JPH11270175A - Vibration damping method of connected structure - Google Patents

Vibration damping method of connected structure

Info

Publication number
JPH11270175A
JPH11270175A JP7064698A JP7064698A JPH11270175A JP H11270175 A JPH11270175 A JP H11270175A JP 7064698 A JP7064698 A JP 7064698A JP 7064698 A JP7064698 A JP 7064698A JP H11270175 A JPH11270175 A JP H11270175A
Authority
JP
Japan
Prior art keywords
collision
center core
vibration
structures
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7064698A
Other languages
Japanese (ja)
Other versions
JP3858432B2 (en
Inventor
Mitsuru Kageyama
満 蔭山
Hirofumi Okuda
浩文 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP07064698A priority Critical patent/JP3858432B2/en
Publication of JPH11270175A publication Critical patent/JPH11270175A/en
Application granted granted Critical
Publication of JP3858432B2 publication Critical patent/JP3858432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively absorb energy of high-order mode amplitude components generated in collision and reduce response acceleration while reducing the impulse of connected structures during collision by increasing an operating time in collision between two structures and consistently absorbing vibration energy between two structures. SOLUTION: A center core 12 at a center is formed with low mass and high rigidity by using a continuously layered earthquake-proof wall. A peripheral building 14 encircled therearound at a predetermined small space S is constructed as a high-rise building with high mass and low rigidity by providing a multilayer floor slab. A collision damping means 20 is provided on the outer wall 18 of the center core 12 to gradually absorb impulse through the collision damping means 20 during collision between the center core 12 and the peripheral building 14. Both of the center core 12 and the peripheral building 14 are connected via a vibration energy absorbing means 30 to consistently absorb vibration between the center core 12 and the peripheral building 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造特性の異なる
2つの構造物を、双方の衝突現象を用いて制振するよう
にした連結構造物の制振方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for damping a connected structure in which two structures having different structural characteristics are damped by using both collision phenomena.

【0002】[0002]

【従来の技術】一般に、建物等の構造物の制振装置とし
て、質量体をアクティブまたはパッシブに移動させるよ
うにしたTMDやAMDが知られており、これらは入力
振動に対して構造物頂部に水平方向の制御モーメントを
発生させるようになっている。しかし、これらの装置で
大振動を制振しようとした場合、質量体の振幅を装置の
許容ストローク以下に抑えるためには、過大な付加質量
が必要となってその実現が困難になってしまうこともあ
る。
2. Description of the Related Art Generally, as a vibration damping device for a structure such as a building, a TMD or an AMD in which a mass body is actively or passively moved is known. A horizontal control moment is generated. However, when attempting to suppress large vibrations with these devices, an excessively large additional mass is required to suppress the amplitude of the mass body below the allowable stroke of the device, making it difficult to achieve. There is also.

【0003】そこで、このよう場合には上記TMDやA
MD等のように付加質量の慣性力で制振するのではな
く、並立する構造系同士を連結して制振するようにした
連結構造物の制振方法(特開平6−58017号公報参
照)を採用することが考えられる。即ち、この連結構造
物の制振方法は、並立する構造特性の異なる構造系どう
しをばねおよびダンパーで連結させて連結構造物を構成
し、2つの構造物の揺れの固有周期の相違を利用して制
振するようになっている。
In such a case, the above-mentioned TMD and A
A vibration damping method for a connected structure in which parallel structural systems are connected to each other for damping, instead of being damped by the inertial force of an additional mass as in an MD or the like (see JP-A-6-58017). It is possible to adopt. That is, this method of damping a connected structure uses a spring and a damper to connect structural systems having different structural characteristics together to form a connected structure, and utilizes a difference in the natural period of the vibration of the two structures. To be damped.

【0004】ところで、耐震性に優れた古来の建築物に
五重塔があるが、この五重塔等の多層塔は中心部に立設
される芯柱を囲繞して塔家が構築され、地震発生時に芯
柱と塔家との間に衝突を起こすことにより優れた制振機
能が発揮されるものと考えられる。即ち、質量や剛性等
の構造特性の異なる2つの構造物(芯柱と塔家)の揺れ
の相違を利用し、双方の構造物の衝突現象により制振す
るものである。
A five-storied pagoda is an ancient building with excellent earthquake resistance. A multi-storied tower such as a five-storied pagoda is built around a core pillar erected in the center of the tower. It is thought that an excellent vibration damping function is exhibited by causing a collision between the pillar and the tower house. That is, the difference in swing between two structures (core pillar and tower house) having different structural characteristics such as mass and rigidity is used, and vibration is damped by a collision phenomenon between both structures.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
従来の連結構造物の制振方法にあっては、衝突が発生す
るように近接された2つの構造物では、衝突を与える側
の構造物の変形は抑えられるが、衝突を受けた側の構造
物は、衝突が発生しない場合に比較してその時刻の変形
は大きくなる。しかし、固有周期の異なる構造物系の最
大応答生起時刻は一般的に異なり、衝突を受けた構造物
系の最大応答変位が大きくなることは確率的に少なくな
る。衝突現象は、相互の構造物にパルス的な衝撃力を与
え合う現象として捉えることができる。単純な衝突の場
合、その衝突時の作用時間が短いために衝撃力が非常に
大きくなり、衝突箇所の局部的な破損を引き起こす恐れ
がある。
However, in such a conventional vibration damping method for a connected structure, the two structures that are close to each other so as to cause a collision are deformed by the deformation of the structure that gives the collision. However, the structure at the time of the collision has a greater deformation at that time than when no collision occurs. However, the maximum response occurrence times of the structural systems having different natural periods are generally different from each other, and the maximum response displacement of the structural system subjected to the collision is stochastically reduced. The collision phenomenon can be considered as a phenomenon in which a pulse-like impact force is applied to the mutual structures. In the case of a simple collision, the impact force is very large due to the short action time at the time of the collision, and there is a possibility that the collision may be locally damaged.

【0006】また、構造物の耐震性に対しては構造物の
変形歪みを如何に抑制するかが問題となる。このとき、
構造物の変形は一次モードで大部分が規定される。衝突
作用による制振手法とは、一次モード振動数で揺動する
運動エネルギーを、衝突という衝撃パルス力で広い振動
数成分の力に分散することによって、他の高次モード振
動エネルギーに変換していることになる。その結果、一
次モード振幅成分は小さくなるが、他の高次モード成分
は衝突前より大きくなり、構造物の変形は小さくなる
が、応答加速度は大きくなってしまうという課題があっ
た。
[0006] Another problem is how to suppress the deformation and distortion of the structure with respect to the earthquake resistance of the structure. At this time,
Most of the deformation of the structure is defined by the first-order mode. The vibration damping method by collision action converts kinetic energy oscillating at the first mode frequency into other high mode vibration energy by dispersing it into the force of a wide frequency component with the shock pulse force called collision. Will be. As a result, the first-order mode amplitude component becomes smaller, but the other higher-order mode components become larger than before the collision, and the deformation of the structure becomes smaller, but the response acceleration becomes larger.

【0007】そこで、本発明はかかる従来の課題に鑑み
て成されたもので、2つの構造物の衝突の作用時間を長
くするとともに、2つの構造物間で常時振動エネルギー
を吸収させることにより、連結構造物の衝突時の衝撃力
を低減しつつ、衝突時に発生する高次モード成分のエネ
ルギーを効果的に吸収することができる連結構造物の制
振方法を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and has been made to extend the operation time of collision between two structures and to constantly absorb vibration energy between the two structures. It is an object of the present invention to provide a vibration damping method for a connected structure capable of effectively absorbing energy of a higher-order mode component generated at the time of a collision while reducing an impact force at the time of a collision of the connected structure.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の請求項1に示す連結構造物の制振方法は、
質量や剛性等の構造特性が相異なり、かつ、互いに近接
して構築された第1構造物および第2構造物を備え、地
震や風等を起因とする振動入力により揺動する双方の構
造物の衝突現象を用いて制振する連結構造物の制振方法
において、上記第1構造物および上記第2構造物の少な
くとも一方に衝突緩衝手段を設け、第1,第2構造物の
衝突時に該衝突緩衝手段が作用して衝撃力を徐々に吸収
するとともに、上記第1構造物および上記第2構造物双
方を振動エネルギー吸収手段で連結し、該振動エネルギ
ー吸収手段によって第1,第2構造物間の振動を常時吸
収する。
In order to achieve the above object, a method for damping a connected structure according to claim 1 of the present invention comprises:
Both structures having different structural characteristics such as mass and rigidity and having a first structure and a second structure which are constructed close to each other, and which oscillate due to vibration input caused by an earthquake, wind, or the like. In the vibration damping method for a connected structure using the collision phenomenon described above, at least one of the first structure and the second structure is provided with a collision buffer, and the collision damping means is provided when the first and second structures collide. The shock absorbing means acts to gradually absorb the impact force, and connects both the first structure and the second structure by vibration energy absorbing means, and the first and second structures are connected by the vibration energy absorbing means. Absorbs vibrations between them at all times.

【0009】また、本発明の請求項2に示す連結構造物
の制振方にあっては、上記第1構造物および上記第2構
造物のうち、低質量,高剛性となる一方の構造物の上端
部に、高質量,低剛性となる他方の構造物の頂部を覆う
剛体鍔部を設け、これら剛体鍔部と他方の構造物の頂部
との間に水平方向の相対移動を許容する滑り部材を介在
し、この滑り部材を介して剛体鍔部と他方の構造物との
水平方向の相対移動を許容しつつ、該剛体鍔部に作用す
る下方への押し付け力を他方の構造物で支持する。
According to a second aspect of the present invention, there is provided a vibration control method for a connecting structure, wherein one of the first structure and the second structure has low mass and high rigidity. A rigid flange is provided at the upper end of the other to cover the top of the other structure having high mass and low rigidity, and a sliding member allowing horizontal relative movement between the rigid flange and the top of the other structure is provided. The other structure supports the downward pressing force acting on the rigid flange while allowing the relative movement in the horizontal direction between the rigid flange and the other structure via the sliding member. I do.

【0010】更に、本発明の請求項3に示す連結構造物
の制振方にあっては、上記衝突緩衝手段を、ばね部材単
体またはダンパー部材単体、若しくは、ばね部材とダン
パー部材の併用体として構成する。
Further, in the vibration damping method for a connecting structure according to a third aspect of the present invention, the collision damping means may be a single spring member or a single damper member, or a combination of a spring member and a damper member. Constitute.

【0011】更にまた、本発明の請求項4に示す連結構
造物の制振方法にあっては、上記振動エネルギー吸収手
段を、ダンパー部材を用いて構成する。
Further, in the vibration damping method for a connecting structure according to a fourth aspect of the present invention, the vibration energy absorbing means is constituted by using a damper member.

【0012】以上の構成に係る本発明の連結構造物の制
振方法の作用を以下述べると、請求項1では、第1構造
物および上記第2構造物の少なくとも一方に、衝突時に
作用して衝撃力を吸収する衝突緩衝手段を設けたので、
この衝突緩衝手段によって第1構造物と第2構造物とが
衝突した際の作用時間が長くなり、延いては衝撃力の大
きさを小さくすることができる。また、上記第1構造物
および上記第2構造物双方を連結して両者間の振動を常
時吸収する振動エネルギー吸収手段を設けたので、衝突
した際に発生する高次モード成分を吸収することができ
る。従って、構造特性の異なる構造物の揺れの相違を利
用して互いに衝突させて、双方の第1,第2構造物から
なる連結構造物を制振する場合に、衝突を受けた側の構
造物は上記衝突緩衝手段により衝撃が緩和されるため、
衝突箇所が局部的に破損されるのを防止できる。そし
て、衝突現象によって構造体変形の大部分を占める一次
モードの振幅成分は、他の高次モードの振幅成分に分散
しつつ低減されて構造物の変形を小さくするが、このと
き分散された高次モード成分は、上記振動エネルギー吸
収手段によって容易に吸収できるため、応答加速度を小
さくすることができる。
The operation of the vibration damping method for a connected structure according to the present invention having the above structure will be described below. In claim 1, at least one of the first structure and the second structure acts on at least one of the first structure and the second structure. Since the shock absorbing means to absorb the impact force is provided,
By the collision buffering means, the operation time when the first structure and the second structure collide is lengthened, and the magnitude of the impact force can be reduced. In addition, since the first structure and the second structure are connected to each other and vibration energy absorbing means for constantly absorbing vibration between the first structure and the second structure is provided, it is possible to absorb a higher-order mode component generated upon collision. it can. Therefore, in the case where the structures having different structural characteristics are caused to collide with each other by using the difference in swing, and the connected structure including the first and second structures is damped, the structure on the side which has been subjected to the collision is used. Since the impact is alleviated by the collision buffer,
The collision location can be prevented from being locally damaged. Then, the amplitude component of the primary mode, which occupies most of the deformation of the structure due to the collision phenomenon, is reduced while being dispersed to the amplitude components of the other higher modes, thereby reducing the deformation of the structure. Since the next mode component can be easily absorbed by the vibration energy absorbing means, the response acceleration can be reduced.

【0013】また、請求項2では、上記第1構造物およ
び上記第2構造物のうち、低質量,高剛性となる一方の
構造物の上端部に、高質量,低剛性となる他方の構造物
の頂部を覆う剛体鍔部を設け、これら剛体鍔部と他方の
構造物の頂部との間に水平方向の相対移動を許容する滑
り部材を介在し、この滑り部材を介して剛体鍔部と他方
の構造物との水平方向の相対移動を許容しつつ、該剛体
鍔部に作用する下方への押し付け力を他方の構造物で支
持するようにしたので、大地震等により大きな水平力が
入力されて、一方の構造物に大きな曲げモーメントが作
用して曲げ変形されようとしても、上記剛体鍔部は滑り
部材を介して他方の構造物の頂部に沿って水平移動しつ
つ、剛体鍔部の押し下げ力を該他方の構造物によって支
持することができる。このため、この支持部分によって
押し下げ力に対する反力が他方の構造物に発生し、この
反力により剛体鍔部には上記一方の構造物の曲げに対向
するモーメントが発生する。このため、上記一方の構造
物はこのときのモーメントにより、上端部を曲げ方向と
は反対方向に押し戻し、延いては、この一方の構造物の
曲げ変形を抑制することができる。従って、一方の構造
物は他方の構造物に支持されることによって剛性(抵抗
力)を十分に維持し、その剛性比を十分に確保すること
ができるため、連結構造物の制振効果を更に向上するこ
とができる。
According to a second aspect of the present invention, one of the first structure and the second structure having a low mass and a high rigidity is provided at an upper end portion of the other structure having a high mass and a low rigidity. A rigid flange that covers the top of the object is provided, and a sliding member that allows relative movement in the horizontal direction is interposed between the rigid flange and the top of the other structure. Since the downward pressing force acting on the rigid flange is supported by the other structure while allowing the relative movement in the horizontal direction with the other structure, a large horizontal force is input due to a large earthquake or the like. Thus, even if a large bending moment acts on one of the structures to bend and deform, the rigid flange portion moves horizontally along the top of the other structure via the sliding member, and the rigid flange portion The depressing force can be supported by the other structure . For this reason, a reaction force against the pushing-down force is generated in the other structure by the support portion, and a moment opposing the bending of the one structure is generated in the rigid flange by the reaction force. Therefore, the one structure pushes the upper end portion back in the direction opposite to the bending direction by the moment at this time, so that the bending deformation of the one structure can be suppressed. Therefore, since one structure is supported by the other structure, the rigidity (resistance) can be sufficiently maintained, and the rigidity ratio can be sufficiently ensured. Can be improved.

【0014】また、請求項3では、上記衝突緩衝手段
を、ばね部材単体またはダンパー部材単体、若しくは、
ばね部材とダンパー部材の併用体として構成したので、
ばね部材ではこれの弾発力により衝撃エネルギーを吸収
する一方、ダンパー部材ではこれの減衰力により衝撃エ
ネルギーを吸収する。このため、いずれにあっても衝撃
エネルギーは徐々に吸収されることになり、その作用時
間を長くすることができる。
According to a third aspect of the present invention, the collision buffering means comprises a single spring member or a single damper member,
Because it was configured as a combined body of a spring member and a damper member,
The spring member absorbs impact energy by its resilient force, while the damper member absorbs impact energy by its damping force. For this reason, in any case, the impact energy is gradually absorbed, and the operation time can be extended.

【0015】更に、請求項4では、上記振動エネルギー
吸収手段を、ダンパー部材を用いて構成したので、第1
構造物と第2構造物との相対変位を減衰力により吸収
し、簡単な構成にして第1,第2構造物間の振動エネル
ギーを効果的に吸収することができる。
Further, in the present invention, the vibration energy absorbing means is constituted by using a damper member.
The relative displacement between the structure and the second structure is absorbed by the damping force, and the vibration energy between the first and second structures can be effectively absorbed with a simple configuration.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を添付図
面を参照して詳細に説明する。図1から図3は本発明の
連結構造物の制振方法の一実施形態を示し、図1は連結
構造物の全体構成を示す断面正面図、図2は図1中のA
−A線断面図、図3は連結構造物の要部を拡大した断面
平面図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 3 show one embodiment of the vibration damping method for a connected structure according to the present invention. FIG. 1 is a sectional front view showing the entire structure of the connected structure, and FIG.
FIG. 3 is an enlarged sectional plan view of a main part of the connecting structure.

【0017】即ち、本実施形態の連結構造物10は1棟
終結型として構成され、図1,図2に示すように中心部
に立設される第1構造物としてのセンターコア12と、
その周囲に所定の近接した間隔Sをもって囲繞するよう
に立設される第2構造物としての外周建物14とを備
え、これらセンターコア12と外周建物14とは剛性特
性が異なっている。上記センターコア12は連層耐震壁
を用いて低質量,高剛性として形成される一方、上記外
周建物14は多層の床スラブ16,16…を設けて高質
量,低剛性の高層ビルとして構築され、これらセンター
コア12および外周建物14は同一高さに形成される。
That is, the connecting structure 10 of the present embodiment is configured as a one-end closing type, and as shown in FIGS. 1 and 2, a center core 12 as a first structure standing in the center,
There is an outer peripheral building 14 as a second structure standing upright so as to surround it at a predetermined close interval S, and the center core 12 and the outer peripheral building 14 have different rigidity characteristics. The center core 12 is formed to have low mass and high rigidity by using multi-story earthquake-resistant walls, while the outer peripheral building 14 is constructed as a high-mass, low rigidity high-rise building by providing multilayer floor slabs 16, 16,. The center core 12 and the outer building 14 are formed at the same height.

【0018】上記センターコア12および上記外周建物
14は、それぞれの剛性特性が異なり、かつ、互いに近
接されていることから、大地震や強風等を原因とする振
動入力によりそれぞれが大きく揺動されると、それぞれ
の揺れの相違により一方が他方に衝突することにより制
振する方法が採られる。
Since the center core 12 and the outer building 14 have different rigidity characteristics and are close to each other, they are largely rocked by a vibration input caused by a large earthquake or a strong wind. Then, a method is employed in which one of the members collides with the other due to a difference between the respective vibrations, thereby damping the vibration.

【0019】ここで、本実施形態では図3に示すように
上記センターコア12の四方を囲む外壁18のそれぞれ
の両側部に衝突緩衝手段20を設け、センターコア12
と外周建物14との衝突時に該衝突緩衝手段20が作用
して衝撃力を徐々に吸収させる一方、上記センターコア
12および上記外周建物14双方を振動エネルギー吸収
手段30で連結し、該振動エネルギー吸収手段30によ
ってセンターコア12と外周建物14間の振動を常時吸
収するようになっている。
In this embodiment, as shown in FIG. 3, collision buffer means 20 are provided on both sides of the outer wall 18 surrounding the center core 12 on four sides.
At the time of collision between the building and the outer building 14, the collision buffering means 20 acts to gradually absorb the impact force, while connecting both the center core 12 and the outer building 14 with the vibration energy absorbing means 30 to absorb the vibration energy. The vibration between the center core 12 and the outer building 14 is always absorbed by the means 30.

【0020】上記衝突緩衝手段20は、上記センターコ
ア12の外壁18から所定間隔をもって配置される衝突
受け板22と、この衝突受け板22の周囲に水平方向を
指向して配置され、該衝突受け板22を外壁18に結合
する複数本のスプリング24と、上記衝突受け板22の
中央部と外壁18とを連結するダンパー26とにより構
成される。
The collision buffering means 20 is arranged at a predetermined distance from the outer wall 18 of the center core 12 and a collision receiving plate 22 is disposed around the collision receiving plate 22 in a horizontal direction. It comprises a plurality of springs 24 for connecting the plate 22 to the outer wall 18 and a damper 26 for connecting the center of the collision receiving plate 22 to the outer wall 18.

【0021】また、振動エネルギー吸収手段30は、オ
イル等の粘性流体を作動流体とする常接ダンパー32で
構成され、この常接ダンパー32のシリンダー32aが
センターコア12側に取り付けられるとともに、ピスト
ンロッド32bが外周建物14側に取り付けられる。そ
して、センターコア12と外周建物14との揺れの相違
により発生する間隔S変化により、常接ダンパー32に
減衰力が発生されるようになっている。また、上記シリ
ンダー32aと上記ピストンロッド32bとは、センタ
ーコア12および外周建物14に対して互いに逆に取付
けることもできる。
The vibration energy absorbing means 30 is composed of a normal damper 32 using a viscous fluid such as oil as a working fluid, and a cylinder 32a of the normal damper 32 is attached to the center core 12 side and a piston rod is provided. 32b is attached to the outer building 14 side. Then, a damping force is generated in the normal contact damper 32 by a change in the interval S generated due to a difference in swing between the center core 12 and the outer peripheral building 14. Further, the cylinder 32a and the piston rod 32b can be attached to the center core 12 and the outer building 14 in opposite directions.

【0022】ところで、上記衝突緩衝手段20および上
記振動エネルギー吸収手段30は、外周建物14の各階
毎にそれぞれ設けられ、センターコア12と外周建物1
4とのいかなる変形を伴う揺れにも対応できるようにな
っている。
The collision damping means 20 and the vibration energy absorbing means 30 are provided for each floor of the outer building 14, respectively.
4 can cope with the shaking accompanying any deformation.

【0023】従って、本実施形態の連結構造物の制振方
法にあっては、センターコア12の外壁18に衝突緩衝
手段20を設けてあるので、センターコア12と外周建
物14とが衝突しようとする際に、該衝突緩衝手段20
の衝突受け板22が外周建物14の内壁28に衝接され
る。すると、該衝突受け板22はスプリング24の圧縮
変形を伴ってセンターコア12方向に移動し、この移動
に伴ってダンパー26が押し込まれる。このため、上記
衝突緩衝手段20にはスプリング24の弾発力とダンパ
ー26の減衰力が作用して、衝突時の衝突エネルギーを
徐々に吸収しつつ衝突荷重を受け止める。従って、セン
ターコア12と外周建物14とが衝突した際の荷重作用
時間を長くすることができる。
Therefore, in the vibration damping method of the connecting structure of the present embodiment, the collision damping means 20 is provided on the outer wall 18 of the center core 12, so that the center core 12 and the outer building 14 may collide. In doing so, the collision buffer 20
Is in contact with the inner wall 28 of the outer building 14. Then, the collision receiving plate 22 moves toward the center core 12 with the compression deformation of the spring 24, and the damper 26 is pushed in with this movement. For this reason, the resilience of the spring 24 and the damping force of the damper 26 act on the collision buffer 20 to receive the collision load while gradually absorbing the collision energy at the time of collision. Therefore, the load acting time when the center core 12 and the outer building 14 collide can be lengthened.

【0024】即ち、上記衝突現象は相互の建物にパルス
的な衝撃力を与え合う現象として捉えることができ、こ
のときの衝撃力をP,作用時間をΔtとし、かつ、セン
ターコア12の質量m1 と外周建物14の質量m2 の衝
突前と衝突後の双方の系の速度応答の変化をΔx1 とΔ
x2 とすると、P=(m1 ・Δx1 +m2 ・Δx2 )/
Δt …… として表すことができる。従って、上記
衝突緩衝手段20を設けたことにより衝突現象の作用時
間Δtを長く(大きく)することができるため、これに
伴って衝撃力Pは小さくなる。
That is, the above-mentioned collision phenomenon can be considered as a phenomenon in which a pulse-like impact force is applied to each building. The impact force at this time is P, the action time is Δt, and the mass m 1 of the center core 12 is Changes in the velocity response of the system before and after the collision of the mass m2 of the
Assuming that x2, P = (m1..DELTA.x1 + m2..DELTA.x2) /
Δt... Therefore, the provision of the collision buffer means 20 makes it possible to lengthen (increase) the action time Δt of the collision phenomenon, and accordingly, the impact force P decreases.

【0025】一方、上記センターコア12と上記外周建
物14との間に設けた常接ダンパー32は、これらセン
ターコア12と外周建物14との衝突作用によって分散
される高次モードの振幅成分を常時吸収することができ
るため、該高次モード成分によって増大される応答加速
度を小さくすることができる。
On the other hand, a constant damper 32 provided between the center core 12 and the peripheral building 14 constantly controls the amplitude components of higher modes dispersed by the collision action between the center core 12 and the peripheral building 14. Since it can be absorbed, the response acceleration increased by the higher-order mode component can be reduced.

【0026】従って、連結構造物として構成されるセン
ターコア12と外周建物14の構造特性の異なる揺れの
相違を利用して、双方の構造物12,14を互いに衝突
させて制振する場合に、衝突を受けた側の構造物は上記
衝突緩衝手段20により衝撃が緩和されるため、衝突箇
所が局部的に破損されるのを防止できる。そして、衝突
現象によって構造体変形の大部分を占める一次モードの
振幅成分は、他の高次モード成分に分散しつつ低減され
て構造物の変形を小さくするが、このとき分散された高
次モード成分は、上記常接ダンパー32によって容易に
吸収できるため、応答加速度が増大されるのを抑制でき
る。
Therefore, in the case where the two structures 12, 14 collide with each other by using the difference in the swing of the structural characteristics of the center core 12 and the peripheral building 14 which are formed as the connecting structures, and the vibration is damped, Since the impact on the structure on the side of the collision is reduced by the collision buffering means 20, the collision location can be prevented from being locally damaged. The amplitude component of the first-order mode, which accounts for most of the deformation of the structure due to the collision phenomenon, is reduced while dispersing to other higher-order mode components, thereby reducing the deformation of the structure. Since the component can be easily absorbed by the normal contact damper 32, an increase in response acceleration can be suppressed.

【0027】ところで、本実施形態では上記衝突緩衝手
段20としてスプリング24とダンパー26とを用いた
ので、それぞれの弾発力および減衰力を予め調節してお
くことにより、簡単な構成をもって衝撃エネルギーを最
適な条件下に徐々に吸収することが可能となる。また、
この場合、上記衝突緩衝手段20はスプリング24,ダ
ンパー26の併用で構成されるが、これに限ることなく
スプリング24のみ、若しくはダンパー26のみで構成
することもできる。更に、上記衝突緩衝手段20はセン
ターコア12の外壁18に設けた場合を開示したが、こ
れに限ることなく外周建物14の内壁28に設けても良
く、また、これら外壁18および内壁28の両方に設け
ることもできる。
In the present embodiment, since the spring 24 and the damper 26 are used as the collision buffering means 20, the impact energy can be reduced with a simple structure by adjusting the resilient force and the damping force in advance. It becomes possible to absorb gradually under optimal conditions. Also,
In this case, the collision buffering means 20 is configured by using both the spring 24 and the damper 26. However, the present invention is not limited to this, and may be configured by only the spring 24 or only the damper 26. Furthermore, the case where the collision buffering means 20 is provided on the outer wall 18 of the center core 12 is disclosed. However, the present invention is not limited thereto, and the collision buffering means 20 may be provided on the inner wall 28 of the outer peripheral building 14. Can also be provided.

【0028】また、上記振動エネルギー吸収手段30を
常接ダンパー32によって構成したので、センターコア
12と外周建物14との相対変位を減衰力をもって効果
的に吸収でき、かつ、その構成を簡単にすることができ
る。
Further, since the vibration energy absorbing means 30 is constituted by the normal damper 32, the relative displacement between the center core 12 and the peripheral building 14 can be effectively absorbed with a damping force, and the structure is simplified. be able to.

【0029】ところで、上記衝突緩衝手段20は、衝突
受け板22を質量体として所定の質量を与えておくこと
により、該衝突受け板22と上記スプリング24とで構
成されるばね系をダイナミックダンパーとして構成する
ことができ、該衝突緩衝手段20を設けた側の構造物の
制振効果を更に向上させることができる。
Incidentally, the collision buffering means 20 uses the collision receiving plate 22 as a mass body to give a predetermined mass so that a spring system composed of the collision receiving plate 22 and the spring 24 serves as a dynamic damper. It is possible to further improve the vibration damping effect of the structure on the side where the collision buffering means 20 is provided.

【0030】図4は他の実施形態を示す連結構造物の全
体構成の断面正面図で、この実施形態を上記実施形態と
同一構成部分に同一符号を付して重複する説明を省略し
て述べる。
FIG. 4 is a cross-sectional front view of the overall structure of a connecting structure showing another embodiment. In this embodiment, the same components as those in the above embodiment are denoted by the same reference numerals, and redundant description will be omitted. .

【0031】即ち、この実施形態の連結構造物10aで
は、上記センターコア12の上端部に上記外周建物14
の頂部14aを覆う剛体鍔部としてのハットトラス40
を設け、このハットトラス40の下面と上記外周建物1
4の頂部14aとの間に、これら両者間の水平移動を許
容する滑り材42を介在する。そして、これら滑り材4
2を介してハットトラス40と外周建物14との水平方
向の相対移動を許容しつつ、該ハットトラス40に作用
する下方への押し付け力を支持するようになっている。
That is, in the connecting structure 10a of this embodiment, the outer peripheral building 14 is attached to the upper end of the center core 12.
Truss 40 as a rigid flange covering top 14a
The lower surface of the hat truss 40 and the outer building 1
A sliding member 42 that allows horizontal movement between the two and the top 14a is interposed. And these sliding materials 4
2, allows the horizontal movement of the hat truss 40 and the outer peripheral building 14 in the horizontal direction, while supporting a downward pressing force acting on the hat truss 40.

【0032】上記ハットトラス40は、所定厚みをもっ
た直方体状の立体トラスとしてセンターコア12頂部に
一体に取り付けられ、このセンターコア12の曲がり変
形に抵抗するモーメントが作用した場合にも、十分にそ
の形状を保持できる剛性を備えて構成される。この場
合、上記滑り材42を上記外周建物14の柱17の形成
位置に対応して配置することが望ましい。
The hat truss 40 is integrally mounted on the top of the center core 12 as a rectangular parallelepiped solid truss having a predetermined thickness. Even when a moment that resists the bending deformation of the center core 12 acts, It is configured to have rigidity capable of maintaining its shape. In this case, it is desirable to dispose the sliding material 42 at a position where the pillar 17 of the outer peripheral building 14 is formed.

【0033】勿論、この実施形態にあっても上記実施形
態と同様にセンターコア12と外周建物14との間の隙
間Sに、衝突緩衝手段20および振動エネルギー吸収手
段30が図3に示したように設けられる。
Of course, in this embodiment, as in the above embodiment, the collision buffer 20 and the vibration energy absorbing unit 30 are provided in the gap S between the center core 12 and the outer building 14 as shown in FIG. Is provided.

【0034】従って、本実施形態の連結構造物の制振方
法にあっては、大地震等により大きな水平力Pが連結構
造物10に入力され、これによってセンターコア12が
大きく曲げ変形されようとする場合、センターコア12
の上端部に設けたハットトラス40は、滑り材42を介
して外周建物14の頂部14aに沿って水平移動しつ
つ、下方への押し下げ力Fが発生する。この押し下げ力
Fは上記滑り材42を介して外周建物14によって支持
されるため、この支持部分によって押し下げ力Fに対す
る反力Rが外周建物14に発生し、この反力Rによりハ
ットトラス40にはセンターコア12の曲げに対向する
モーメントMが発生することになる。このため、センタ
ーコア20はこのときのモーメントMにより、上端部が
曲げ方向とは反対方向に押し戻され、延いては、このセ
ンターコア20の曲げ変形を抑制することができる。
Therefore, in the method for damping a connected structure according to the present embodiment, a large horizontal force P is input to the connected structure 10 due to a large earthquake or the like, whereby the center core 12 is largely bent and deformed. If the center core 12
The hat truss 40 provided at the upper end of the outermost building 14 moves horizontally along the top 14a of the outer peripheral building 14 via the sliding material 42, and generates a downward pushing force F. Since the pushing force F is supported by the outer building 14 via the sliding material 42, a reaction force R to the pushing force F is generated in the outer building 14 by the supporting portion. A moment M opposing the bending of the center core 12 is generated. For this reason, the upper end portion of the center core 20 is pushed back in the direction opposite to the bending direction by the moment M at this time, so that the bending deformation of the center core 20 can be suppressed.

【0035】従って、上記センターコア12は上記外周
建物14に支持されることによって剛性(抵抗力)を十
分に維持し、その剛性比を十分に確保することができ
る。このため、1棟終結型として構成される連結構造物
10の制振効果を、上記衝突緩衝手段20および上記振
動エネルギー吸収手段30による制振効果と相俟って著
しく向上させることができる。
Therefore, the center core 12 is supported by the outer peripheral building 14, thereby maintaining a sufficient rigidity (resistance) and a sufficient rigidity ratio. For this reason, the vibration damping effect of the connection structure 10 configured as one building closing type can be significantly improved in combination with the vibration damping effect of the collision buffering means 20 and the vibration energy absorbing means 30.

【0036】[0036]

【発明の効果】以上に詳しく説明したように、本発明に
よれば以下に述べるような優れた効果を奏する。
As described in detail above, according to the present invention, the following excellent effects can be obtained.

【0037】請求項1の連結構造物の制振方法は、連結
構造物を構成する第1構造物および上記第2構造物の少
なくとも一方に、衝突時に作用して衝撃力を吸収する衝
突緩衝手段を設けるとともに、上記第1構造物および上
記第2構造物双方を連結して両者間の振動を常時吸収す
る振動エネルギー吸収手段を設けたので、上記衝突緩衝
手段によって第1構造物と第2構造物とが衝突した際の
作用時間を長くし、延いては衝撃力の大きさを小さくで
きるとともに、上記振動エネルギー吸収手段によって、
衝突した際に発生する高次モード成分を吸収することが
できる。従って、構造特性の異なる構造物の揺れの相違
を利用して互いに衝突させて、双方の第1,第2構造物
からなる連結構造物を制振する場合に、衝突を受けた側
の構造物は上記衝突緩衝手段により衝撃が緩和されるた
め、衝突箇所が局部的に破損されるのを防止できる。そ
して、衝突現象によって構造体変形の大部分を占める一
次モードの振幅成分は、他の高次モード成分に分散しつ
つ低減されて構造物の変形を小さくするが、このとき分
散された高次モード成分は、上記振動エネルギー吸収手
段によって容易に吸収できるため、応答加速度が増大さ
れてしまうのを抑制することができる。
According to a first aspect of the present invention, there is provided a vibration damping means for acting on at least one of the first structure and the second structure constituting the connection structure at the time of collision to absorb an impact force. And a vibration energy absorbing means for connecting both the first structure and the second structure and constantly absorbing vibration therebetween is provided. Therefore, the first structure and the second structure are connected by the collision damping means. The action time when an object collides can be lengthened, and the magnitude of the impact force can be reduced, and by the vibration energy absorbing means,
Higher-order mode components generated upon collision can be absorbed. Therefore, in the case where the structures having different structural characteristics are caused to collide with each other by using the difference in swing, and the connected structure including the first and second structures is damped, the structure on the side which has been subjected to the collision is used. Since the impact is alleviated by the collision buffer, it is possible to prevent the collision location from being locally damaged. The amplitude component of the first-order mode, which accounts for most of the deformation of the structure due to the collision phenomenon, is reduced while dispersing to other higher-order mode components, thereby reducing the deformation of the structure. Since the component can be easily absorbed by the vibration energy absorbing means, it is possible to suppress an increase in response acceleration.

【0038】また、請求項2では、上記第1構造物およ
び上記第2構造物のうち、低質量,高剛性となる一方の
構造物の上端部に、高質量,低剛性となる他方の構造物
の頂部を覆う剛体鍔部を設け、これら剛体鍔部と他方の
構造物の頂部との間に水平方向の相対移動を許容する滑
り部材を介在し、この滑り部材を介して剛体鍔部と他方
の構造物との水平方向の相対移動を許容しつつ、該剛体
鍔部に作用する下方への押し付け力を他方の構造物で支
持するようにしたので、剛体鍔部は滑り部材を介して他
方の構造物の頂部に沿って水平移動しつつ、剛体鍔部の
押し下げ力を該他方の構造物によって支持することがで
きる。従って、一方の構造物の曲げ変形を抑制できるた
め、一方の構造物は他方の構造物に支持されることによ
って剛性(抵抗力)を十分に維持し、その剛性比を十分
に確保することができ、連結構造物の制振効果を更に向
上することができる。
According to a second aspect of the present invention, one of the first structure and the second structure having a low mass and high rigidity is provided at an upper end portion of the other structure having a high mass and low rigidity. A rigid flange that covers the top of the object is provided, and a sliding member that allows relative movement in the horizontal direction is interposed between the rigid flange and the top of the other structure. Since the downward pressing force acting on the rigid flange is supported by the other structure while allowing the relative movement in the horizontal direction with the other structure, the rigid flange is moved through the sliding member. The horizontal structure can move horizontally along the top of the other structure while supporting the pressing force of the rigid flange by the other structure. Therefore, since bending deformation of one structure can be suppressed, one structure can be sufficiently supported by the other structure to maintain a sufficient rigidity (resistance) and a sufficient rigidity ratio. As a result, the vibration damping effect of the connection structure can be further improved.

【0039】更に、請求項3では、上記衝突緩衝手段
を、ばね部材単体またはダンパー部材単体、若しくは、
ばね部材とダンパー部材の併用体として構成したので、
ばね部材ではこれの弾発力により衝撃エネルギーを吸収
する一方、ダンパー部材ではこれの減衰力により衝撃エ
ネルギーを吸収する。このため、いずれにあっても衝撃
エネルギーは徐々に吸収されることになり、その作用時
間を長くすることができる。
Further, in the third aspect, the collision buffer means may be a single spring member or a single damper member, or
Because it was configured as a combined body of a spring member and a damper member,
The spring member absorbs impact energy by its resilient force, while the damper member absorbs impact energy by its damping force. For this reason, in any case, the impact energy is gradually absorbed, and the operation time can be extended.

【0040】更にまた、請求項4では、上記振動エネル
ギー吸収手段を、ダンパー部材を用いて構成したので、
第1構造物と第2構造物との相対変位を減衰力により吸
収し、簡単な構成にして第1,第2構造物間の振動エネ
ルギーを効果的に吸収することができる。
Furthermore, in claim 4, the vibration energy absorbing means is constituted by using a damper member.
The relative displacement between the first structure and the second structure is absorbed by the damping force, and the vibration energy between the first and second structures can be effectively absorbed with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す連結構造物の全体構
成の断面正面図である。
FIG. 1 is a cross-sectional front view of an overall configuration of a connecting structure showing one embodiment of the present invention.

【図2】本発明の一実施形態を示す図1中のA−A線断
面図である。
FIG. 2 is a sectional view taken along the line AA in FIG. 1 showing one embodiment of the present invention.

【図3】本発明の一実施形態を示す連結構造物の要部を
拡大した断面平面図である。
FIG. 3 is an enlarged cross-sectional plan view of a main part of a connection structure showing one embodiment of the present invention.

【図4】本発明の他の実施形態を示す連結構造物の全体
構成の断面正面図である。
FIG. 4 is a cross-sectional front view of the entire configuration of a connecting structure showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10,10a 連結構造物 12 センターコア(第1構造物) 14 外周建物(第2構造物) 14a 頂部 20 衝突緩衝手段 22 衝突受け板 24 スプリング 26 ダンパー 30 振動エネルギー吸収手段 32 常接ダンパー 40 ハットトラス(剛体鍔部) 42 滑り材 10, 10a connecting structure 12 center core (first structure) 14 outer peripheral building (second structure) 14a top 20 collision buffer 22 collision receiving plate 24 spring 26 damper 30 vibration energy absorbing means 32 constant damper 40 hat truss (Rigid flange) 42 Sliding material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F16F 15/02 F16F 15/02 K 15/04 15/04 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F16F 15/02 F16F 15/02 K 15/04 15/04 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量や剛性等の構造特性が相異なり、か
つ、互いに近接して構築された第1構造物および第2構
造物を備え、地震や風等を起因とする振動入力により揺
動する双方の構造物の衝突現象を用いて制振する連結構
造物の制振方法において、 上記第1構造物および上記第2構造物の少なくとも一方
に衝突緩衝手段を設け、第1,第2構造物の衝突時に該
衝突緩衝手段が作用して衝撃力を徐々に吸収するととも
に、上記第1構造物および上記第2構造物双方を振動エ
ネルギー吸収手段で連結し、該振動エネルギー吸収手段
によって第1,第2構造物間の振動を常時吸収させるこ
とを特徴とする連結構造物の制振方法。
The present invention comprises a first structure and a second structure which are different in structural characteristics such as mass and rigidity and which are constructed close to each other, and oscillate by a vibration input caused by an earthquake, a wind or the like. A method of damping a connected structure using a collision phenomenon of both structures, wherein at least one of the first structure and the second structure is provided with a collision buffer, and the first and second structures are provided. At the time of collision of the object, the collision buffer acts to gradually absorb the impact force, and both the first structure and the second structure are connected by the vibration energy absorbing means. And a vibration damping method for a connected structure, wherein the vibration between the second structures is constantly absorbed.
【請求項2】 上記第1構造物および上記第2構造物の
うち、低質量,高剛性となる一方の構造物の上端部に、
高質量,低剛性となる他方の構造物の頂部を覆う剛体鍔
部を設け、これら剛体鍔部と他方の構造物の頂部との間
に水平方向の相対移動を許容する滑り部材を介在し、こ
の滑り部材を介して剛体鍔部と他方の構造物との水平方
向の相対移動を許容しつつ、該剛体鍔部に作用する下方
への押し付け力を他方の構造物で支持することを特徴と
する請求項1に示す連結構造物の制振方法。
2. An upper end of one of the first structure and the second structure having low mass and high rigidity,
A rigid flange is provided to cover the top of the other structure having high mass and low rigidity, and a sliding member that allows horizontal relative movement is interposed between the rigid flange and the top of the other structure, While allowing relative movement of the rigid flange portion and the other structure in the horizontal direction through the sliding member, a downward pressing force acting on the rigid flange portion is supported by the other structure. The method for damping a connected structure according to claim 1.
【請求項3】 上記衝突緩衝手段は、ばね部材単体また
はダンパー部材単体、若しくは、ばね部材とダンパー部
材の併用体として構成したことを特徴とする請求項1ま
たは2に記載の連結構造物の制振方法。
3. The control structure according to claim 1, wherein the collision buffering means is configured as a single spring member, a single damper member, or a combination of a spring member and a damper member. Shaking method.
【請求項4】 上記振動エネルギー吸収手段は、ダンパ
ー部材を用いて構成したことを特徴とする請求項1また
は2に記載の連結構造物の制振方法。
4. The method according to claim 1, wherein the vibration energy absorbing means includes a damper member.
JP07064698A 1998-03-19 1998-03-19 Vibration control method for linked structures Expired - Fee Related JP3858432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07064698A JP3858432B2 (en) 1998-03-19 1998-03-19 Vibration control method for linked structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07064698A JP3858432B2 (en) 1998-03-19 1998-03-19 Vibration control method for linked structures

Publications (2)

Publication Number Publication Date
JPH11270175A true JPH11270175A (en) 1999-10-05
JP3858432B2 JP3858432B2 (en) 2006-12-13

Family

ID=13437634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07064698A Expired - Fee Related JP3858432B2 (en) 1998-03-19 1998-03-19 Vibration control method for linked structures

Country Status (1)

Country Link
JP (1) JP3858432B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building
JP2005180089A (en) * 2003-12-22 2005-07-07 Ohbayashi Corp Building damping structure and method
JP2006241783A (en) * 2005-03-02 2006-09-14 Ohbayashi Corp Damping structure for building
JP2006241784A (en) * 2005-03-02 2006-09-14 Ohbayashi Corp Damping structure for building
JP2009019479A (en) * 2007-06-12 2009-01-29 Ohbayashi Corp Seismic response controlled building and seismic response control method
JP2009249973A (en) * 2008-04-09 2009-10-29 Ohbayashi Corp Vibration control structure
JP2009264085A (en) * 2008-04-30 2009-11-12 Toyoshiki:Kk Stabilizing device and quake-resistant foundation structure using the same
JP2010112013A (en) * 2008-11-04 2010-05-20 Ohbayashi Corp Vibration control building
JP2011032863A (en) * 2010-10-15 2011-02-17 Ohbayashi Corp Damping structure of building
JP2013185369A (en) * 2012-03-08 2013-09-19 Aritomi Okuno Method of making structure earthquake-resistant
JP2015031027A (en) * 2013-08-01 2015-02-16 株式会社大林組 Vibration control building, and vibration control method
CN114040015A (en) * 2021-10-20 2022-02-11 北京珞安科技有限责任公司 Intelligent edge Internet of things agent device with protective structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building
JP4700816B2 (en) * 2001-01-17 2011-06-15 株式会社竹中工務店 Building construction method and seismic control building with excellent seismic safety
JP4572535B2 (en) * 2003-12-22 2010-11-04 株式会社大林組 Building seismic control structure
JP2005180089A (en) * 2003-12-22 2005-07-07 Ohbayashi Corp Building damping structure and method
JP2006241783A (en) * 2005-03-02 2006-09-14 Ohbayashi Corp Damping structure for building
JP2006241784A (en) * 2005-03-02 2006-09-14 Ohbayashi Corp Damping structure for building
JP4706281B2 (en) * 2005-03-02 2011-06-22 株式会社大林組 Building seismic control structure
JP2009019479A (en) * 2007-06-12 2009-01-29 Ohbayashi Corp Seismic response controlled building and seismic response control method
JP2012211506A (en) * 2007-06-12 2012-11-01 Ohbayashi Corp Vibration control building, vibration control method
JP2009249973A (en) * 2008-04-09 2009-10-29 Ohbayashi Corp Vibration control structure
JP2009264085A (en) * 2008-04-30 2009-11-12 Toyoshiki:Kk Stabilizing device and quake-resistant foundation structure using the same
JP2010112013A (en) * 2008-11-04 2010-05-20 Ohbayashi Corp Vibration control building
JP2011032863A (en) * 2010-10-15 2011-02-17 Ohbayashi Corp Damping structure of building
JP2013185369A (en) * 2012-03-08 2013-09-19 Aritomi Okuno Method of making structure earthquake-resistant
JP2015031027A (en) * 2013-08-01 2015-02-16 株式会社大林組 Vibration control building, and vibration control method
CN114040015A (en) * 2021-10-20 2022-02-11 北京珞安科技有限责任公司 Intelligent edge Internet of things agent device with protective structure
CN114040015B (en) * 2021-10-20 2023-12-12 北京珞安科技有限责任公司 Intelligent edge internet of things proxy device with protection structure

Also Published As

Publication number Publication date
JP3858432B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JPH11270175A (en) Vibration damping method of connected structure
JP3828695B2 (en) Seismic control wall of a three-story house
JP2877293B2 (en) Outer tube supported steel chimney
JP6420012B1 (en) Passive vibration control device for buildings
JP3861430B2 (en) Vibration control method for linked structures
JPH06300081A (en) Vibration damping support structure
JP2919303B2 (en) Collision mitigation damping structure, building using the structure, and damping method
JP2002302377A (en) Base isolation type crane
JP2004285599A (en) Vibration control structure of structure
JP2001082542A (en) Three-dimensional base isolation device
JP4788134B2 (en) Damping structure of structure
JP5251936B2 (en) Damping structure of structure
JP7037320B2 (en) Vibration control building
JPH04343982A (en) Dynamic vibration reducer
JP3463085B2 (en) Seismic building
JP5252227B2 (en) Seismic isolation system
JP5609000B2 (en) Damping method, damping structure, and seismic reinforcement method
JP4828053B2 (en) Structure damping device
JP7499200B2 (en) Vibration control device
JP4660807B2 (en) Vibration control structure
JPH0542202Y2 (en)
JP3156061B2 (en) High-rise building damping structure
JP4674838B2 (en) Vibration control mechanism
JP2004176348A (en) Base isolation structure of high rise building
JP3254322B2 (en) Seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140929

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees