JP3408419B2 - Method of growing III-V compound semiconductor and heterojunction bipolar transistor - Google Patents

Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Info

Publication number
JP3408419B2
JP3408419B2 JP07678198A JP7678198A JP3408419B2 JP 3408419 B2 JP3408419 B2 JP 3408419B2 JP 07678198 A JP07678198 A JP 07678198A JP 7678198 A JP7678198 A JP 7678198A JP 3408419 B2 JP3408419 B2 JP 3408419B2
Authority
JP
Japan
Prior art keywords
growth
layer
carbon
group
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07678198A
Other languages
Japanese (ja)
Other versions
JPH11274086A (en
Inventor
耕一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP07678198A priority Critical patent/JP3408419B2/en
Publication of JPH11274086A publication Critical patent/JPH11274086A/en
Application granted granted Critical
Publication of JP3408419B2 publication Critical patent/JP3408419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機金属気相成長
法を用いるIII−V族化合物半導体の成長方法及びそ
の方法で作製したヘテロ接合バイポーラトランジスタに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a group III-V compound semiconductor using a metal organic chemical vapor deposition method and a heterojunction bipolar transistor manufactured by the method.

【0002】[0002]

【従来の技術】現在、超高速電子デバイス素子として有
望なGaAs系のヘテロ接合バイポーラトランジスタが
盛んに開発されている。GaAs系ヘテロ接合バイポー
ラトランジスタは、コレクタ層にn型GaAs、ベース
層にp型GaAs、エミッタ層にn型AlGaAsを用
いたものが一般的である。
2. Description of the Related Art Currently, GaAs-based heterojunction bipolar transistors, which are promising as ultrafast electronic device elements, are being actively developed. A GaAs heterojunction bipolar transistor generally uses n-type GaAs for the collector layer, p-type GaAs for the base layer, and n-type AlGaAs for the emitter layer.

【0003】しかしながら、p型GaAsベース層とn
型AlGaAsエミッタ層を成長させる際には、ベース
層であるp型GaAsの最適な成長温度とエミッタ層で
あるn型AlGaAsの最適な成長温度とが異なる。従
って、ベース層とエミッタ層を異なる温度で成長させる
必要があり、ベース層を成長させた後、成長温度を変更
する間、成長を中断する必要がある。例えば、特開平9
−17737号公報には、炭素添加半導体層を成長させ
た後、500℃〜600℃の基板温度を保持して成長中
断を行った後、別の半導体層を成長させる技術が記載さ
れている。
However, the p-type GaAs base layer and the n-type
When growing a p-type AlGaAs emitter layer, the optimum growth temperature of p-type GaAs that is a base layer and the optimum growth temperature of n-type AlGaAs that is an emitter layer are different. Therefore, it is necessary to grow the base layer and the emitter layer at different temperatures, and it is necessary to stop the growth after growing the base layer while changing the growth temperature. For example, JP-A-9
Japanese Patent Publication No. 17737 discloses a technique of growing a carbon-added semiconductor layer, holding a substrate temperature of 500 ° C. to 600 ° C. to stop the growth, and then growing another semiconductor layer.

【0004】また、ベース層成長工程とエミッタ層成長
工程との間で成長を中断することで、ベース層の材料ガ
スとエミッタ層の材料ガスとが混合されることを防ぐ。
このことにより、ベース層とエミッタ層との界面が急峻
になり、作製されるHBTの性能が向上する。従って、
ベース層の成長とエミッタ層の成長との間で成長中断す
ることが広く行われている。
Further, by interrupting the growth between the base layer growing step and the emitter layer growing step, it is possible to prevent the material gas of the base layer and the material gas of the emitter layer from being mixed.
This makes the interface between the base layer and the emitter layer steep and improves the performance of the HBT to be manufactured. Therefore,
It is common practice to interrupt the growth between the growth of the base layer and the growth of the emitter layer.

【0005】[0005]

【発明が解決しようとする課題】しかし、成長中断時に
は、通常400℃以上の基板温度を保持して成長中断を
行うことが行われている。しかし、GaAsベース層を
成長した後、400℃以上の基板温度としてベース層の
表面をさらしておくと、GaAsベース層から砒素の脱
離が生じるという問題がある。このことによってベース
エミッタ界面の質が劣化することから、作製されたHB
Tの性能において電流増幅率の低下の原因となる。
However, when the growth is interrupted, it is usual to hold the substrate temperature of 400 ° C. or higher to interrupt the growth. However, if the surface of the base layer is exposed at a substrate temperature of 400 ° C. or higher after growing the GaAs base layer, there is a problem that arsenic is released from the GaAs base layer. This deteriorates the quality of the base-emitter interface.
This causes a decrease in current amplification factor in the performance of T.

【0006】この問題を解決する方法として、砒素の脱
離を防ぐために砒素原料ガスであるAsH3を成長中断
中に供給し続けるという方法が考えられる。
As a method for solving this problem, a method of continuing to supply AsH 3 which is an arsenic source gas during growth interruption in order to prevent desorption of arsenic can be considered.

【0007】しかし、AsH3は解離する際に多くの活
性水素を発生させることが知られている。活性水素と
は、炭素等の原子と容易に結合する化学的に活性な原子
である。従って、ベース層を炭素添加半導体とした場合
には、活性水素がベース層に取り込まれて、ドナーであ
る炭素と活性水素が結合して、この結果炭素を不活性化
し、ベース層のホールキャリア濃度を低下させることが
分かった。
However, AsH 3 is known to generate a large amount of active hydrogen when dissociated. Active hydrogen is a chemically active atom that easily bonds with an atom such as carbon. Therefore, when the base layer is a carbon-added semiconductor, active hydrogen is taken into the base layer, carbon as a donor and active hydrogen are bonded, and as a result, carbon is inactivated and the hole carrier concentration of the base layer is increased. Was found to decrease.

【0008】一方、移動体通信用の高出力電流HBTで
は、ベース層のホールキャリア濃度が2×1019cm-3
以上が必要とされており、また、将来実用化されるミリ
波通信に利用されるHBTは5×1019cm-3以上のよ
り高いホールキャリア濃度が要求される。しかし、活性
水素の発生はこのような高濃度炭素添加層を形成するこ
との大きな障害となる。
On the other hand, in the high output current HBT for mobile communication, the hole carrier concentration of the base layer is 2 × 10 19 cm −3.
The above is required, and the HBT used for millimeter wave communication to be practically used in the future is required to have a higher hole carrier concentration of 5 × 10 19 cm −3 or more. However, generation of active hydrogen is a major obstacle to forming such a high-concentration carbon-added layer.

【0009】従って、本発明の目的は、炭素添加III
−V族化合物半導体層を成長後、成長中断を行う際に、
炭素添加III−V族化合物半導体層からV族元素の脱
離を防ぎ、かつ、炭素添加III−V族化合物半導体層
中の炭素の不活性化を防止することのできる炭素添加I
II−V族化合物半導体層の成長方法及びヘテロ接合バ
イポーラトランジスタを得ることを目的とする。
The object of the present invention is therefore to add carbon III
When the growth of the group V compound semiconductor layer is stopped after the growth,
Carbon addition I capable of preventing the desorption of the group V element from the carbon-added III-V compound semiconductor layer and preventing the deactivation of carbon in the carbon-added III-V compound semiconductor layer
An object of the present invention is to obtain a II-V compound semiconductor layer growth method and a heterojunction bipolar transistor.

【0010】[0010]

【課題を解決するための手段】本発明のIII−V族化
合物半導体の成長方法は、半導体基板上に、少なくとも
炭素添加III−V族化合物半導体層を形成し、前記炭
素添加III−V族化合物半導体層を成長後、V族元素
を含む有機化合物とキャリアガスとを供給して成長中断
を行う工程を含み、上記成長中断の後、n型AlGaA
s層またはn型InGaP層を成長することを特徴とす
る。
According to the method for growing a III-V group compound semiconductor of the present invention, at least a carbon-doped III-V group compound semiconductor layer is formed on a semiconductor substrate. After the growth of the semiconductor layer, a step of supplying an organic compound containing a group V element and a carrier gas to suspend the growth is included. After the growth is suspended, n-type AlGaA
It is characterized by growing an s layer or an n-type InGaP layer .

【0011】また、上記成長中断時の基板温度を成長温
度よりも高くしたことを特徴とする。
Further , the substrate temperature at the time of the growth interruption is set to the growth temperature.
It is characterized by being made higher than the degree.

【0012】また、前記炭素添加III−V族化合物半
導体層は、As元素を含み、前記V族元素を含む有機化
合物は、砒素と炭素との結合を含む有機砒素化合物であ
ることを特徴とする。
Further, the carbon-doped III-V group compound semiconductor layer contains an As element, and the organic compound containing the V group element is an organic arsenic compound containing a bond of arsenic and carbon. .

【0013】特に好ましい有機砒素化合物は、トリメチ
ル砒素あるいはトリエチル砒素である。
A particularly preferred organic arsenic compound is trimethylarsenic or triethylarsenic.

【0014】本発明のヘテロ接合バイポーラトランジス
タは、上記の成長方法で作製されたベース層及びエミッ
タ層を含む半導体積層構造を有することを特徴とする。
The heterojunction bipolar transistor of the present invention is characterized by having a semiconductor laminated structure including a base layer and an emitter layer manufactured by the above growth method.

【0015】[0015]

【発明の実施の形態】(実施例1) 本実施例では、成長中断時の雰囲気によって、炭素添加
p型半導体層のホールキャリア濃度がどのように変わる
かについて試料1〜3の3種の試料を作製して調べた。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) In this embodiment, three kinds of samples, Samples 1 to 3, were examined as to how the hole carrier concentration of the carbon-doped p-type semiconductor layer changes depending on the atmosphere during the growth interruption. Was produced and investigated.

【0016】まず、半絶縁性GaAs基板上に、原料ガ
スとしてトリメチルガリウム(TMGa)とトリメチル
砒素(TMAs)とを基板温度590℃、V/III比
3.5、III族原料ガスの供給量を1.4sccm、
リアクター内圧力60Torrで炭素添加p型GaAs
層を0.5μm成長する。
First, trimethylgallium (TMGa) and trimethylarsenic (TMAs) are used as source gases on a semi-insulating GaAs substrate at a substrate temperature of 590 ° C., a V / III ratio of 3.5, and a supply amount of a group III source gas. 1.4 sccm,
Carbon-added p-type GaAs at reactor pressure of 60 Torr
The layer is grown 0.5 μm.

【0017】次に、試料1として、基板温度590℃の
まま、AsH3とキャリアガスである水素ガスの雰囲気
中で5分間保持する。また、試料2として、基板温度5
90℃のまま、ターシャリーブチルアルシン(TBA
s)とキャリアガスである水素ガスの雰囲気中で5分間
保持する。また、試料3として、基板温度590℃のま
ま、トリメチルアルシン(TMAs)とキャリアガスで
ある水素ガスの雰囲気中で5分間保持する。その後、炭
素添加p型GaAs層の上に、キャップ層としてノンド
ープAlGaAs層を0.05μm成長する。
Next, as Sample 1, the substrate temperature is kept at 590 ° C. for 5 minutes in the atmosphere of AsH 3 and hydrogen gas as a carrier gas. In addition, as the sample 2, the substrate temperature is 5
Tertiary butyl arsine (TBA
s) and a carrier gas of hydrogen gas for 5 minutes. Further, as the sample 3, the substrate temperature is kept at 590 ° C. for 5 minutes in an atmosphere of trimethylarsine (TMAs) and hydrogen gas which is a carrier gas. After that, a non-doped AlGaAs layer as a cap layer is grown to a thickness of 0.05 μm on the carbon-doped p-type GaAs layer.

【0018】それぞれの試料のホールキャリア濃度を測
定した結果を図1に示す。図1に示すようにTBAsと
水素ガスとの雰囲気中で成長中断を行った試料2は、A
sH3と水素ガスとの雰囲気中で成長中断を行った試料
1よりホールキャリア濃度が大きく、添加した炭素の不
活性化を抑制できた。また、TMAsと水素ガスとの雰
囲気中で成長中断した試料3は、TBAsと水素ガスと
の雰囲気中で成長中断を行った試料2よりも更にホール
キャリア濃度が大きく、添加した炭素の不活性化を抑制
できた。
The results of measuring the hole carrier concentration of each sample are shown in FIG. As shown in FIG. 1, the sample 2 in which the growth was suspended in the atmosphere of TBAs and hydrogen gas was A
The hole carrier concentration was higher than that of Sample 1 in which the growth was suspended in the atmosphere of sH 3 and hydrogen gas, and the inactivation of the added carbon could be suppressed. Further, the sample 3 suspended in the atmosphere of TMAs and hydrogen gas has a higher hole carrier concentration than the sample 2 suspended in the atmosphere of TBAs and hydrogen gas, and the added carbon is inactivated. Could be suppressed.

【0019】尚、本実施例ではV族原料ガスとしてTM
Asを用いた場合を取り上げたが、トリエチル砒素(T
EAs)等の、砒素と炭素との結合を含む他の原料を用
いても同様の効果が得られた。
In this embodiment, TM is used as the group V source gas.
The case using As was taken up, but triethylarsenic (T
Similar effects were obtained by using other raw materials containing a bond between arsenic and carbon such as EAs).

【0020】(実施例2) 実施例1では、成長中断時の基板温度を炭素添加p型半
導体層の成長温度と同じとしたが、本実施例では、成長
中断時の基板温度を炭素添加p型半導体層の成長温度よ
りも高くした時に、成長中断時の雰囲気によって、炭素
添加p型半導体層のホールキャリア濃度がどのように変
わるかについて試料4〜6の3種の試料を作製して調べ
た。
Example 2 In Example 1, the substrate temperature at the time of growth interruption was set to be the same as the growth temperature of the carbon-doped p-type semiconductor layer, but in this Example, the substrate temperature at the time of growth interruption was set at the carbon-added p-type semiconductor layer. Three types of samples 4 to 6 were prepared and investigated to see how the hole carrier concentration of the carbon-doped p-type semiconductor layer changes depending on the atmosphere when the growth is suspended when the temperature is higher than the growth temperature of the type semiconductor layer. It was

【0021】各試料の構造、原料ガス、成長温度、V/
III比、III族原料ガスの供給量、リアクター内圧
力は実施例1と同様として、炭素添加p型GaAs層を
形成する。
Structure of each sample, source gas, growth temperature, V /
The III ratio, the supply amount of the group III source gas, and the reactor internal pressure are the same as in Example 1, and a carbon-doped p-type GaAs layer is formed.

【0022】次に、試料4として、基板温度640℃に
昇温して、AsH3とキャリアガスである水素ガスの雰
囲気中で5分間保持する。また、試料5として、基板温
度640℃に昇温して、ターシャリーブチルアルシン
(TBAs)とキャリアガスである水素ガスの雰囲気中
で5分間保持する。また、試料6として、基板温度64
0℃に昇温して、トリメチルアルシン(TMAs)とキ
ャリアガスである水素ガスの雰囲気中で5分間保持す
る。その後、基板温度を640℃に保持したまま、炭素
添加p型GaAs層の上に、キャップ層としてノンドー
プAlGaAs層を0.05μm成長する。
Next, as a sample 4, the substrate temperature is raised to 640 ° C. and held for 5 minutes in an atmosphere of AsH 3 and hydrogen gas which is a carrier gas. Further, as the sample 5, the substrate temperature is raised to 640 ° C. and held for 5 minutes in an atmosphere of tertiary butyl arsine (TBAs) and hydrogen gas which is a carrier gas. Further, as the sample 6, the substrate temperature 64
The temperature is raised to 0 ° C. and maintained for 5 minutes in an atmosphere of trimethylarsine (TMAs) and hydrogen gas which is a carrier gas. Then, while maintaining the substrate temperature at 640 ° C., a non-doped AlGaAs layer as a cap layer is grown to a thickness of 0.05 μm on the carbon-doped p-type GaAs layer.

【0023】それぞれの試料のホールキャリア濃度を測
定した結果を図2に示す。図2に示すようにTBAsと
水素ガスとの雰囲気中で成長中断を行った試料5は、A
sH3と水素ガスとの雰囲気中で成長中断を行った試料
4よりホールキャリア濃度が大きく、添加した炭素の不
活性化を抑制でき、且つ、炭素添加p型GaAs層より
も高い基板温度で成長中断することにより添加した炭素
を一層活性化することができる。また、TMAsと水素
ガスとの雰囲気中で成長中断した試料6は、TBAsと
水素ガスとの雰囲気中で成長中断を行った試料5よりも
更にホールキャリア濃度が大きく、添加した炭素の不活
性化を抑制でき、且つ、炭素添加p型GaAs層よりも
高い基板温度で成長中断することにより添加した炭素を
一層活性化することができる。
The results of measuring the hole carrier concentration of each sample are shown in FIG. As shown in FIG. 2, the sample 5 in which the growth was suspended in the atmosphere of TBAs and hydrogen gas was A
The hole carrier concentration is higher than that of sample 4 in which the growth is suspended in the atmosphere of sH 3 and hydrogen gas, the inactivation of the added carbon can be suppressed, and the growth is performed at a substrate temperature higher than that of the carbon-added p-type GaAs layer. By interrupting, the added carbon can be further activated. Further, the sample 6 suspended in the atmosphere of TMAs and hydrogen gas has a higher hole carrier concentration than the sample 5 suspended in the atmosphere of TBAs and hydrogen gas, and the added carbon is inactivated. Can be suppressed, and the added carbon can be further activated by suspending the growth at a substrate temperature higher than that of the carbon-added p-type GaAs layer.

【0024】尚、本実施例ではV族原料ガスとしてTM
Asを用いた場合を取り上げたが、トリエチル砒素(T
EAs)等の、砒素と炭素との結合を含む他の原料を用
いても同様の効果が得られた。
In this embodiment, TM is used as the group V source gas.
The case using As was taken up, but triethylarsenic (T
Similar effects were obtained by using other raw materials containing a bond between arsenic and carbon such as EAs).

【0025】(実施例3) 本実施例では、エミッタAlGaAs/ベースGaAs
のHBTにおいて、ベース層とエミッタ層との成長中断
時の基板温度を640℃に昇温し、その時の雰囲気の異
なる試料HBT1〜2の2種類のHBTを作製し、各H
BTの最大発振周波数(fmax)を測定した。
Example 3 In this example, the emitter AlGaAs / base GaAs is used.
In the HBT, the substrate temperature at the time of interrupting the growth of the base layer and the emitter layer was raised to 640 ° C., and two types of HBTs, Samples HBT1 and 2 having different atmospheres at that time, were produced.
The maximum oscillation frequency (fmax) of BT was measured.

【0026】図5に、本実施例で作製したHBTの断面
図を示す。半絶縁性GaAs基板1上に、電子キャリア
濃度5×1018cm-3のn型GaAsコレクタコンタク
ト層2を膜厚0.5μm、電子キャリア濃度2×1016
cm-3のn型GaAsコレクタ層3を膜厚0.7μm、
ホールキャリア濃度2×1019cm-3のp型GaAsベ
ース層4を膜厚0.1μm、電子キャリア濃度5×10
17cm-3のn型Al0.3Ga0.7Asエミッタ層5を膜厚
0.1μm、電子キャリア濃度5×1018cm-3のn型
GaAsエミッタコンタクト層6を膜厚0.2μmとし
て、順次MOCVD法によりエピタキシャル成長して得
られたウェハを用いてHBTを作製する。
FIG. 5 shows a cross-sectional view of the HBT manufactured in this example. An n-type GaAs collector contact layer 2 having an electron carrier concentration of 5 × 10 18 cm −3 and a film thickness of 0.5 μm and an electron carrier concentration of 2 × 10 16 is formed on a semi-insulating GaAs substrate 1.
cm −3 n-type GaAs collector layer 3 having a film thickness of 0.7 μm,
A p-type GaAs base layer 4 having a hole carrier concentration of 2 × 10 19 cm −3 is formed with a film thickness of 0.1 μm and an electron carrier concentration of 5 × 10.
A 17 cm −3 n-type Al 0.3 Ga 0.7 As emitter layer 5 having a film thickness of 0.1 μm and an n-type GaAs emitter contact layer 6 having an electron carrier concentration of 5 × 10 18 cm −3 having a film thickness of 0.2 μm are sequentially formed by MOCVD. A HBT is manufactured using a wafer obtained by epitaxial growth by the method.

【0027】p型GaAsベース層4は、成長条件とし
て成長温度590℃、V/III比3.5、III族原
料ガス1.4sccm、リアクター内圧力60Torr
で成長させた。次に、試料HBT1として、ベースエミ
ッタ界面7が表面に表れた状態で、基板温度を640℃
に昇温し、AsH3と水素ガスとの雰囲気中で、5分間
成長中断した。また、試料HBT2として、ベースエミ
ッタ界面7が表面に表れた状態で、基板温度を640℃
に昇温し、TMAsと水素ガスとの雰囲気中で5分間成
長中断した。
The growth conditions of the p-type GaAs base layer 4 are a growth temperature of 590 ° C., a V / III ratio of 3.5, a group III source gas of 1.4 sccm, and a reactor internal pressure of 60 Torr.
Grown in. Next, as sample HBT1, the substrate temperature was set to 640 ° C. with the base-emitter interface 7 appearing on the surface.
The temperature was raised to, and growth was suspended for 5 minutes in an atmosphere of AsH 3 and hydrogen gas. As the sample HBT2, the substrate temperature was 640 ° C. with the base-emitter interface 7 appearing on the surface.
The temperature was raised to, and growth was suspended for 5 minutes in an atmosphere of TMAs and hydrogen gas.

【0028】その後、試料HBT1、HBT2ともに、
基板温度を640℃に保持したままAl0.3Ga0.7As
エミッタ層を成長させ、その後、エミッタ幅2.4μm
となるようなHBTを作製する。
After that, both the samples HBT1 and HBT2 were
Al 0.3 Ga 0.7 As while keeping the substrate temperature at 640 ° C
The emitter layer is grown, and then the emitter width is 2.4 μm.
A HBT that satisfies

【0029】このようにして作製した各試料のHBTの
最大発振周波数を測定した結果を図3に示す。図3に示
されるようにTMAsと水素ガスとの雰囲気中で成長中
断を行った試料HBT2は、AsH3と水素ガスとの雰
囲気中で成長中断を行った試料HBT1より最大発振周
波数が大きい。これは、TMAsと水素ガスとの雰囲気
中で成長中断を行った試料HBT2は、AsH3と水素
ガスとの雰囲気中で成長中断を行った試料HBT1よ
り、ベースのホールキャリア濃度が大きくできたためで
あると考えられる。尚、ベース層のホールキャリアをさ
らに増加させるために、実施例2と同様に、ベースエミ
ッタ界面7が表面に表れた状態で、成長中断中の基板温
度を上昇させることによって、更にベース層の炭素活性
化率を向上させることができる。この場合においても、
TMAsと水素ガスとの雰囲気中で成長中断を行った試
料HBT2は、AsH3と水素ガスとの雰囲気中で成長
中断を行った試料HBT1より最大発振周波数が大きく
なった。
FIG. 3 shows the result of measuring the maximum oscillation frequency of the HBT of each sample thus manufactured. As shown in FIG. 3, the sample HBT2 whose growth was interrupted in the atmosphere of TMAs and hydrogen gas had a larger maximum oscillation frequency than the sample HBT1 whose growth was interrupted in the atmosphere of AsH 3 and hydrogen gas. This is because the sample HBT2, whose growth was interrupted in the atmosphere of TMAs and hydrogen gas, had a higher hole carrier concentration of the base than the sample HBT1 whose growth was interrupted in the atmosphere of AsH 3 and hydrogen gas. It is believed that there is. In order to further increase the hole carriers in the base layer, the substrate temperature during the growth interruption is raised with the base-emitter interface 7 appearing on the surface in the same manner as in Example 2 to further increase the carbon in the base layer. The activation rate can be improved. Even in this case,
The maximum oscillating frequency of the sample HBT2 subjected to growth interruption in the atmosphere of TMAs and hydrogen gas was higher than that of the sample HBT1 subjected to growth interruption in the atmosphere of AsH 3 and hydrogen gas.

【0030】(実施例4) 本実施例では、エミッタInGaP/ベースGaAsか
らなるHBTにおいて、ベース層とエミッタ層との成長
中断時の基板温度を590℃に保持し、その時の雰囲気
の異なる試料HBT3〜4の2種類のHBTを作製し、
各HBTの最大発振周波数(fmax)を測定した。
(Embodiment 4) In this embodiment, in an HBT composed of emitter InGaP / base GaAs, the substrate temperature at the time of interrupting the growth of the base layer and the emitter layer is kept at 590 ° C., and a sample HBT3 having a different atmosphere at that time is held. 2 types of HBTs of
The maximum oscillation frequency (fmax) of each HBT was measured.

【0031】図6に、本実施例で作製したHBTの断面
図を示す。半絶縁性GaAs基板8上に、電子キャリア
濃度5×1018cm-3のn型GaAsコレクタコンタク
ト層9を膜厚0.5μm、電子キャリア濃度2×1016
cm-3のn型GaAsコレクタ層10を膜厚0.7μ
m、ホールキャリア濃度2×1019cm-3のp型GaA
sベース層11を膜厚0.1μm、電子キャリア濃度5
×1017cm-3のn型In0.5Ga0.5Pエミッタ層12
を膜厚0.1μm、電子キャリア濃度5×1018cm-3
のn型GaAsエミッタコンタクト層13を膜厚0.2
μmとして、順次MOCVD法によりエピタキシャル成
長して得られたウェハを用いてHBTを作製する。
FIG. 6 shows a sectional view of the HBT manufactured in this example. An n-type GaAs collector contact layer 9 having an electron carrier concentration of 5 × 10 18 cm −3 and a film thickness of 0.5 μm and an electron carrier concentration of 2 × 10 16 is formed on the semi-insulating GaAs substrate 8.
cm −3 n-type GaAs collector layer 10 with a thickness of 0.7 μm
m, hole carrier concentration 2 × 10 19 cm −3 p-type GaA
s base layer 11 having a film thickness of 0.1 μm and electron carrier concentration of 5
× 10 17 cm −3 n-type In 0.5 Ga 0.5 P emitter layer 12
With a film thickness of 0.1 μm and an electron carrier concentration of 5 × 10 18 cm −3
The n-type GaAs emitter contact layer 13 of 0.2
The HBT is manufactured by using a wafer obtained by sequentially performing epitaxial growth by the MOCVD method with a thickness of μm.

【0032】p型GaAsベース層11は、成長条件と
して成長温度590℃、V/III比3.5、III族
原料ガス1.4sccm、リアクター内圧力60Tor
rで成長させた。次に、試料HBT3として、ベースエ
ミッタ界面14が表面に表れた状態で、基板温度を59
0℃に保持したままAsH3と水素ガスとの雰囲気中
で、5分間成長中断した。また、試料HBT4として、
ベースエミッタ界面14が表面に表れた状態で基板温度
590℃に保持したまま、TMAsと水素ガスとの雰囲
気中で、5分間成長中断した。
The growth conditions for the p-type GaAs base layer 11 are a growth temperature of 590 ° C., a V / III ratio of 3.5, a group III source gas of 1.4 sccm, and a reactor internal pressure of 60 Tor.
It was grown at r. Next, as the sample HBT3, the substrate temperature was set to 59 with the base-emitter interface 14 appearing on the surface.
The growth was suspended for 5 minutes in an atmosphere of AsH 3 and hydrogen gas while maintaining the temperature at 0 ° C. Also, as the sample HBT4,
The growth was suspended for 5 minutes in an atmosphere of TMAs and hydrogen gas while the substrate temperature was kept at 590 ° C. with the base-emitter interface 14 exposed on the surface.

【0033】その後、試料HBT3、HBT4ともに、
基板温度を590℃に保持したまま、n型In0.5Ga
0.5Pエミッタ層を成長させ、エミッタ幅2.4μmと
なるようなHBTを作製する。
After that, both the samples HBT3 and HBT4 were
While maintaining the substrate temperature at 590 ° C, n-type In 0.5 Ga
A 0.5 P emitter layer is grown to form an HBT having an emitter width of 2.4 μm.

【0034】このようにして作製した各試料のHBTの
最大発振周波数を測定した結果を図4に示す。図4に示
されるようにTMAsと水素ガスとの雰囲気中で成長中
断を行った試料HBT4は、AsH3と水素ガスとの雰
囲気中で成長中断を行った試料HBT3より最大発振周
波数が大きい。これは、TMAsと水素ガスとの雰囲気
中で成長中断を行った試料HBT4は、AsH3と水素
ガスとの雰囲気中で成長中断を行った試料HBT3よ
り、ベースのホールキャリア濃度が大きくできたためで
あると考えられる。尚、ベース層のホールキャリア濃度
をさらに増加させるために、実施例2と同様に、ベース
エミッタ界面14が表面に表れた状態で、成長中断中の
基板温度を上昇させて熱処理を施すことによって、更に
ベース層の炭素活性化率を向上させることができる。こ
の場合においても、TMAsと水素ガスとの雰囲気中で
成長中断を行った試料HBT4は、AsH3と水素ガス
との雰囲気中で成長中断を行った試料HBT3より最大
発振周波数が大きくなった。
The result of measuring the maximum oscillation frequency of the HBT of each sample thus manufactured is shown in FIG. Samples HBT4 which was grown interrupted in an atmosphere of TMAs and hydrogen gas as shown in FIG. 4, the maximum oscillation frequency is greater than the sample HBT3 which was grown interrupted in an atmosphere of AsH 3 and hydrogen gas. This sample HBT4 which was grown interrupted in an atmosphere of TMAs and hydrogen gas from AsH 3 and the sample HBT3 which was grown interrupted in an atmosphere of hydrogen gas, in order to hole carrier concentration of the base could be increased It is believed that there is. In order to further increase the hole carrier concentration in the base layer, the substrate temperature during the growth interruption is increased and heat treatment is performed in the state where the base-emitter interface 14 appears on the surface, as in the second embodiment. Further, the carbon activation rate of the base layer can be improved. Also in this case, the maximum oscillating frequency of the sample HBT4 subjected to growth interruption in the atmosphere of TMAs and hydrogen gas was higher than that of the sample HBT3 subjected to growth interruption in the atmosphere of AsH 3 and hydrogen gas.

【0035】[0035]

【発明の効果】本発明によれば、炭素添加III−V族
化合物半導体層を成長した後、成長中断する際、炭素添
加III−V族化合物半導体層からのV族元素の脱離を
防ぐことができ、また、添加した炭素の不活性化を防ぐ
ことができる。このことによって、炭素添加III−V
族化合物半導体層のホールキャリア濃度を高めることが
できる。また、本発明の成長方法で作製されたHBT
は、ベース層のホールキャリア濃度を高めることができ
るので、最大発振周波数を大きくすることができる。
According to the present invention, when the growth of the carbon-doped III-V group compound semiconductor layer is stopped after the growth, the desorption of the V-group element from the carbon-doped III-V group compound semiconductor layer is prevented. In addition, the deactivation of the added carbon can be prevented. By this, carbon addition III-V
The hole carrier concentration of the group compound semiconductor layer can be increased. In addition, the HBT produced by the growth method of the present invention
Since the hole carrier concentration of the base layer can be increased, the maximum oscillation frequency can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 成長中断中の雰囲気を異ならせた炭素添加G
aAs層のホールキャリア濃度を測定した結果を示す図
である。
FIG. 1 Carbon-added G with different atmosphere during growth interruption
It is a figure which shows the result of having measured the hole carrier concentration of an aAs layer.

【図2】 炭素添加GaAs層より成長中断中の基板温
度を高くした時の、成長中断中の雰囲気を異ならせた炭
素添加GaAs層のホールキャリア濃度を測定した結果
を示す図である。
FIG. 2 is a diagram showing the results of measuring the hole carrier concentration of a carbon-doped GaAs layer in which the atmosphere during growth interruption was changed when the substrate temperature during growth interruption was higher than that of the carbon-doped GaAs layer.

【図3】 成長中断中の雰囲気を異ならせて作製したH
BTの最大発振周波数を測定した結果を示す図である。
FIG. 3 H produced by changing the atmosphere during growth interruption
It is a figure which shows the result of having measured the maximum oscillation frequency of BT.

【図4】 成長中断中の雰囲気を異ならせたHBTの最
大発振周波数を測定した結果を示す図である。
FIG. 4 is a diagram showing the results of measuring the maximum oscillation frequency of HBTs with different atmospheres during growth interruption.

【図5】 本発明の成長方法で作製したベースGaAs
/エミッタAlGaAsからなるHBTの構造を示す図
である。
FIG. 5: Base GaAs produced by the growth method of the present invention
It is a figure which shows the structure of HBT which consists of / emitter AlGaAs.

【図6】 本発明の成長方法で作製したベースGaAs
/エミッタInGaPからなるHBTの構造を示す図で
ある。
FIG. 6 is a base GaAs produced by the growth method of the present invention.
It is a figure which shows the structure of HBT which consists of / emitter InGaP.

【符号の説明】[Explanation of symbols]

1、8 半絶縁性GaAs基板 2、9 n型GaAsコレクタコンタクト層 3、10 n型GaAsコレクタ層 4、11 p型GaAsベース層 5 n型Al0.3Ga0.7Asエミッタ層 6、13 n型GaAsエミッタコンタクト層 7、14 ベースエミッタ界面 12 n型In0.5Ga0.5Pエミッタ層1, 8 Semi-insulating GaAs substrate 2, 9 n-type GaAs collector contact layer 3, 10 n-type GaAs collector layer 4, 11 p-type GaAs base layer 5 n-type Al 0.3 Ga 0.7 As emitter layer 6, 13 n-type GaAs emitter Contact layers 7 and 14 Base-emitter interface 12 n-type In 0.5 Ga 0.5 P emitter layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 21/285 H01L 21/331 H01L 29/205 H01L 29/737 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/205 H01L 21/285 H01L 21/331 H01L 29/205 H01L 29/737

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に、少なくとも炭素添加I
II−V族化合物半導体層を形成し、前記炭素添加II
I−V族化合物半導体層を成長後、V族元素を含む有機
化合物とキャリアガスとを供給して成長中断を行う工程
含み、上記成長中断の後、n型AlGaAs層または
n型InGaP層を成長することを特徴とするIII−
V族化合物半導体の成長方法。
1. At least carbon addition I on a semiconductor substrate.
Forming a II-V group compound semiconductor layer, and adding the carbon II
After the growth of the IV group compound semiconductor layer, a step of supplying an organic compound containing a group V element and a carrier gas to suspend the growth is included. After the growth is suspended, an n-type AlGaAs layer or
III- characterized by growing n-type InGaP layer
Method for growing group V compound semiconductor.
【請求項2】 上記成長中断時の基板温度を成長温度よ
りも高くしたことを特徴とする請求項1に記載のIII
−V族化合物半導体の成長方法。
2. The substrate temperature when the growth is interrupted is defined as the growth temperature.
III in accordance with claim 1, characterized in that
-Group V compound semiconductor growth method.
【請求項3】 前記炭素添加III−V族化合物半導体
層は、As元素を含み、前記V族元素を含む有機化合物
は、砒素と炭素との結合を含む有機砒素化合物であるこ
とを特徴とする請求項1または2に記載のIII−V族
化合物半導体の成長方法。
3. The carbon-doped III-V group compound semiconductor layer contains an As element, and the organic compound containing the V group element is an organic arsenic compound containing a bond of arsenic and carbon. The method for growing a III-V compound semiconductor according to claim 1 or 2 .
【請求項4】 前記有機砒素化合物は、トリメチル砒素
またはトリエチル砒素であることを特徴とする請求項
に記載のIII−V族化合物半導体の成長方法。
Wherein said organic arsenic compound according to claim 3, characterized in that the trimethyl arsenic or triethyl arsenic
The method for growing a group III-V compound semiconductor according to claim 1.
【請求項5】 請求項1乃至のいずれかの成長方法で
作製されたベース層及びエミッタ層を含む半導体積層構
造を有することを特徴としたヘテロ接合バイポーラトラ
ンジスタ。
5. The heterojunction bipolar transistor characterized by having a semiconductor multilayer structure including a base layer and the emitter layer made of any of the growth method of claims 1 to 4.
JP07678198A 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor Expired - Fee Related JP3408419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07678198A JP3408419B2 (en) 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07678198A JP3408419B2 (en) 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JPH11274086A JPH11274086A (en) 1999-10-08
JP3408419B2 true JP3408419B2 (en) 2003-05-19

Family

ID=13615150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07678198A Expired - Fee Related JP3408419B2 (en) 1998-03-25 1998-03-25 Method of growing III-V compound semiconductor and heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JP3408419B2 (en)

Also Published As

Publication number Publication date
JPH11274086A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
JP3368452B2 (en) Compound semiconductor device and method of manufacturing the same
JP3408419B2 (en) Method of growing III-V compound semiconductor and heterojunction bipolar transistor
JP4883547B2 (en) Compound semiconductor epitaxial substrate
JP3189061B2 (en) Method for manufacturing compound semiconductor device
JP2002359249A (en) Compound semiconductor device and manufacturing method therefor
JP3013992B2 (en) Method for growing compound semiconductor crystal
JP3156909B2 (en) Vapor growth method of semiconductor laminated structure
KR101082773B1 (en) Compound semiconductor element and process for fabricating the same
JP2007042936A (en) Group iii-v compound semiconductor epitaxial wafer
JP3615068B2 (en) Heterojunction nitride semiconductor device
JP3277809B2 (en) Compound semiconductor crystal growth method and heterojunction bipolar transistor
JP3116954B2 (en) Method for growing compound semiconductor thin film
JPH088460A (en) Method of manufacturing p-type algan semiconductor
JP2936617B2 (en) Vapor phase growth of compound semiconductor crystals
JP3326378B2 (en) Semiconductor device
JP2000124444A (en) Semiconductor device and epitaxial wafer
JP2000133654A (en) Manufacture of bipolar transistor
JPH09214052A (en) Organic metal vapor growth method
JP3120436B2 (en) Method of manufacturing epitaxial crystal for semiconductor device
JPH0964054A (en) Manufacture of bipolar transistor
JPH10189533A (en) Method of patterning compound semiconductor
JP2002083816A (en) Compound semiconductor hetero junction structure
CN117766389A (en) Heterojunction bipolar transistor and MOCVD epitaxial growth method thereof
JPH11260732A (en) Semiconductor heterojunction structure and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees