TBAs and hydrogen gas, and the added carbon was inactivated. Could be suppressed.

【0018】尚、本実施例ではV族原料ガスとしてTM
Asを用いた場合を取り上げたが、トリエチル砒素(T
EAs)等の、砒素と炭素との結合を含む他の原料を用
いても同様の効果が得られた。
In this embodiment, TM gas is used as the group V source gas.
The case where As was used was taken up, but triethyl arsenic (T
Similar effects were obtained by using other raw materials containing a bond between arsenic and carbon, such as EAs).

【0019】(実施例2)実施例1では、成長中断時の
基板温度を炭素添加p型半導体層の成長温度と同じとし
たが、本実施例では、成長中断時の基板温度を炭素添加
p型半導体層の成長温度よりも高くした時に、成長中断
時の雰囲気によって、炭素添加p型半導体層のホールキ
ャリア濃度がどのように変わるかについて試料4〜6の
3種の試料を作製して調べた。
(Embodiment 2) In the first embodiment, the substrate temperature at the time of the interruption of the growth is the same as the growth temperature of the carbon-added p-type semiconductor layer. Three kinds of samples 4 to 6 were prepared to examine how the hole carrier concentration of the carbon-doped p-type semiconductor layer changes depending on the atmosphere during the growth interruption when the growth temperature is higher than the growth temperature of the semiconductor layer. Was.

【0020】各試料の構造、原料ガス、成長温度、V/
III比、III族原料ガスの供給量、リアクター内圧
力は実施例1と同様として、炭素添加p型GaAs層を
形成する。
The structure of each sample, source gas, growth temperature, V /
A carbon-added p-type GaAs layer is formed in the same manner as in Example 1 with respect to the III ratio, the supply amount of the group III source gas, and the reactor internal pressure.

【0021】次に、試料4として、基板温度640℃に
昇温して、AsH3とキャリアガスである水素ガスの雰
囲気中で5分間保持する。また、試料5として、基板温
度640℃に昇温して、ターシャリーブチルアルシン
(TBAs)とキャリアガスである水素ガスの雰囲気中
で5分間保持する。また、試料6として、基板温度64
0℃に昇温して、トリメチルアルシン(TMAs)とキ
ャリアガスである水素ガスの雰囲気中で5分間保持す
る。その後、基板温度を640℃に保持したまま、炭素
添加p型GaAs層の上に、キャップ層としてノンドー
プAlGaAs層を0.05μm成長する。
Next, as Sample 4, the substrate temperature is raised to 640 ° C., and the sample 4 is kept for 5 minutes in an atmosphere of AsH 3 and hydrogen gas as a carrier gas. Further, as Sample 5, the substrate temperature is raised to 640 ° C., and the sample is kept in an atmosphere of tertiary butyl arsine (TBAs) and hydrogen gas as a carrier gas for 5 minutes. Further, as the sample 6, the substrate temperature 64
The temperature is raised to 0 ° C., and kept for 5 minutes in an atmosphere of trimethylarsine (TMAs) and hydrogen gas as a carrier gas. Thereafter, while keeping the substrate temperature at 640 ° C., a non-doped AlGaAs layer is grown as a cap layer to a thickness of 0.05 μm on the carbon-doped p-type GaAs layer.

【0022】それぞれの試料のホールキャリア濃度を測
定した結果を図2に示す。図2に示すようにTBAsと
水素ガスとの雰囲気中で成長中断を行った試料5は、A
sH3と水素ガスとの雰囲気中で成長中断を行った試料
4よりホールキャリア濃度が大きく、添加した炭素の不
活性化を抑制でき、且つ、炭素添加p型GaAs層より
も高い基板温度で成長中断することにより添加した炭素
を一層活性化することができる。また、TMAsと水素
ガスとの雰囲気中で成長中断した試料6は、TBAsと
水素ガスとの雰囲気中で成長中断を行った試料5よりも
更にホールキャリア濃度が大きく、添加した炭素の不活
性化を抑制でき、且つ、炭素添加p型GaAs層よりも
高い基板温度で成長中断することにより添加した炭素を
一層活性化することができる。
FIG. 2 shows the results of measuring the hole carrier concentration of each sample. As shown in FIG. 2, Sample 5 in which the growth was interrupted in an atmosphere of TBAs and hydrogen gas was A
The hole carrier concentration was higher than that of Sample 4 in which the growth was interrupted in an atmosphere of sH 3 and hydrogen gas, the inactivation of the added carbon could be suppressed, and the growth was at a higher substrate temperature than the carbon-doped p-type GaAs layer. The interruption can further activate the added carbon. Further, the sample 6 in which the growth was interrupted in the atmosphere of TMAs and hydrogen gas had a higher hole carrier concentration than the sample 5 in which the growth was interrupted in the atmosphere of TBAs and hydrogen gas, and the added carbon was inactivated. Can be suppressed, and the added carbon can be further activated by interrupting the growth at a substrate temperature higher than that of the carbon-doped p-type GaAs layer.

【0023】尚、本実施例ではV族原料ガスとしてTM
Asを用いた場合を取り上げたが、トリエチル砒素(T
EAs)等の、砒素と炭素との結合を含む他の原料を用
いても同様の効果が得られた。
In this embodiment, TM gas is used as the group V source gas.
The case where As was used was taken up, but triethyl arsenic (T
Similar effects were obtained by using other raw materials containing a bond between arsenic and carbon, such as EAs).

【0024】(実施例3)本実施例では、エミッタAl
GaAs/ベースGaAsのHBTにおいて、ベース層
とエミッタ層との成長中断時の基板温度を640℃に昇
温し、その時の雰囲気の異なる試料HBT1〜2の2種
類のHBTを作製し、各HBTの最大発振周波数(fm
ax)を測定した。
(Embodiment 3) In this embodiment, the emitter Al
In a GaAs / base GaAs HBT, the substrate temperature when the growth of the base layer and the emitter layer was interrupted was raised to 640 ° C., and two types of HBTs of samples HBT1 and HBT2 having different atmospheres at that time were produced. Maximum oscillation frequency (fm
ax) was measured.

【0025】図5に、本実施例で作製したHBTの断面
図を示す。半絶縁性GaAs基板1上に、電子キャリア
濃度5×1018cm-3のn型GaAsコレクタコンタク
ト層2を膜厚0.5μm、電子キャリア濃度2×1016
cm-3のn型GaAsコレクタ層3を膜厚0.7μm、
ホールキャリア濃度2×1019cm-3のp型GaAsベ
ース層4を膜厚0.1μm、電子キャリア濃度5×10
17cm-3のn型Al0.3Ga0.7Asエミッタ層5を膜厚
0.1μm、電子キャリア濃度5×1018cm-3のn型
GaAsエミッタコンタクト層6を膜厚0.2μmとし
て、順次MOCVD法によりエピタキシャル成長して得
られたウェハを用いてHBTを作製する。
FIG. 5 is a sectional view of the HBT manufactured in this embodiment. On a semi-insulating GaAs substrate 1, an n-type GaAs collector contact layer 2 having an electron carrier concentration of 5 × 10 18 cm −3 is formed to a thickness of 0.5 μm and an electron carrier concentration of 2 × 10 16
cm −3 n-type GaAs collector layer 3 having a thickness of 0.7 μm;
A p-type GaAs base layer 4 having a hole carrier concentration of 2 × 10 19 cm −3 is formed to a thickness of 0.1 μm and an electron carrier concentration of 5 × 10 19
MOCVD using an n-type Al 0.3 Ga 0.7 As emitter layer 5 of 17 cm -3 with a thickness of 0.1 μm and an n-type GaAs emitter contact layer 6 with an electron carrier concentration of 5 × 10 18 cm -3 with a thickness of 0.2 μm An HBT is manufactured using a wafer obtained by epitaxial growth according to the method.

【0026】p型GaAsベース層4は、成長条件とし
て成長温度590℃、V/III比3.5、III族原
料ガス1.4sccm、リアクター内圧力60Torr
で成長させた。次に、試料HBT1として、ベースエミ
ッタ界面7が表面に表れた状態で、基板温度を640℃
に昇温し、AsH3と水素ガスとの雰囲気中で、5分間
成長中断した。また、試料HBT2として、ベースエミ
ッタ界面7が表面に表れた状態で、基板温度を640℃
に昇温し、TMAsと水素ガスとの雰囲気中で5分間成
長中断した。
The p-type GaAs base layer 4 is grown at a growth temperature of 590 ° C., a V / III ratio of 3.5, a group III source gas of 1.4 sccm, and a reactor internal pressure of 60 Torr.
Grown in. Next, as the sample HBT1, the substrate temperature was set to 640 ° C. with the base-emitter interface 7 exposed on the surface.
And growth was interrupted for 5 minutes in an atmosphere of AsH 3 and hydrogen gas. Further, as the sample HBT2, the substrate temperature was set to 640 ° C. with the base-emitter interface 7 exposed on the surface.
And growth was interrupted for 5 minutes in an atmosphere of TMAs and hydrogen gas.

【0027】その後、試料HBT1、HBT2ともに、
基板温度を640℃に保持したままAl0.3Ga0.7As
エミッタ層を成長させ、その後、エミッタ幅2.4μm
となるようなHBTを作製する。
Then, for both samples HBT1 and HBT2,
Al 0.3 Ga 0.7 As while keeping the substrate temperature at 640 ° C.
An emitter layer is grown, and then the emitter width is 2.4 μm
An HBT is prepared as follows.

【0028】このようにして作製した各試料のHBTの
最大発振周波数を測定した結果を図3に示す。図3に示
されるようにTMAsと水素ガスとの雰囲気中で成長中
断を行った試料HBT2は、AsH3と水素ガスとの雰
囲気中で成長中断を行った試料HBT1より最大発振周
波数が大きい。これは、TMAsと水素ガスとの雰囲気
中で成長中断を行った試料HBT2は、AsH3と水素
ガスとの雰囲気中で成長中断を行った試料HBT1よ
り、ベースのホールキャリア濃度が大きくできたためで
あると考えられる。尚、ベース層のホールキャリアをさ
らに増加させるために、実施例2と同様に、ベースエミ
ッタ界面7が表面に表れた状態で、成長中断中の基板温
度を上昇させることによって、更にベース層の炭素活性
化率を向上させることができる。この場合においても、
TMAsと水素ガスとの雰囲気中で成長中断を行った試
料HBT2は、AsH3と水素ガスとの雰囲気中で成長
中断を行った試料HBT1より最大発振周波数が大きく
なった。
FIG. 3 shows the result of measuring the maximum oscillation frequency of the HBT of each sample thus manufactured. Samples HBT2 which was grown interrupted in an atmosphere of TMAs and hydrogen gas as shown in FIG. 3, the maximum oscillation frequency is greater than the sample HBT1 which was grown interrupted in an atmosphere of AsH 3 and hydrogen gas. This sample HBT2 which was grown interrupted in an atmosphere of TMAs and hydrogen gas from AsH 3 and the sample HBT1 which was grown interrupted in an atmosphere of hydrogen gas, in order to hole carrier concentration of the base could be increased It is believed that there is. In order to further increase the number of hole carriers in the base layer, as in the second embodiment, by increasing the substrate temperature during the growth interruption with the base-emitter interface 7 exposed on the surface, the carbon in the base layer is further increased. The activation rate can be improved. Even in this case,
Samples were grown interrupted in an atmosphere of TMAs and hydrogen gas HBT2, the maximum oscillation frequency than AsH 3 and the sample HBT1 which was grown interrupted in an atmosphere of hydrogen gas is increased.

【0029】(実施例4)本実施例では、エミッタIn
GaP/ベースGaAsからなるHBTにおいて、ベー
ス層とエミッタ層との成長中断時の基板温度を590℃
に保持し、その時の雰囲気の異なる試料HBT3〜4の
2種類のHBTを作製し、各HBTの最大発振周波数
(fmax)を測定した。
(Embodiment 4) In this embodiment, the emitter In
In an HBT made of GaP / base GaAs, the substrate temperature when the growth of the base layer and the emitter layer is interrupted is set to 590 ° C.
, And two types of HBTs having different atmospheres at that time were prepared, and the maximum oscillation frequency (fmax) of each HBT was measured.

【0030】図6に、本実施例で作製したHBTの断面
図を示す。半絶縁性GaAs基板8上に、電子キャリア
濃度5×1018cm-3のn型GaAsコレクタコンタク
ト層9を膜厚0.5μm、電子キャリア濃度2×1016
cm-3のn型GaAsコレクタ層10を膜厚0.7μ
m、ホールキャリア濃度2×1019cm-3のp型GaA
sベース層11を膜厚0.1μm、電子キャリア濃度5
×1017cm-3のn型In0.5Ga0.5Pエミッタ層12
を膜厚0.1μm、電子キャリア濃度5×1018cm-3
のn型GaAsエミッタコンタクト層13を膜厚0.2
μmとして、順次MOCVD法によりエピタキシャル成
長して得られたウェハを用いてHBTを作製する。
FIG. 6 is a sectional view of the HBT manufactured in this embodiment. An n-type GaAs collector contact layer 9 having an electron carrier concentration of 5 × 10 18 cm −3 is formed on a semi-insulating GaAs substrate 8 to a thickness of 0.5 μm and an electron carrier concentration of 2 × 10 16.
film thickness n-type GaAs collector layer 10 cm -3 0.7 .mu.m
m, p-type GaAs having a hole carrier concentration of 2 × 10 19 cm −3
The s base layer 11 has a thickness of 0.1 μm and an electron carrier concentration of 5
× 10 17 cm −3 n-type In 0.5 Ga 0.5 P emitter layer 12
With a thickness of 0.1 μm and an electron carrier concentration of 5 × 10 18 cm −3
N-type GaAs emitter contact layer 13 having a thickness of 0.2
An HBT is manufactured by using wafers obtained by epitaxial growth by the MOCVD method sequentially with a thickness of μm.

【0031】p型GaAsベース層11は、成長条件と
して成長温度590℃、V/III比3.5、III族
原料ガス1.4sccm、リアクター内圧力60Tor
rで成長させた。次に、試料HBT3として、ベースエ
ミッタ界面14が表面に表れた状態で、基板温度を59
0℃に保持したままAsH3と水素ガスとの雰囲気中
で、5分間成長中断した。また、試料HBT4として、
ベースエミッタ界面14が表面に表れた状態で基板温度
590℃に保持したまま、TMAsと水素ガスとの雰囲
気中で、5分間成長中断した。
The p-type GaAs base layer 11 is grown at a growth temperature of 590 ° C., a V / III ratio of 3.5, a group III source gas of 1.4 sccm, and a reactor internal pressure of 60 Torr.
g. Next, as a sample HBT3, with the base-emitter interface 14 exposed on the surface, the substrate temperature was set to 59.
While maintaining the temperature at 0 ° C., the growth was suspended for 5 minutes in an atmosphere of AsH 3 and hydrogen gas. Also, as a sample HBT4,
The growth was interrupted for 5 minutes in an atmosphere of TMAs and hydrogen gas while maintaining the substrate temperature at 590 ° C. with the base-emitter interface 14 exposed on the surface.

【0032】その後、試料HBT3、HBT4ともに、
基板温度を590℃に保持したまま、n型In0.5Ga
0.5Pエミッタ層を成長させ、エミッタ幅2.4μmと
なるようなHBTを作製する。
Then, for both samples HBT3 and HBT4,
While maintaining the substrate temperature at 590 ° C., the n-type In 0.5 Ga
A 0.5 P emitter layer is grown to produce an HBT having an emitter width of 2.4 μm.

【0033】このようにして作製した各試料のHBTの
最大発振周波数を測定した結果を図4に示す。図4に示
されるようにTMAsと水素ガスとの雰囲気中で成長中
断を行った試料HBT4は、AsH3と水素ガスとの雰
囲気中で成長中断を行った試料HBT3より最大発振周
波数が大きい。これは、TMAsと水素ガスとの雰囲気
中で成長中断を行った試料HBT4は、AsH3と水素
ガスとの雰囲気中で成長中断を行った試料HBT3よ
り、ベースのホールキャリア濃度が大きくできたためで
あると考えられる。尚、ベース層のホールキャリア濃度
をさらに増加させるために、実施例2と同様に、ベース
エミッタ界面14が表面に表れた状態で、成長中断中の
基板温度を上昇させて熱処理を施すことによって、更に
ベース層の炭素活性化率を向上させることができる。こ
の場合においても、TMAsと水素ガスとの雰囲気中で
成長中断を行った試料HBT4は、AsH3と水素ガス
との雰囲気中で成長中断を行った試料HBT3より最大
発振周波数が大きくなった。
FIG. 4 shows the result of measuring the maximum oscillation frequency of the HBT of each sample thus manufactured. Samples HBT4 which was grown interrupted in an atmosphere of TMAs and hydrogen gas as shown in FIG. 4, the maximum oscillation frequency is greater than the sample HBT3 which was grown interrupted in an atmosphere of AsH 3 and hydrogen gas. This sample HBT4 which was grown interrupted in an atmosphere of TMAs and hydrogen gas from AsH 3 and the sample HBT3 which was grown interrupted in an atmosphere of hydrogen gas, in order to hole carrier concentration of the base could be increased It is believed that there is. In order to further increase the hole carrier concentration of the base layer, as in the second embodiment, a heat treatment is performed by increasing the substrate temperature during the growth interruption while the base-emitter interface 14 is exposed on the surface. Further, the carbon activation rate of the base layer can be improved. In this case, the sample HBT4 which was grown interrupted in an atmosphere of TMAs and hydrogen gas, the maximum oscillation frequency than AsH 3 and the sample HBT3 which was grown interrupted in an atmosphere of hydrogen gas is increased.

【0034】[0034]

【発明の効果】本発明によれば、炭素添加III−V族
化合物半導体層を成長した後、成長中断する際、炭素添
加III−V族化合物半導体層からのV族元素の脱離を
防ぐことができ、また、添加した炭素の不活性化を防ぐ
ことができる。このことによって、炭素添加III−V
族化合物半導体層のホールキャリア濃度を高めることが
できる。また、本発明の成長方法で作製されたHBT
は、ベース層のホールキャリア濃度を高めることができ
るので、最大発振周波数を大きくすることができる。
According to the present invention, it is possible to prevent the desorption of a group V element from a carbon-added III-V compound semiconductor layer when the growth is interrupted after the growth of the carbon-added III-V compound semiconductor layer. And inactivation of the added carbon can be prevented. This allows the carbon addition III-V
The hole carrier concentration of the group III compound semiconductor layer can be increased. In addition, the HBT produced by the growth method of the present invention
Can increase the hole carrier concentration of the base layer, so that the maximum oscillation frequency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成長中断中の雰囲気を異ならせた炭素添加Ga
As層のホールキャリア濃度を測定した結果を示す図で
ある。
FIG. 1: Carbon-doped Ga with different atmosphere during growth interruption
It is a figure showing the result of having measured the hole carrier density of an As layer.

【図2】炭素添加GaAs層より成長中断中の基板温度
を高くした時の、成長中断中の雰囲気を異ならせた炭素
添加GaAs層のホールキャリア濃度を測定した結果を
示す図である。
FIG. 2 is a diagram showing the results of measuring the hole carrier concentration of a carbon-doped GaAs layer in which the atmosphere during the growth interruption was changed when the substrate temperature during the growth interruption was higher than that of the carbon-doped GaAs layer.

【図3】成長中断中の雰囲気を異ならせて作製したHB
Tの最大発振周波数を測定した結果を示す図である。
[FIG. 3] HB prepared by changing the atmosphere during the growth interruption
FIG. 9 is a diagram showing a result of measuring a maximum oscillation frequency of T.

【図4】成長中断中の雰囲気を異ならせたHBTの最大
発振周波数を測定した結果を示す図である。
FIG. 4 is a diagram showing the results of measuring the maximum oscillation frequency of an HBT in which the atmosphere during the growth interruption was changed.

【図5】本発明の成長方法で作製したベースGaAs/
エミッタAlGaAsからなるHBTの構造を示す図で
ある。
FIG. 5 shows base GaAs / grown by the growth method of the present invention.
FIG. 3 is a diagram showing a structure of an HBT made of an emitter AlGaAs.

【図6】本発明の成長方法で作製したベースGaAs/
エミッタInGaPからなるHBTの構造を示す図であ
る。
FIG. 6 shows the base GaAs /
FIG. 3 is a diagram showing a structure of an HBT made of an emitter InGaP.

【符号の説明】[Explanation of symbols]

1、8 半絶縁性GaAs基板 2、9 n型GaAsコレクタコンタクト層 3、10 n型GaAsコレクタ層 4、11 p型GaAsベース層 5 n型Al0.3Ga0.7Asエミッタ層 6、13 n型GaAsエミッタコンタクト層 7、14 ベースエミッタ界面 12 n型In0.5Ga0.5Pエミッタ層1,8 Semi-insulating GaAs substrate 2,9 n-type GaAs collector contact layer 3,10 n-type GaAs collector layer 4,11 p-type GaAs base layer 5 n-type Al 0.3 Ga 0.7 As emitter layer 6,13 n-type GaAs emitter Contact layer 7, 14 Base-emitter interface 12 n-type In 0.5 Ga 0.5 P emitter layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、少なくとも炭素添加I
II−V族化合物半導体層を形成し、前記炭素添加II
I−V族化合物半導体を成長後、V族元素を含む有機化
合物とキャリアガスとを供給して成長中断を行う工程を
含むことを特徴とするIII−V族化合物半導体の成長
方法。
1. A semiconductor substrate comprising at least a carbon-doped I
Forming a group II-V compound semiconductor layer,
A method for growing a group III-V compound semiconductor, comprising a step of supplying an organic compound containing a group V element and a carrier gas to interrupt the growth after growing the group IV compound semiconductor.
【請求項2】 前記炭素添加III−V族化合物半導体
層は、As元素を含み、前記V族元素を含む有機化合物
は、砒素と炭素との結合を含む有機砒素化合物であるこ
とを特徴とする請求項1に記載のIII−V族化合物半
導体の成長方法。
2. The carbon-added III-V compound semiconductor layer contains an As element, and the organic compound containing a Group V element is an organic arsenic compound containing a bond between arsenic and carbon. A method for growing a group III-V compound semiconductor according to claim 1.
【請求項3】 前記有機砒素化合物は、トリメチル砒素
またはトリエチル砒素であることを特徴とする請求項2
に記載のIII−V族化合物半導体の成長方法。
3. The organic arsenic compound is trimethyl arsenic or triethyl arsenic.
3. The method for growing a group III-V compound semiconductor according to item 1.
【請求項4】 請求項1乃至3のいずれかの成長方法で
作製されたベース層及びエミッタ層を含む半導体積層構
造を有することを特徴としたヘテロ接合バイポーラトラ
ンジスタ。
4. A hetero-junction bipolar transistor having a semiconductor multilayer structure including a base layer and an emitter layer manufactured by the growth method according to claim 1.
JP07678198A 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor Expired - Fee Related JP3408419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07678198A JP3408419B2 (en) 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07678198A JP3408419B2 (en) 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JPH11274086A true JPH11274086A (en) 1999-10-08
JP3408419B2 JP3408419B2 (en) 2003-05-19

Family

ID=13615150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07678198A Expired - Fee Related JP3408419B2 (en) 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JP3408419B2 (en)

Also Published As

Publication number Publication date
JP3408419B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US5682040A (en) Compound semiconductor device having a reduced resistance
JP2000068284A (en) Manufacture of heterojunction bipolar transistor, and power amplifier
JP3408419B2 (en) Method of growing III-V compound semiconductor and heterojunction bipolar transistor
JP4883547B2 (en) Compound semiconductor epitaxial substrate
JP3189061B2 (en) Method for manufacturing compound semiconductor device
JP3013992B2 (en) Method for growing compound semiconductor crystal
JP3227083B2 (en) Method for manufacturing bipolar transistor
JP2002359249A (en) Compound semiconductor device and manufacturing method therefor
JP2005086135A (en) Epitaxial wafer for hetero bipolar transistor and its manufacturing method
JP3156909B2 (en) Vapor growth method of semiconductor laminated structure
JP2007042936A (en) Group iii-v compound semiconductor epitaxial wafer
KR101082773B1 (en) Compound semiconductor element and process for fabricating the same
JP3116954B2 (en) Method for growing compound semiconductor thin film
JP2936617B2 (en) Vapor phase growth of compound semiconductor crystals
JP2000133654A (en) Manufacture of bipolar transistor
JP3326378B2 (en) Semiconductor device
JPH0964054A (en) Manufacture of bipolar transistor
CN117766389A (en) Heterojunction bipolar transistor and MOCVD epitaxial growth method thereof
JPH09298160A (en) Compd. semiconductor crystal growing method and heterojunction bipolar transistor
JP2003318185A (en) Method for manufacturing compound semiconductor wafer and compound semiconductor element
JPH11251329A (en) Semiconductor wafer and manufacture thereof
JP2000124444A (en) Semiconductor device and epitaxial wafer
JP2000223498A (en) Fabrication of semiconductor device and heterojunction bipolar transistor, and amplifier
JP2007180269A (en) Manufacturing method of compound semiconductor epitaxial substrate
JP2010245547A (en) Compound semiconductor epitaxial substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees