JP4660807B2 - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP4660807B2
JP4660807B2 JP2001168447A JP2001168447A JP4660807B2 JP 4660807 B2 JP4660807 B2 JP 4660807B2 JP 2001168447 A JP2001168447 A JP 2001168447A JP 2001168447 A JP2001168447 A JP 2001168447A JP 4660807 B2 JP4660807 B2 JP 4660807B2
Authority
JP
Japan
Prior art keywords
rigidity
core
building
low
core part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001168447A
Other languages
Japanese (ja)
Other versions
JP2002357011A (en
Inventor
和夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2001168447A priority Critical patent/JP4660807B2/en
Publication of JP2002357011A publication Critical patent/JP2002357011A/en
Application granted granted Critical
Publication of JP4660807B2 publication Critical patent/JP4660807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は建造物の制振構造に関するものである。
【0002】
【従来の技術】
道路交通などの振動発生源の増加や建造物の高層化により、いたるところで振動が発生しやすくなっているため、建造物内の作業性や快適性が著しく損なわれるといった問題が発生している。更に、高層化に伴って地震発生時には建造物が大きく振動するため、こららの振動を低減するために、近年の建造物では様々な制振(免震)構造が適用されている。
【0003】
図4は従来における制振構造の一例を示す図であって、図4(a)は平面図、図4(b)は側方断面図である。この図に示すように、建造物Jは、コア部41と、このコア部41を囲む一般部42と、コア部41と一般部42との間に介在しているダンパ部43とを備えている。コア部41と一般部42とは変形特性(振動特性)が異なっている。このように、建造物Jを振動特性の異なるブロック(すなわち、コア部41と一般部42)に分け、これらブロック間にダンパ部43を設けることで、地震等によって振動が発生した際、建造物Jは振動エネルギーを吸収する構造になっている。
【0004】
【発明が解決しようとする課題】
上述した制振構造は、確かに地震発生時の振動エネルギーを吸収可能であるが、その吸収効果は不十分であった。特に、広い帯域の振動周波数を有する地震が発生した際、十分な振動減衰効果を得ることができない。また、建造物Jを、異なる振動特性を有するブロック毎に分類しなければならないため、設計上の負担が大きかった。今後、建造物の更なる高層化を考えると、振動減衰効果が更に高い制振構造を効率的に構築する必要がある。
【0005】
本発明はこのような事情に鑑みてなされたもので、建造物に作用する振動を効果的に抑えることができる制振構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、本発明の制振構造は、建造物の制振構造であって、前記建造物は、コア部と非コア部とに分けられており、前記建造物の一部を、前記コア部及び前記非コア部を構成する柱部より細い細柱部によって構成されて水平方向への剛性が他の部分より低い低剛性部とし、前記建造物のうち、前記低剛性部が設けられている以外の部分にダンパ部を設けたことを特徴とする。
【0007】
本発明によれば、建造物の一部に低剛性部を設けるとともに他の部分にダンパ部を設けることにより、この低剛性部の剛性及びダンパ部の減衰特性を調整することによって所望の制振特性を得ることができるとともに十分な振動減衰効果を得ることができる。また、建造物の一部に低剛性部を設ければよいので、効率良く制振構造を構築できる。さらに、低剛性部は、コア部及び非コア部を構成する柱部より細い細柱部によって構成されていることを特徴とするので、細柱部の材質や太さを選択するだけで、低剛性部の剛性を任意に設定できる。したがって、制振特性の変更を効率良く行うことができる。
【0008】
前記建造物は、コア部と非コア部とに分けられており、前記コア部と前記非コア部との間に、前記低剛性部及び前記ダンパ部が介在していることを特徴とするので、非コア部はコア部に支持された状態で、十分な制振効果を得ることができる。
【0009】
前記低剛性部は、前記非コア部の上部及び下部に配置されて前記非コア部を支持しており、前記ダンパ部、前記非コア部の側部と前記コア部との間に配置されている場合には、非コア部は低剛性部によって鉛直方向への支持を安定して行われた状態で水平方向への振動を十分に低減される。
【0011】
【発明の実施の形態】
以下、本発明の制振構造について図面を参照しながら説明する。図1(a)は本発明の制振構造の一実施形態を示す正面図である。
図1(a)において、建造物Sは、非コア部1と、この両側に配置されているコア部2と、非コア部1とコア部2との間に介在しているダンパ部3及び低剛性部(細柱部)4とを備えている。
【0012】
非コア部1は複数の柱部5を有しており、非コア部1全体で所定の剛性を有している。コア部2も複数の柱部6を有しており、コア部2全体で所定の剛性を有している。ここで、非コア部1の剛性とコア部2の剛性とはほぼ同じに設定されている。
【0013】
非コア部1は、建造物Sのほぼ中央部に配置されている。コア部2は、この非コア部1の両側に配置されており、側壁部2aと天井部2bとを有している。側壁部2aの下端は地面に固定されている。
【0014】
低剛性部4は、非コア部1及びコア部2を構成する柱部5,6より細い細柱部4A,4Bによって構成されている。この低剛性部4は、非コア部1の上部及び下部に配置されて非コア部1を支持している。すなわち、低剛性部4は、建造物Sの側壁部(外周部)2a以外のうち、最上部と最下部とに設けられている。
このうち、非コア部1の下部に配置されている細柱部4Aは、下端を地面に固定しており、上端を非コア部1に接続している。一方、非コア部1の上部に配置されている細柱部4Bは、下端を非コア部1に接続しており、上端をコア部2の天井部2bに接続している。
【0015】
ダンパ部3は、建造物Sのうち、低剛性部4が設けられている以外の部分に配置されている。本実施形態において、ダンパ部3は、非コア部1の側部1aとコア部2の側壁部2aとの間を接続するように設けられている。ダンパ部3としては、例えば鋼材ダンパやオイルダンパなどを用いることができる。
【0016】
複数の細柱部4A,4Bによって構成され、非コア部1の上部及び下部に設けられている低剛性部4は、水平方向への剛性を、建造物Sのうち、低剛性部4が設けられている以外の部分、すなわち、非コア部1及びコア部2より低くなるように設定されている。すなわち、低剛性部4を構成する細柱部4A,4Bの太さや材質を非コア部1及びコア部2を構成する柱部5,6と異ならせることによって、低剛性部4全体の水平方向への剛性が低減されている。一方、細柱部4A,4Bの長手方向の剛性、すなわち、低剛性部4全体の鉛直方向への剛性は高く、非コア部1を支持するのに十分な強度を有している。
【0017】
次に、上述した構成を有する建造物Sが振動した際の作用について図1(b)を参照しながら説明する。図1(b)は図1(a)に示した構造物Sに対して地震が発生した際の建造物Sの形状変化を示す図である。
【0018】
通常時(地震が発生していない状態)では、図1(a)に示したように、非コア部1は、鉛直方向に十分な強度を有している細柱部4A,4Bやコア部2によって安定して支持されている。
【0019】
地震が発生して建造物Sに振動が作用した際、建造物Sは図1(b)に示すように変形する。すなわち、地震が発生して建造物Sに水平方向への大きな揺れ(横揺れ)が作用したら、水平方向への剛性が低減されている細柱部4A,4Bが図1(b)のように斜めに歪む。これとともに、非コア部1の側部1aとコア部2の側壁部2aとの間の距離が変化し、非コア部1の周囲に複数設けられているダンパ部3のそれぞれが変形する。このダンパ部3の変形や低剛性部4の変位によって、建造物Sに作用する振動が低減される。
【0020】
所定の振動周波数帯域に対しての制振特性を高めたい場合、例えば、低周波成分に対する制振性能を向上させたい場合には、細柱部4A,4Bの水平方向への剛性を低く設定する。一方、建造物S全体についてある程度の剛性を維持したい場合などには、細柱部4A,4Bの水平方向への剛性を高く設定する。制振特性を変更する場合には、細柱部4A,4Bを細いものや太いものに取り替えればよい。あるいは、非コア部1の重量を変更してもよい。更に、共振ピークを抑えたい場合などには、ダンパ部3を減衰特性の異なるものに取り替えればよい。
【0021】
以上説明したように、建造物Sの一部に低剛性部4を設けるとともに他の部分いダンパ部3を設けたことにより、この低剛性部4の剛性やダンパ部3の減衰特性を調整することによって所望の制振特性を得ることができ、十分な制振効果を得ることができる。
【0022】
低剛性部4を、建造物Sの外周部(側壁部2a)以外のうち、最上部と最下部とに設けたことにより、建造物Sの中央部である非コア部1とコア部2とに作用する振動を効果的に低減することができる。
【0023】
また、建造物Sを、非コア部1と非コア部1の両側にあるコア部2とに分け、ダンパ部3及び低剛性部4を非コア部1とコア部2との間に介在させることによって、非コア部1は低剛性部4やコア部2に安定して支持された状態で十分な制振効果を得ることができる。
【0024】
低剛性部4を、非コア部1及びコア部2を構成する柱部5,6より細い細柱部4A,4Bによって構成したので、細柱部4A,4Bの材質や太さを選択するだけで、低剛性部4の剛性を任意に設定できる。したがって、制振特性の変更を効率良く行うことができる。
【0025】
なお、上記実施形態においては、地震発生時における建造物Sの作用について説明したが、本発明の制振構造は、道路交通やその他の振動発生源による振動に対しても同様の振動減衰効果を得ることができる。
【0026】
次に、本発明の制振構造の他の実施形態について図2,図3を参照しながら説明する。ここで、以下の説明において、図1で説明した制振構造と同一又は同等の構成部分についてはその説明を簡略もしくは省略する。
【0027】
図2に示す構造物S2において、コア部2は、側壁部2aと、天井部2bと、底部2cとを有しており、底部2cが地面と接している。そして、コア部2の内部に非コア部1が配置されている。コア部2の内部に配置されている非コア部1の上部及び下部には低剛性部(細柱部)4が配置されており、このうち、非コア部1の下部側の細柱部4Aは下端をコア部2の底部2cに接続している。非コア部1の側部1aとコア部2の側壁部2aとの間には複数のダンパ部3が介在している。
【0028】
このように、図2においては、非コア部1は細柱部4Aを介してコア部2の底部2cに支持されている。つまり、図1に示したような非コア部1を支持する下部側の細柱部4Aは地面と接続しているが、図2に示したように、非コア部1の下部側の細柱部4Aを地面に接続させずにコア部2に接続させる構成とすることもできる。
【0029】
図3に示す構造物S3は、コア部2の内部に2つの非コア部1を有している。
そして、非コア部1のそれぞれの上部及び下部には細柱部(低剛性部)4A,4Bが設けられている。このように、1つの建造物について、非コア部1は1つに限らず複数設けることができる。すなわち、建造物の一部に、水平方向への剛性が他の部分より低い低剛性部4を複数箇所、好ましくは建造物の少なくとも最上部及び最下部に設けるとともに、低剛性部4が設けられている以外の複数の部分にダンパ部3が設けられていればよい。
【0030】
【発明の効果】
以上説明したように、建造物の一部に低剛性部を設けるとともに他の部分にダンパ部を設けたことにより、低剛性部の剛性やダンパ部の減衰特性を調整することによって所望の制振特性を得ることができ、従来の制振構造よりも十分な制振効果を得ることができる。また、構造自体がシンプルな構成であるため、建造物構築の際、作業効率を向上することができる。
【図面の簡単な説明】
【図1】本発明の制振構造の一実施形態を示す概略構成図である。
【図2】本発明の制振構造の他の実施形態を示す概略構成図である。
【図3】本発明の制振構造の他の実施形態を示す概略構成図である。
【図4】従来の制振構造を説明するための図である。
【符号の説明】
1 非コア部
2 コア部
2a 側壁部(外周部)
3 ダンパ部
4 低剛性部
4A,4B 細柱部
S 建造物(制振構造)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration control structure for a building.
[0002]
[Prior art]
As the number of vibration sources such as road traffic increases and the building becomes taller, vibrations are likely to occur everywhere, resulting in a problem that workability and comfort in the building are significantly impaired. In addition, since buildings are greatly vibrated when an earthquake occurs with an increase in the number of layers, in order to reduce these vibrations, various types of vibration control (seismic isolation) structures have been applied to recent buildings.
[0003]
4A and 4B are diagrams showing an example of a conventional vibration damping structure. FIG. 4A is a plan view and FIG. 4B is a side sectional view. As shown in this figure, the building J includes a core portion 41, a general portion 42 surrounding the core portion 41, and a damper portion 43 interposed between the core portion 41 and the general portion 42. Yes. The core part 41 and the general part 42 have different deformation characteristics (vibration characteristics). As described above, the building J is divided into blocks having different vibration characteristics (that is, the core portion 41 and the general portion 42), and the damper portion 43 is provided between these blocks. J has a structure that absorbs vibration energy.
[0004]
[Problems to be solved by the invention]
Although the above-described vibration damping structure can surely absorb the vibration energy at the time of earthquake occurrence, its absorption effect is insufficient. In particular, when an earthquake having a wide range of vibration frequencies occurs, a sufficient vibration damping effect cannot be obtained. Moreover, since the building J has to be classified into blocks having different vibration characteristics, the design burden is large. In the future, considering a further increase in the height of the building, it is necessary to efficiently construct a damping structure having a higher vibration damping effect.
[0005]
This invention is made | formed in view of such a situation, and it aims at providing the damping structure which can suppress the vibration which acts on a building effectively.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, the vibration damping structure of the present invention is a vibration damping structure for a building, and the building is divided into a core part and a non-core part, and a part of the building Is a low-rigidity portion that is constituted by a narrow column portion that is thinner than the column portions that constitute the core portion and the non-core portion, and has a lower horizontal rigidity than other portions, and the low-rigidity portion of the building A damper portion is provided in a portion other than the portion provided with.
[0007]
According to the present invention, by providing a low-rigidity part in a part of a building and providing a damper part in another part, the rigidity of the low-rigidity part and the damping characteristic of the damper part can be adjusted to achieve a desired vibration damping. The characteristic can be obtained and a sufficient vibration damping effect can be obtained. Moreover, since a low-rigidity part should just be provided in a part of building, a damping structure can be constructed | assembled efficiently. Furthermore, since the low-rigidity part is configured by a narrow column part that is thinner than the column part that constitutes the core part and the non-core part, the low rigidity part can be reduced by simply selecting the material and thickness of the thin column part. The rigidity of the rigid part can be set arbitrarily. Therefore, the damping characteristic can be changed efficiently.
[0008]
Since the building is divided into a core part and a non-core part, the low-rigidity part and the damper part are interposed between the core part and the non-core part. The non-core portion can obtain a sufficient damping effect while being supported by the core portion.
[0009]
The low-rigidity part is disposed above and below the non-core part to support the non-core part, and the damper part is disposed between the side part of the non-core part and the core part. In this case, the vibration in the horizontal direction is sufficiently reduced in a state where the non-core portion is stably supported in the vertical direction by the low-rigidity portion.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The vibration damping structure of the present invention will be described below with reference to the drawings. Fig.1 (a) is a front view which shows one Embodiment of the damping structure of this invention.
In FIG. 1A, a building S includes a non-core portion 1, a core portion 2 disposed on both sides thereof, a damper portion 3 interposed between the non-core portion 1 and the core portion 2, and A low-rigidity portion (thin column portion) 4 is provided.
[0012]
The non-core part 1 has a plurality of column parts 5, and the non-core part 1 as a whole has a predetermined rigidity. The core part 2 also has a plurality of column parts 6, and the core part 2 as a whole has a predetermined rigidity. Here, the rigidity of the non-core part 1 and the rigidity of the core part 2 are set to be substantially the same.
[0013]
The non-core portion 1 is disposed at a substantially central portion of the building S. The core part 2 is arrange | positioned at the both sides of this non-core part 1, and has the side wall part 2a and the ceiling part 2b. The lower end of the side wall 2a is fixed to the ground.
[0014]
The low-rigidity portion 4 is configured by narrow column portions 4A and 4B that are thinner than the column portions 5 and 6 constituting the non-core portion 1 and the core portion 2. The low-rigidity part 4 is disposed on the upper and lower parts of the non-core part 1 and supports the non-core part 1. That is, the low rigidity part 4 is provided in the uppermost part and the lowest part among the side walls (outer peripheral parts) 2a of the building S.
Among these, the narrow pillar part 4 </ b> A arranged at the lower part of the non-core part 1 has a lower end fixed to the ground and an upper end connected to the non-core part 1. On the other hand, the narrow pillar part 4 </ b> B arranged on the upper part of the non-core part 1 has a lower end connected to the non-core part 1 and an upper end connected to the ceiling part 2 b of the core part 2.
[0015]
The damper part 3 is arrange | positioned among the structures S except the part in which the low-rigidity part 4 is provided. In the present embodiment, the damper portion 3 is provided so as to connect between the side portion 1 a of the non-core portion 1 and the side wall portion 2 a of the core portion 2. As the damper part 3, a steel damper, an oil damper, etc. can be used, for example.
[0016]
The low-rigidity part 4 that is configured by a plurality of thin columnar parts 4A and 4B and is provided on the upper and lower parts of the non-core part 1 has a horizontal rigidity, and the low-rigidity part 4 is provided in the building S. It is set so that it may become lower than parts other than being, ie, the non-core part 1 and the core part 2. FIG. That is, by making the thickness and material of the thin pillar portions 4A and 4B constituting the low rigidity portion 4 different from those of the pillar portions 5 and 6 constituting the non-core portion 1 and the core portion 2, the entire horizontal direction of the low rigidity portion 4 is changed. The rigidity is reduced. On the other hand, the rigidity in the longitudinal direction of the thin column portions 4A and 4B, that is, the rigidity in the vertical direction of the entire low-rigidity portion 4 is high, and has sufficient strength to support the non-core portion 1.
[0017]
Next, the action when the building S having the above-described structure vibrates will be described with reference to FIG. FIG.1 (b) is a figure which shows the shape change of the building S when an earthquake generate | occur | produces with respect to the structure S shown to Fig.1 (a).
[0018]
In a normal state (a state in which no earthquake occurs), as shown in FIG. 1A, the non-core portion 1 includes the narrow column portions 4A and 4B and the core portion having sufficient strength in the vertical direction. 2 is stably supported.
[0019]
When an earthquake occurs and a vibration acts on the building S, the building S is deformed as shown in FIG. That is, when an earthquake occurs and a large horizontal movement (rolling) is applied to the building S, the thin column portions 4A and 4B having reduced horizontal rigidity are obtained as shown in FIG. Distorted diagonally. At the same time, the distance between the side portion 1a of the non-core portion 1 and the side wall portion 2a of the core portion 2 changes, and each of the plurality of damper portions 3 provided around the non-core portion 1 is deformed. Due to the deformation of the damper portion 3 and the displacement of the low-rigidity portion 4, vibrations acting on the building S are reduced.
[0020]
When it is desired to improve the vibration suppression characteristics for a predetermined vibration frequency band, for example, when it is desired to improve the vibration suppression performance for low frequency components, the rigidity in the horizontal direction of the narrow column portions 4A and 4B is set low. . On the other hand, when it is desired to maintain a certain degree of rigidity for the entire building S, the rigidity in the horizontal direction of the narrow pillar portions 4A and 4B is set high. When changing the damping characteristics, the narrow pillars 4A and 4B may be replaced with thin ones or thick ones. Alternatively, the weight of the non-core part 1 may be changed. Furthermore, when it is desired to suppress the resonance peak, the damper unit 3 may be replaced with one having a different attenuation characteristic.
[0021]
As described above, the rigidity of the low-rigidity part 4 and the damping characteristic of the damper part 3 are adjusted by providing the low-rigidity part 4 in a part of the building S and providing the other-part damper part 3. Therefore, desired damping characteristics can be obtained, and a sufficient damping effect can be obtained.
[0022]
By providing the low-rigidity part 4 at the uppermost part and the lowermost part of the building S other than the outer peripheral part (side wall part 2a), the non-core part 1 and the core part 2 that are the central part of the building S The vibration which acts on can be reduced effectively.
[0023]
Further, the building S is divided into a non-core portion 1 and a core portion 2 on both sides of the non-core portion 1, and a damper portion 3 and a low-rigidity portion 4 are interposed between the non-core portion 1 and the core portion 2. Accordingly, the non-core portion 1 can obtain a sufficient vibration damping effect while being stably supported by the low-rigidity portion 4 and the core portion 2.
[0024]
Since the low-rigidity part 4 is constituted by the narrow pillar parts 4A and 4B that are thinner than the pillar parts 5 and 6 constituting the non-core part 1 and the core part 2, only the material and thickness of the fine pillar parts 4A and 4B are selected. Thus, the rigidity of the low rigidity portion 4 can be arbitrarily set. Therefore, the damping characteristic can be changed efficiently.
[0025]
In the above-described embodiment, the operation of the building S at the time of the occurrence of the earthquake has been described. However, the vibration control structure of the present invention has the same vibration damping effect against vibrations caused by road traffic and other vibration generation sources. Obtainable.
[0026]
Next, another embodiment of the vibration damping structure of the present invention will be described with reference to FIGS. Here, in the following description, the description of the same or equivalent components as those of the vibration damping structure described in FIG. 1 is simplified or omitted.
[0027]
In the structure S2 shown in FIG. 2, the core part 2 has a side wall part 2a, a ceiling part 2b, and a bottom part 2c, and the bottom part 2c is in contact with the ground. The non-core part 1 is arranged inside the core part 2. A low-rigidity portion (thin columnar portion) 4 is disposed above and below the non-core portion 1 disposed inside the core portion 2, and among these, the narrow column portion 4 </ b> A on the lower side of the non-core portion 1. Is connected to the bottom 2c of the core 2 at its lower end. A plurality of damper parts 3 are interposed between the side part 1 a of the non-core part 1 and the side wall part 2 a of the core part 2.
[0028]
Thus, in FIG. 2, the non-core part 1 is supported by the bottom part 2c of the core part 2 via the thin pillar part 4A. That is, the lower-side narrow pillar portion 4A that supports the non-core portion 1 as shown in FIG. 1 is connected to the ground, but the lower-side narrow pillar portion of the non-core portion 1 as shown in FIG. It can also be set as the structure connected to the core part 2 without connecting the part 4A to the ground.
[0029]
The structure S3 shown in FIG. 3 has two non-core parts 1 inside the core part 2.
And thin pillar part (low-rigidity part) 4A, 4B is provided in each upper part and lower part of the non-core part 1. FIG. As described above, the number of the non-core portions 1 is not limited to one and can be provided for a single building. That is, a part of the building is provided with a plurality of low-rigidity parts 4 having a lower horizontal rigidity than other parts, preferably at least at the uppermost and lowermost parts of the building, and the low-rigidity part 4 is provided. The damper part 3 should just be provided in several parts other than having.
[0030]
【The invention's effect】
As described above, by providing a low-rigidity part in a part of a building and providing a damper part in another part, the desired vibration damping can be achieved by adjusting the rigidity of the low-rigidity part and the damping characteristics of the damper part. Characteristics can be obtained, and a sufficient damping effect can be obtained as compared with the conventional damping structure. Moreover, since the structure itself is a simple structure, work efficiency can be improved in building construction.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a vibration damping structure of the present invention.
FIG. 2 is a schematic configuration diagram showing another embodiment of the vibration damping structure of the present invention.
FIG. 3 is a schematic configuration diagram showing another embodiment of the vibration damping structure of the present invention.
FIG. 4 is a diagram for explaining a conventional vibration damping structure.
[Explanation of symbols]
1 Non-core part 2 Core part 2a Side wall part (outer peripheral part)
3 Damper part 4 Low rigidity part 4A, 4B Narrow pillar part S Building (damping structure)

Claims (3)

建造物の制振構造であって、
前記建造物は、コア部と非コア部とに分けられており、
前記建造物の一部を、前記コア部及び前記非コア部を構成する柱部より細い細柱部によって構成されて水平方向への剛性が他の部分より低い低剛性部とし、
前記建造物のうち、前記低剛性部が設けられている以外の部分にダンパ部を設けたことを特徴とする制振構造。
A vibration control structure of a building,
The building is divided into a core part and a non-core part,
A part of the building is a low-rigidity part constituted by a narrow pillar part that is thinner than the pillar part that constitutes the core part and the non-core part, and the rigidity in the horizontal direction is lower than other parts,
A damper structure having a damper portion provided in a portion of the building other than the low rigidity portion.
前記コア部と前記非コア部との間に、前記低剛性部及び前記ダンパ部が介在していることを特徴とする請求項1に記載の制振構造。  2. The vibration damping structure according to claim 1, wherein the low-rigidity part and the damper part are interposed between the core part and the non-core part. 建造物の制振構造であって、A vibration control structure of a building,
前記建造物は、コア部と非コア部とに分けられており、The building is divided into a core part and a non-core part,
前記建造物の一部を、前記コア部及び前記非コア部を構成する柱部より細い細柱部によって構成されて水平方向への剛性が他の部分より低い低剛性部とし、A part of the building is a low-rigidity part that is configured by a narrow pillar part that is thinner than the pillar part that constitutes the core part and the non-core part, and has a lower rigidity in the horizontal direction than other parts,
前記低剛性部の少なくとも一部は、下端を前記コア部または地面に接続し、上端を前記非コア部に接続して設けられ、At least a part of the low-rigidity part is provided with a lower end connected to the core part or the ground and an upper end connected to the non-core part,
前記建造物のうち、前記低剛性部が設けられている以外の部分にダンパ部を設けたことを特徴とする制振構造。A vibration damping structure, wherein a damper portion is provided in a portion of the building other than the low rigidity portion.
JP2001168447A 2001-06-04 2001-06-04 Vibration control structure Expired - Fee Related JP4660807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168447A JP4660807B2 (en) 2001-06-04 2001-06-04 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168447A JP4660807B2 (en) 2001-06-04 2001-06-04 Vibration control structure

Publications (2)

Publication Number Publication Date
JP2002357011A JP2002357011A (en) 2002-12-13
JP4660807B2 true JP4660807B2 (en) 2011-03-30

Family

ID=19010674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168447A Expired - Fee Related JP4660807B2 (en) 2001-06-04 2001-06-04 Vibration control structure

Country Status (1)

Country Link
JP (1) JP4660807B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007916A (en) * 2007-05-31 2009-01-15 Shimizu Corp Vibration damping structure and its specification setting method
JP5338050B2 (en) * 2007-08-24 2013-11-13 株式会社大林組 Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145201A (en) * 1998-11-11 2000-05-26 Takenaka Komuten Co Ltd Seismic control structure by means of nonlinear connecting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460036B2 (en) * 1996-03-01 2003-10-27 清水建設株式会社 Seismic retrofit structure of existing building
JP3477597B2 (en) * 1996-03-04 2003-12-10 清水建設株式会社 Seismic retrofit structure of existing building
JPH10231639A (en) * 1997-02-20 1998-09-02 Tatsuji Ishimaru Vibration-damping structure
JP3208093B2 (en) * 1997-07-03 2001-09-10 辰治 石丸 Vibration control structure of building structure
JPH1162316A (en) * 1997-08-07 1999-03-05 Etsuro Suzuki Earthquake resistive damping construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145201A (en) * 1998-11-11 2000-05-26 Takenaka Komuten Co Ltd Seismic control structure by means of nonlinear connecting device

Also Published As

Publication number Publication date
JP2002357011A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP5705810B2 (en) TOWER STRUCTURE AND CONSTRUCTION METHOD FOR TOWER STRUCTURE
JP3858432B2 (en) Vibration control method for linked structures
JP4660807B2 (en) Vibration control structure
JP3861430B2 (en) Vibration control method for linked structures
JPH0593475A (en) Elastioplastic damper
JP6791890B2 (en) Boiler structure
JP5639766B2 (en) Floor structure
JPH09126272A (en) Base isolation laminated rubber
JP2004285599A (en) Vibration control structure of structure
JP2000080819A (en) Fitting structure for base isolation device
JP5378242B2 (en) Building frame structure
CN111622368A (en) Low-frequency mass tuning vibration damper
KR20110135302A (en) Air damping mount for length and breadth direction
JP5320496B1 (en) TOWER STRUCTURE AND CONSTRUCTION METHOD FOR TOWER STRUCTURE
JP2001279949A (en) Damping structure
JP5404104B2 (en) Seismic isolation device
JP2011132690A (en) Vibration control structure
JP2002356939A (en) Damping structure and plate member
JPH0874442A (en) Vibration control structure
JP4749599B2 (en) Damping structure of structures with large spaces
JP4854028B2 (en) Floor structure
JP2022019204A (en) Method for constructing building
JP2023174373A (en) Vibration control apparatus for building structure
JP3820496B2 (en) Large span structure with coupled independent frames
JP2023094478A (en) Buffer and seismic isolation building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150114

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees