JP2009007916A - Vibration damping structure and its specification setting method - Google Patents

Vibration damping structure and its specification setting method Download PDF

Info

Publication number
JP2009007916A
JP2009007916A JP2007210216A JP2007210216A JP2009007916A JP 2009007916 A JP2009007916 A JP 2009007916A JP 2007210216 A JP2007210216 A JP 2007210216A JP 2007210216 A JP2007210216 A JP 2007210216A JP 2009007916 A JP2009007916 A JP 2009007916A
Authority
JP
Japan
Prior art keywords
layer
story
building
intermediate layer
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007210216A
Other languages
Japanese (ja)
Inventor
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2007210216A priority Critical patent/JP2009007916A/en
Publication of JP2009007916A publication Critical patent/JP2009007916A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damping structure which can obtain a satisfactory response reduction effect without the need for an excessive added mass such as a conventionally standard TMD (Tuned Mass Damper) while theoretically functioning like the TMD, and to provide its specification setting method. <P>SOLUTION: An intermediate story 5 to be used as an intermediate floor (for example, a mezzanine second floor) is installed between arbitrary inter-stories (for example, between the first and the second floors) in a building, a building frame of the intermediate story is supported in horizontally displaceable manner to the building frames of the upper story and the lower story via their respective upper and lower support members (suspension members 6 and intermediate pillars 7), an additional spring 10 is interposed between the intermediate story and the upper story or the lower story, and an additional vibration system constituted of the intermediate story, the upper and lower support members and the additional spring is provided in the building. The natural vibration frequency of the additional vibration system to be determined by the mass m<SB>0</SB>in the intermediate story, the story rigidity k<SB>01</SB>between the intermediate story and the upper story, the story rigidity k<SB>02</SB>between the intermediate story the lower story and the spring constant k<SB>0</SB>of the additional spring, is synchronized with the natural vibration frequency of the building. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は建物の振動を低減させるための制振構造およびその諸元設定方法に関する。   The present invention relates to a vibration damping structure for reducing vibration of a building and a specification setting method thereof.

建物の振動を低減するための機構として、たとえば特許文献1に示されるような所謂チューンド・マス・ダンパー(Tuned Mass Damper:TMD)が知られている。これは、建物に対して付加質量を付加バネおよび付加減衰を介して設置して、付加質量と付加バネとにより定まる付加振動系の固有振動数を主振動系としての建物の固有振動数に同調させることによって共振点近傍における応答を低減させるものである。   As a mechanism for reducing the vibration of a building, for example, a so-called Tuned Mass Damper (TMD) as shown in Patent Document 1 is known. This is because an additional mass is installed on the building via an additional spring and additional damping, and the natural frequency of the additional vibration system determined by the additional mass and the additional spring is tuned to the natural frequency of the building as the main vibration system. By doing so, the response near the resonance point is reduced.

また、特許文献2には、建物の下層階における外周部と内部架構とに分離するとともに内部架構と基礎とを分離してそれらの間に減衰装置を設置することにより、建物の下層階において水平剛性を低下させて長周期化し、下層階に集中する水平変形を減衰装置により効果的に減衰させるという制振方法および制振構造についての開示がある。
特開昭63−156171号公報 特開2000−345732号公報
Further, Patent Document 2 discloses that a horizontal lower floor of a building is separated by separating the outer frame from the lower floor of the building and the internal frame, separating the internal frame and the foundation, and installing a damping device therebetween. There is a disclosure about a vibration damping method and a vibration damping structure in which the rigidity is lowered to increase the period and the horizontal deformation concentrated on the lower floor is effectively attenuated by the damping device.
JP-A 63-156171 JP 2000-345732 A

特許文献1に示されるような従来一般のTMDでは充分な振動低減効果を得るためには付加質量を充分に大きくする必要があるが、建物にあまり大きな質量を付加することは現実的ではないので、通常は建物自重の1〜2%程度とすることが限度であり、したがって制振効果にも自ずと限界がある。
また、特許文献2に示される制振方法および制振構造は制振と免震の双方の効果が得られるものではあるが、TMDのような振動数同調による制振効果を意図したものではないので共振点近傍での応答を充分に低減できるものではない。
In the conventional general TMD as shown in Patent Document 1, it is necessary to increase the added mass sufficiently in order to obtain a sufficient vibration reduction effect, but it is not realistic to add too much mass to the building. Usually, the limit is about 1 to 2% of the building's own weight, and therefore the vibration control effect is naturally limited.
Moreover, although the vibration suppression method and the vibration suppression structure shown in Patent Document 2 can achieve both vibration suppression and seismic isolation effects, they do not intend the vibration suppression effect by frequency tuning like TMD. Therefore, the response near the resonance point cannot be sufficiently reduced.

上記事情に鑑み、本発明は原理的にはTMDと同様に機能するものの、従来一般のTMDのように格別の付加質量を必要とせずに充分な応答低減効果が得られる制振構造とその諸元設定方法を提供することを目的としている。   In view of the above circumstances, the present invention functions in principle similar to TMD, but the vibration damping structure and its various features that can provide a sufficient response reduction effect without requiring a special additional mass like conventional TMD. The purpose is to provide an original setting method.

本発明の制振構造およびその諸元設定方法は、建物内の任意の層間に中段階として使用する中間層を設置し、該中間層の躯体を上層および下層の躯体に対してそれぞれ上下の支持部材を介して水平変位可能に支持するとともに、該中間層と上層または下層との間には付加バネを介装することによって、それら中間層と上下の支持部材と付加バネにより構成される付加振動系を建物内に設け、前記中間層の質量mと、該中間層と上層との間の層剛性k01と、該中間層と下層との間の層剛性k02と、前記付加バネのバネ定数kとにより定まる付加振動系の固有振動数(あるいは固有角振動数)を、建物の固有振動数(あるいは固有角振動数)に同調させるようにしたものである。 In the vibration damping structure and its specification setting method of the present invention, an intermediate layer to be used as an intermediate stage is installed between arbitrary layers in a building, and the intermediate layer frame is supported above and below the upper and lower frame respectively. Additional vibrations are supported by the intermediate layer, upper and lower support members, and additional springs by interposing an additional spring between the intermediate layer and the upper layer or lower layer while supporting the member so that it can be displaced horizontally. A system is provided in the building, and the mass m 0 of the intermediate layer, the layer rigidity k 01 between the intermediate layer and the upper layer, the layer rigidity k 02 between the intermediate layer and the lower layer, and the additional spring The natural frequency (or natural angular frequency) of the additional vibration system determined by the spring constant k 0 is synchronized with the natural frequency (or natural angular frequency) of the building.

本発明によれば、建物の主体構造を構成している本来の層間にたとえば中2階等の中段階として使用する中間層を設けて、その中間層の質量をTMD機構における錘として利用することにより、従来のTMD機構のように建物に対して大きな負荷となる錘やバネが不要であり、しかもその質量を建物の全質量のたとえば10%以上にも充分に大きくすることが可能であり、したがって優れた制振効果が得られ、風荷重や交通振動のような小振幅だけでなく大地震時の応答低減にも効果的であり、極めて合理的にして有効な制振機構を実現できる。   According to the present invention, an intermediate layer used as an intermediate stage such as a mezzanine floor is provided between the original layers constituting the main structure of the building, and the mass of the intermediate layer is used as a weight in the TMD mechanism. Thus, unlike the conventional TMD mechanism, a weight or a spring that is a heavy load on the building is unnecessary, and the mass can be sufficiently increased to, for example, 10% or more of the total mass of the building, Therefore, an excellent vibration damping effect can be obtained, and it is effective not only for small amplitudes such as wind loads and traffic vibrations but also for reducing the response during a large earthquake, and an extremely rational and effective vibration damping mechanism can be realized.

本発明の一実施形態を図1〜図3に示す。図示例の実施形態は3階建ての建物への適用例であって、図1に建物全体の軸組を架構モデルとして示し、また図2に振動モデルとして示すように、1階の床梁を構成している第1層1、2階の床梁を構成している第2層2、3階の床梁を構成している第3層3,屋上階の床梁を構成している第4層4を有する架構を主体とするものであるが、そのような主体構造の内部には第1層(1階)1と第2層(2階)2との間に大きな吹き抜け空間を確保してそこに中段階(この場合は中2階)の床梁を構成している中間層5を設け、その中間層5の躯体の質量を付加質量として利用してTMD機構として機能させることを主眼としている。   One embodiment of the present invention is shown in FIGS. The embodiment of the illustrated example is an application example to a three-story building. FIG. 1 shows a frame of the entire building as a frame model, and FIG. 2 shows a vibration model. 1st layer, 1st floor, 2nd floor, 2nd floor, 3rd floor, 3rd floor, 3rd floor, 3rd floor The main structure is a four-layered frame, but a large aerial space is secured between the first layer (first floor) 1 and the second layer (second floor) 2 inside such a main structure. Then, there is provided an intermediate layer 5 that constitutes a floor beam in the middle stage (in this case, the middle second floor), and the mass of the frame of the intermediate layer 5 is used as an additional mass to function as a TMD mechanism. The main focus.

すなわち、本実施形態では第1層1と第2層2との間に中2階として使用される中間層5を設け、その中間層5は上層である第2層2から上側の支持部材としての吊り材6により吊り支持されるとともに、下層である第1層1から下側の支持部材としての間柱7により支持されている。
本実施形態においては間柱7の柱脚は第1層1に対してピン接合されており、それにより中間層5は第1層1と第2層2との間で水平方向に相対振動可能とされ、かつその中間層5の相対振動は制振装置8により制御されるようになっている。
図示例の制振装置8は中間層5と第2層2との間に間柱の形態で設置されているが、これは図2に示すように中間層5の水平振動を減衰させるためのダンパー9と、それに並列に設置された付加バネ10とから構成されている。なお、この制振装置8は中間層5の上下のいずれかに設置すれば良く、図示例のように中間層5と第2層2との間に設置することに代えて中間層5と第1層1との間に設置しても良い。
That is, in this embodiment, an intermediate layer 5 used as a mezzanine floor is provided between the first layer 1 and the second layer 2, and the intermediate layer 5 serves as an upper support member from the second layer 2 that is the upper layer. The suspension material 6 is suspended and supported by the intermediate pillar 7 as a lower support member from the first layer 1 which is the lower layer.
In this embodiment, the column base of the inter-column 7 is pin-bonded to the first layer 1, so that the intermediate layer 5 can be relatively vibrated in the horizontal direction between the first layer 1 and the second layer 2. The relative vibration of the intermediate layer 5 is controlled by the vibration damping device 8.
The damping device 8 in the illustrated example is installed in the form of a stud between the intermediate layer 5 and the second layer 2, which is a damper for attenuating horizontal vibration of the intermediate layer 5 as shown in FIG. 9 and an additional spring 10 installed in parallel thereto. The vibration damping device 8 may be installed either above or below the intermediate layer 5, instead of being installed between the intermediate layer 5 and the second layer 2 as shown in the illustrated example. You may install between the 1st layer.

上記構造による本実施形態の制振構造は、振動モデルとしては建物全体の主体構造による主振動系に対して、中間層5と、上下の支持部材である吊り材6と間柱7と、制振装置8とにより構成される付加振動系を組み込んだものであり、その付加振動系の固有振動数は、図2に示す各諸元、すなわち中間層5の質量mと、中間層5とその上層である第2層2との間の層剛性k01と、中間層5とその下層である第1層1との間の層剛性k02と、制振装置8を構成している上記の付加バネ10のバネ定数kとによって定まるものである。
具体的には、付加振動系の固有振動数を固有角振動数として表した場合、その固有角振動数ωは、上記各諸元から次式の関係で定まるものである。
The vibration damping structure of the present embodiment having the above structure is a vibration model in which the intermediate layer 5, the upper and lower supporting members 6, the intermediate pillars 7, and the vibration damping are compared with the main vibration system of the main structure of the entire building. The additional vibration system constituted by the apparatus 8 is incorporated, and the natural frequency of the additional vibration system is as shown in FIG. 2, that is, the mass m 0 of the intermediate layer 5, the intermediate layer 5 and its The layer stiffness k 01 between the second layer 2 that is the upper layer, the layer stiffness k 02 between the intermediate layer 5 and the first layer 1 that is the lower layer, and the above-mentioned vibration damping device 8 It is determined by the spring constant k 0 of the additional spring 10.
Specifically, when the natural frequency of the additional vibration system is expressed as a natural angular frequency, the natural angular frequency ω d is determined by the relationship of the following equation from the above specifications.

Figure 2009007916
Figure 2009007916

そして本実施形態では、上式で定まる付加振動系の固有角振動数ωを建物の固有角振動数、特に1次固有角振動数ωに同調させることにより、中間層5による付加振動系の全体をTMD機構として機能させる、換言すれば、中間層5の質量mをTMD機構における付加質量として利用するものであり、それにより通常のTMD機構のように格別の付加質量を必要とすることなく、また所望の制振効果を得るために必要となる充分な付加質量を支障なく確保でき、それにより建物全体の1次モードの共振点近傍における振動を有効に減衰させることができるものである。 In this embodiment, the natural vibration frequency ω d of the additional vibration system determined by the above equation is tuned to the natural angular frequency of the building, particularly the primary natural angular frequency ω 1 , so that the additional vibration system by the intermediate layer 5 is used. In other words, the mass m 0 of the intermediate layer 5 is used as an additional mass in the TMD mechanism, which requires a special additional mass as in a normal TMD mechanism. In addition, a sufficient additional mass necessary for obtaining a desired vibration damping effect can be secured without any trouble, thereby effectively attenuating vibration in the vicinity of the resonance point of the primary mode of the entire building. is there.

なお、中間層5は必ずしも1階と2階との間に中2階として設けることはなく、任意の層間に設ければ良いが、特に地震時に層間変位が大きくなる位置に設置することが好ましい。
また、共振点の設定は建物の1次固有(角)振動数に限られず、制振対象とする特定の固有(角)振動数に同調させればその共振点近傍での応答を低減させることができる。
また、中間層5の面積は本来の各階を構成している他の層の面積よりも小さくても良いし、中間層5の平面重心位置は建物の中心となるのが好ましいが、偏芯していても構わない。これは、一般に中間層制振による応答低減効果の方がその偏芯によるねじり応答の影響(割増効果)より大きいためである。
また、上記のように中間層5を上下の支持部材としての吊り材6および間柱7により上下からそれぞれ支持していることから、中間層5の固有振動数が小さい(長周期となる)場合でも安定して支持できて過大な変位振幅を生じ難いものとなっている。なお、そのように中間層5を上下から支持することは中間層5の上下にそれぞれバネが取り付くことになり、その点で上下の一方だけにバネが取り付く従来一般のTMD機構とは振動特性がやや異なるものとなるが、ほぼ同様の効果を発揮することには変わりがない。
The intermediate layer 5 is not necessarily provided between the first floor and the second floor as an intermediate second floor, and may be provided between arbitrary layers, but is preferably installed at a position where the interlayer displacement increases particularly during an earthquake. .
The setting of the resonance point is not limited to the primary natural (angular) frequency of the building, but if it is tuned to a specific natural (angular) frequency to be controlled, the response near the resonance point is reduced. Can do.
Further, the area of the intermediate layer 5 may be smaller than the areas of the other layers that originally constitute each floor, and the center of gravity of the plane of the intermediate layer 5 is preferably the center of the building, but is eccentric. It does not matter. This is because the response reduction effect due to the mid-layer vibration control is generally greater than the influence of the torsional response due to the eccentricity (a premium effect).
Further, as described above, since the intermediate layer 5 is supported from above and below by the suspension members 6 and the pillars 7 as the upper and lower support members, even when the natural frequency of the intermediate layer 5 is small (becomes a long cycle). It can be stably supported and does not easily generate an excessive displacement amplitude. Note that supporting the intermediate layer 5 from above and below means that the springs are attached to the upper and lower sides of the intermediate layer 5 respectively, and in that respect, the vibration characteristics are different from those of the conventional general TMD mechanism in which the springs are attached to only one of the upper and lower sides. It will be a little different, but it will remain the same.

以下、本実施形態の制振構造の具体例をさらに説明する。
図2に示す振動モデルにおいて、質点j(j=1〜3)の加振方向変位をxとし、質点jの静止座標系(絶対変位)の釣り合い式で表示すると次式となる。
Hereinafter, a specific example of the vibration damping structure of the present embodiment will be further described.
In the vibration model shown in FIG. 2, when the vibration direction displacement of the mass point j (j = 1 to 3) is x j and the balance equation of the stationary coordinate system (absolute displacement) of the mass point j is displayed, the following equation is obtained.

Figure 2009007916
Figure 2009007916

図2に示しているように主体構造の各層の質量m、m、m、剛性k、k、k、減衰c、c、cが均等であるとし、m=m=m、k=k=k、c=c=cとする。
変位xが角振動数ωの正弦波振動x=xiωtであるとし、ω =k/m
=c/(2mω)、ξ=ω/ωとする。
中間層の構造減衰は無視し、c01=c02=0とする。
質量については、( ̄m)=m/mとし、バネについては( ̄k01)=k01/k、( ̄k02)=k02/kとする。付加バネについては( ̄k)=k/k、付加減衰hはh=c/(2mω)とする。
なお、( ̄m)は、mの上部に ̄(バー)がつくことを表すものである(他の記号についても同様)。
As shown in FIG. 2, it is assumed that the masses m 1 , m 2 , m 3 , rigidity k 1 , k 2 , k 3 , damping c 1 , c 2 , c 3 of each layer of the main structure are equal, and m 1 = M 2 = m 3 , k 1 = k 2 = k 3 , and c 1 = c 2 = c 3 .
Assuming that the displacement x is a sinusoidal vibration x j = x j e iωt with an angular frequency ω, ω 0 2 = k 1 / m 1 ,
It is assumed that h 1 = c 1 / (2m 1 ω 0 ) and ξ = ω / ω 0 .
The structural attenuation of the intermediate layer is ignored and c 01 = c 02 = 0.
For the mass, ( ̄m 0 ) = m 0 / m 1 and for the spring, ( ̄k 01 ) = k 01 / k 1 , ( ̄k 02 ) = k 02 / k 1 . For the additional spring, ( ̄k 0 ) = k 0 / k 1 , and the additional damping h 0 is h 0 = c 0 / (2m 1 ω 0 ).
Note that ( ̄m 0 ) represents that a  ̄ (bar) is added to the top of m 0 (the same applies to other symbols).

それらの値を用いて振動方程式をマトリクス形式でまとめると次式となる。   Using these values, the vibration equation is summarized in matrix form as follows:

Figure 2009007916
Figure 2009007916

この式から求まるx/x(複素数の絶対値、j=1〜3)が、加振入力に対する各質点の変位応答倍率を示す。なお、加振入力に対する応答倍率は変位、速度、加速度とも同じになる。 X j / x g (absolute value of complex number, j = 1 to 3) obtained from this equation indicates the displacement response magnification of each mass point with respect to the excitation input. Note that the response magnification for the vibration input is the same for the displacement, velocity, and acceleration.

各諸元を具体的に次のように設定した場合における解析結果を以下に示す。
中間層5の質量を他の層の質量m〜mの0.2倍とする。すなわち、m=0.2mとする(m=m=m)。
中間層5と第2層2との間の層剛性k01は他の層剛性k〜kの0.015倍であり、中間層5と第1層1との間の層剛性k02は他の層剛性k〜kの0.0075倍とする。すなわち、k01=0.015k、k02=0.0075kとする(k=k=k)。
ダンパー9の減衰係数cによる付加減衰は、h=c/(2mω)=0.1
とする。主体構造の構造減衰はh=0.02とする。
ダンパー9と並列にする付加バネ10はk=0.001kとし、これにより付加振動系の固有角振動数ωを建物全体の1次固有角振動数ω(≒0.35ω)に同調させる。
The analysis results when each specification is specifically set as follows are shown below.
The mass of the intermediate layer 5 is 0.2 times the masses m 1 to m 3 of the other layers. That is, the m 0 = 0.2m 1 (m 1 = m 2 = m 3).
The layer stiffness k 01 between the intermediate layer 5 and the second layer 2 is 0.015 times the other layer stiffnesses k 1 to k 3 , and the layer stiffness k 02 between the intermediate layer 5 and the first layer 1 is. Is 0.0075 times the other layer rigidity k 1 to k 3 . That, k 01 = 0.015k 1, k 02 = 0.0075k 1 to (k 1 = k 2 = k 3).
The additional attenuation due to the damping coefficient c 0 of the damper 9 is h 0 = c 0 / (2m 1 ω 0 ) = 0.1
And The structural attenuation of the main structure is assumed to be h 1 = 0.02.
The additional spring 10 in parallel with the damper 9 is set to k 0 = 0.001k 1 , so that the natural angular frequency ω d of the additional vibration system is changed to the primary natural angular frequency ω 1 (≈0.35ω 0 ) of the entire building. Tune in.

各諸元を上記のように設定した場合における応答低減効果を伝達関数で示し、その結果を図3に示す。
図3に示される結果から、中間層(中2階)の質量効果を利用した応答低減機構(TMD機構)が地震に対しても有効であることがわかる。
すなわち、一般階の20%(0.2倍)程度の質量を利用するだけで、最大値が1/4以下(最大応答が78%低減)と大きな応答低減効果が得られる。したがってたとえば吹き抜けの一部を中2階として利用するような建築計画にも充分に適用可能である。また、中2階の床も過大な振幅にならず、制振しないときの2階床と同等以下の揺れに納まる。
また、上記は建物の1次固有振動数に同調させた場合の解析例であるので、当然に1次モードの振動が大きく低減している。すなわち、図中でξ=ω/ω=0.35が建物の1次モードの共振点であり、この近傍だけ応答低減している。しかも、中2階で制振することで2階近傍だけでなく頂部まで建物全体の振動を効果的に抑制できることがわかる。
The response reduction effect when each item is set as described above is shown by a transfer function, and the result is shown in FIG.
From the results shown in FIG. 3, it can be seen that the response reduction mechanism (TMD mechanism) using the mass effect of the intermediate layer (second mezzanine) is also effective against earthquakes.
In other words, by using only about 20% (0.2 times) the mass of the general floor, the maximum value is 1/4 or less (the maximum response is reduced by 78%), and a large response reduction effect can be obtained. Therefore, for example, the present invention is sufficiently applicable to an architectural plan in which a part of the atrium is used as a mezzanine floor. In addition, the floor of the middle second floor does not have an excessive amplitude, and falls within the same or lower level as the second floor when vibration is not suppressed.
In addition, since the above is an example of analysis when synchronized with the primary natural frequency of the building, naturally the vibration of the primary mode is greatly reduced. That is, in the figure, ξ = ω / ω 0 = 0.35 is the resonance point of the primary mode of the building, and the response is reduced only in the vicinity thereof. Moreover, it can be seen that the vibration of the entire building can be effectively suppressed not only in the vicinity of the second floor but also to the top by damping the vibration on the second floor.

本発明の制振構造によれば、以下に列挙するような効果が得られる。
(1)中2階のような中段階として使用する中間層の質量を錘として利用するので、従来のTMD機構のように建物の負荷となる錘やバネ(積層ゴム、コイルバネ等)が不要となる。中間層という建築計画上で必要な部分の質量を錘として利用するため、TMD機構として新たに格別の錘を設ける必要のある従来型のTMD機構よりはるかにローコストに実現できる。
(2)従来のTMD機構では錘質量を建物の1〜2%程度しか与えることが現実的にできなかったが、本発明によれば建物の一部を錘として利用するのでたとえば10%以上でも比較的容易に実現できる。そのため、風荷重や交通振動のような小振幅だけでなく大地震時の応答低減にも効果的となる。また、固定端(地表面)から加速度加振される地震のみならず、建物へ加振力として作用する風荷重にも効果的な応答低減機構である。また、従来のTMDより錘質量が大きいため応答低減できる振動数範囲は広く、中間層の重量が1割程度変動しても、あるいは積載荷重が5割程度変動しても、問題なく機能することができ、安定した応答低減効果を発揮できる。
According to the vibration damping structure of the present invention, the effects listed below can be obtained.
(1) Since the mass of the intermediate layer used as an intermediate stage such as the mezzanine floor is used as a weight, weights and springs (laminated rubber, coil springs, etc.) that are loads on the building are not required unlike conventional TMD mechanisms. Become. Since the mass of the intermediate layer necessary for the architectural plan is used as a weight, it can be realized at a much lower cost than a conventional TMD mechanism that requires a special weight as a TMD mechanism.
(2) Although the conventional TMD mechanism could practically give only about 1 to 2% of the weight of the building, according to the present invention, a part of the building is used as a weight. It can be realized relatively easily. Therefore, it is effective not only for small amplitudes such as wind loads and traffic vibrations but also for reducing response during a large earthquake. In addition, it is a response reduction mechanism that is effective not only for earthquakes that are accelerated from the fixed end (the ground surface), but also for wind loads that act on the building as an excitation force. In addition, since the mass of the weight is larger than that of the conventional TMD, the frequency range in which the response can be reduced is wide, and even if the weight of the intermediate layer fluctuates by about 10% or the loaded load fluctuates by about 50%, it functions without problems. And can exhibit a stable response reduction effect.

(3)中間層の質量を錘として利用することから従来のTMD機構と比較して大きな錘質量を付与できるため、中間層を主体構造と一体化した場合(つまり中間層を制振に利用しない場合)と比較して主体構造と中間層のいずれも応答を低減することができる。これは、2棟間にダンパーを介して連結することで双方の応答を低減できる2棟間制振と同等の効果である。したがって、この制振機構を採用することによって中間層の居住性が低下するということはない(制振しないときと同等以上の居住性を確保できる)。
(4)中間層は中2階のように主体構造の階高の大きい位置に設けられるのが一般的であるが、階高の大きい階は自ずと層剛性が小さくなりかつ層間変位が大きくなるため、自ずと制振効果を発揮し易くなり合理的である。
(5)建物の特定箇所だけに中間層を設置しても微小振幅から大振幅まで広範囲の外乱に対して大きな応答低減効果が得られるので、各階に層間ダンパー(ブレースダンパーや制振壁など)を設置する通常の制振構造の場合よりも建築計画上で組み込み易い。特定箇所とは必ずしも中2階(1階と2階との間)に限らないが、層間変形の大きい箇所の方が効果的である。また、高さ方向に2カ所以上に設置すれば応答をより低減することができる。
(3) Since the mass of the intermediate layer is used as a weight, a larger mass can be given compared to the conventional TMD mechanism, so when the intermediate layer is integrated with the main structure (that is, the intermediate layer is not used for damping) Compared with the case), both the main structure and the intermediate layer can reduce the response. This is the same effect as vibration control between two buildings that can reduce both responses by connecting the two buildings via a damper. Therefore, by adopting this vibration damping mechanism, the habitability of the middle class is not reduced (having the same or better habitability as when no vibration is suppressed).
(4) The middle layer is generally provided at a position where the floor height of the main structure is large, such as the middle two floors. However, a floor with a large floor height naturally reduces layer rigidity and increases interlayer displacement. Naturally, it is easy to demonstrate the damping effect and it is reasonable.
(5) Even if an intermediate layer is installed only in a specific part of a building, a large response reduction effect can be obtained against a wide range of disturbances from minute amplitude to large amplitude, so interlayer dampers (brace dampers, damping walls, etc.) on each floor It is easier to incorporate in the building plan than in the case of a normal vibration control structure. The specific location is not necessarily limited to the middle second floor (between the first floor and the second floor), but a location where the interlayer deformation is large is more effective. Moreover, if it installs in two or more places in a height direction, a response can be reduced more.

(6)中間層は特定箇所だけに設置すれば良く、その中間層の上下のいずれかに制振装置を設置すれば良いので、設置コストは充分に安くて済む。
(7)従来のTMD機構と同様に慣性質量効果を利用した応答低減機構であるので、微小振幅から効果を発揮できるし、一般的な鋼材ダンパーのような制振ダンパーを用いる通常の制振構造のように鋼材が降伏してから後だけ効果を発揮するものとは異なる。
(8)本発明は建物の共振による応答増大を防止する機構であり、共振点近傍での応答変位、反力を大きく低減することができ、地下基礎部への負担低減や浮き上がり防止にも効果的である。また、一般部の応答変位を低減することで居住性も向上する。
(9)本発明のTMD機構を設置した後の振動数同調作業は、従来のTMD機構の場合と同様に付加バネの値を調整することで容易に対応できる。
(6) The intermediate layer may be installed only at a specific location, and the vibration control device may be installed either above or below the intermediate layer, so that the installation cost can be sufficiently low.
(7) Since the response reducing mechanism uses the inertial mass effect as in the conventional TMD mechanism, the effect can be exerted from a minute amplitude, and a normal damping structure using a damping damper such as a general steel damper It is different from the one that exhibits the effect only after the steel material yields.
(8) The present invention is a mechanism for preventing an increase in response due to the resonance of the building, and can greatly reduce the response displacement and reaction force in the vicinity of the resonance point, and is also effective in reducing the burden on the underground foundation and preventing lifting. Is. In addition, the habitability is improved by reducing the response displacement of the general part.
(9) The frequency tuning operation after installing the TMD mechanism of the present invention can be easily handled by adjusting the value of the additional spring as in the case of the conventional TMD mechanism.

(10)本発明の制振構造は、通常の粘性系や履歴系の制振ダンパーと併用することも可能であり、それにより応答低減効果を更に高めることも可能である。
(11)本発明は建築計画と密接に絡む制振架構といえる。建物の一部をさりげなく錘として利用した質量効果型の制振機構であり、積層ゴムや滑り支障を用いた可動機構を持たず、外見上や架構からは通常の耐震架構との差異はない。また、従来のTMD機構では一般に建物頂部に配置していたが、本発明では中2階のように低層部に配置しても効果的である。さらに、従来のTMD機構では錘部分の振幅が非常に大きくなって居住には適さないものであったが、本発明では中間層の振幅を制振しない場合と同等以下に抑えられる。このような特性を生かした建築計画を立案することで、ローコストで耐震性に優れた魅力的な建物を設計することが可能になる。
(10) The vibration damping structure of the present invention can be used in combination with a normal viscous damping system or a hysteretic damping damper, thereby further enhancing the response reduction effect.
(11) The present invention can be said to be a vibration control frame closely related to the construction plan. It is a mass-effect type vibration control mechanism that uses a part of the building casually as a weight, does not have a movable mechanism using laminated rubber or sliding obstacles, and is not different from a normal earthquake-resistant frame in terms of appearance and frame . Further, in the conventional TMD mechanism, it is generally arranged at the top of the building. However, in the present invention, it is effective to arrange it at the lower part such as the mezzanine floor. Further, in the conventional TMD mechanism, the amplitude of the weight portion is very large and is not suitable for living. However, in the present invention, the amplitude of the intermediate layer can be suppressed to the same level or lower than that in the case where the vibration is not suppressed. By making an architectural plan that makes use of these characteristics, it is possible to design an attractive building that is low-cost and excellent in earthquake resistance.

以上で本発明の一実施形態を説明したが、本発明は上記実施形態に限定されるものでは勿論なく、建物の規模や形態、構造、用途、中間層の位置、中間層を上下各層に対して相対振動可能に支持するための支持部材の構造やそれらによる支持の形態、中間層の振動を制御するための制振装置の構成や設置形態、その他、細部の具体的な構成については、本発明の要旨を逸脱しない範囲で任意の設計的変更が可能であることはいうまでもない。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and of course, the scale and form of the building, the structure, the application, the position of the intermediate layer, and the intermediate layer with respect to the upper and lower layers. The structure of the support member for supporting relative vibrations, the form of support by them, the structure and installation form of the damping device for controlling the vibration of the intermediate layer, and other specific details of the details It goes without saying that arbitrary design changes can be made without departing from the scope of the invention.

本発明の実施形態である制振構造を示すもので、建物全体の軸組を架構モデルとして示した図である。FIG. 2 is a diagram illustrating a vibration damping structure according to an embodiment of the present invention, in which a frame of the entire building is illustrated as a frame model. 同、振動モデルとして示した図である。It is the figure shown as a vibration model. 同、効果を説明するための解析結果を示す図である。It is a figure which shows the analysis result for demonstrating an effect similarly.

符号の説明Explanation of symbols

1 第1層(1階)
2 第2層(2階)
5 中間層(中段階)
6 吊り材(支持部材)
7 間柱(支持部材)
8 制振装置
9 ダンパー
10 付加バネ
1 First layer (1st floor)
2 Second layer (2nd floor)
5 Middle layer (middle stage)
6 Suspension material (support member)
7 studs (support members)
8 Damping device 9 Damper 10 Additional spring

Claims (2)

建物内の任意の層間に中段階として使用する中間層を設置し、該中間層の躯体を上層および下層の躯体からそれぞれ支持部材を介して水平変位可能に支持するとともに、該中間層と上層または下層との間には付加バネを介装することによって、それら中間層と上下の支持部材と付加バネにより構成される付加振動系を建物内に設けてなる制振構造であって、
前記中間層の質量mと、該中間層と上層との間の層剛性k01と、該中間層と下層との間の層剛性k02と、前記付加バネのバネ定数kとにより定まる付加振動系の固有振動数を、建物の固有振動数に同調させてなることを特徴とする制振構造。
An intermediate layer to be used as a middle stage is installed between arbitrary layers in the building, and the intermediate layer housing is supported from the upper layer and lower layer housings through a support member so as to be horizontally displaceable, and the intermediate layer and the upper layer or By providing an additional spring between the lower layer, an additional vibration system constituted by the intermediate layer, upper and lower support members and an additional spring is provided in the building,
It is determined by the mass m 0 of the intermediate layer, the layer rigidity k 01 between the intermediate layer and the upper layer, the layer rigidity k 02 between the intermediate layer and the lower layer, and the spring constant k 0 of the additional spring. A damping structure characterized in that the natural frequency of the additional vibration system is synchronized with the natural frequency of the building.
建物内の任意の層間に中段階の床として使用する中間層を設置し、該中間層の躯体を上層および下層の躯体に対してそれぞれ上下の支持部材を介して水平変位可能に支持するとともに、該中間層と上層または下層との間には付加バネを介装することによって、それら中間層と上下の支持部材と付加バネにより構成される付加振動系を建物内に設けてなる制振構造における諸元設定方法であって、
前記中間層の質量mと、該中間層と上層との間の層剛性k01と、該中間層と下層との間の層剛性k02と、前記付加バネのバネ定数kとにより定まる付加振動系の固有振動数を、建物の固有振動数に同調させることを特徴とする制振構造における諸元設定方法。
An intermediate layer used as an intermediate floor is installed between arbitrary layers in the building, and supports the intermediate layer frame so that it can be horizontally displaced through the upper and lower support members with respect to the upper layer and the lower layer frame, respectively. In the vibration control structure in which an additional vibration system including the intermediate layer, the upper and lower support members, and the additional spring is provided in the building by interposing an additional spring between the intermediate layer and the upper layer or the lower layer. A specification setting method,
It is determined by the mass m 0 of the intermediate layer, the layer rigidity k 01 between the intermediate layer and the upper layer, the layer rigidity k 02 between the intermediate layer and the lower layer, and the spring constant k 0 of the additional spring. A specification setting method for a damping structure, wherein the natural frequency of an additional vibration system is synchronized with the natural frequency of a building.
JP2007210216A 2007-05-31 2007-08-10 Vibration damping structure and its specification setting method Pending JP2009007916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210216A JP2009007916A (en) 2007-05-31 2007-08-10 Vibration damping structure and its specification setting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007145015 2007-05-31
JP2007210216A JP2009007916A (en) 2007-05-31 2007-08-10 Vibration damping structure and its specification setting method

Publications (1)

Publication Number Publication Date
JP2009007916A true JP2009007916A (en) 2009-01-15

Family

ID=40323264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210216A Pending JP2009007916A (en) 2007-05-31 2007-08-10 Vibration damping structure and its specification setting method

Country Status (1)

Country Link
JP (1) JP2009007916A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832359A (en) * 2010-05-21 2010-09-15 北京工业大学 Optimization method of tuned mass damper of elastic support dry friction
CN104131629A (en) * 2014-04-09 2014-11-05 上海大学 Wind-induced vibration control and optimum design method for structure hybrid active tuned mass damper
CN104264857A (en) * 2014-09-30 2015-01-07 华北水利水电大学 Tuned mass damper for controlling vertical high-frequency vibration of floor slabs and manufacturing method thereof
JP2015075199A (en) * 2013-10-10 2015-04-20 ヤクモ株式会社 Vibration control effect improvement device for synchronization type vibration absorption unit
CN105155714A (en) * 2015-09-02 2015-12-16 上海大学 Optimization designing method of parallel-tuned mass damper
CN106593057A (en) * 2016-12-15 2017-04-26 中国机械工业集团有限公司 Building and equipment vibration control method based on layered energy consumption
WO2021000291A1 (en) * 2019-07-03 2021-01-07 广州建筑股份有限公司 Horizontal vibration control method for high-altitude lifting construction
CN118207977A (en) * 2024-03-21 2024-06-18 云南农业大学 Main-auxiliary shock absorption structure system for elastic floor slab connection and design method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146650A (en) * 1992-11-17 1994-05-27 Shimizu Corp Multistory building vibration control structure
JPH07113357A (en) * 1991-05-30 1995-05-02 Tatsuji Ishimaru Vibration control structure
JPH0842186A (en) * 1994-07-27 1996-02-13 Shimizu Corp Vibration control structure for multistoried building
JP2002357011A (en) * 2001-06-04 2002-12-13 Shimizu Corp Vibration-control structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113357A (en) * 1991-05-30 1995-05-02 Tatsuji Ishimaru Vibration control structure
JPH06146650A (en) * 1992-11-17 1994-05-27 Shimizu Corp Multistory building vibration control structure
JPH0842186A (en) * 1994-07-27 1996-02-13 Shimizu Corp Vibration control structure for multistoried building
JP2002357011A (en) * 2001-06-04 2002-12-13 Shimizu Corp Vibration-control structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832359A (en) * 2010-05-21 2010-09-15 北京工业大学 Optimization method of tuned mass damper of elastic support dry friction
JP2015075199A (en) * 2013-10-10 2015-04-20 ヤクモ株式会社 Vibration control effect improvement device for synchronization type vibration absorption unit
CN104131629A (en) * 2014-04-09 2014-11-05 上海大学 Wind-induced vibration control and optimum design method for structure hybrid active tuned mass damper
CN104264857A (en) * 2014-09-30 2015-01-07 华北水利水电大学 Tuned mass damper for controlling vertical high-frequency vibration of floor slabs and manufacturing method thereof
CN104264857B (en) * 2014-09-30 2016-04-13 华北水利水电大学 Control tuned mass damper of the vertical dither of floor and preparation method thereof
CN105155714A (en) * 2015-09-02 2015-12-16 上海大学 Optimization designing method of parallel-tuned mass damper
CN106593057A (en) * 2016-12-15 2017-04-26 中国机械工业集团有限公司 Building and equipment vibration control method based on layered energy consumption
CN106593057B (en) * 2016-12-15 2019-03-05 中国机械工业集团有限公司 A kind of building and equipment vibration control method based on level energy consumption
WO2021000291A1 (en) * 2019-07-03 2021-01-07 广州建筑股份有限公司 Horizontal vibration control method for high-altitude lifting construction
CN118207977A (en) * 2024-03-21 2024-06-18 云南农业大学 Main-auxiliary shock absorption structure system for elastic floor slab connection and design method

Similar Documents

Publication Publication Date Title
JP4968682B2 (en) Vibration reduction mechanism and specification method thereof
JP2009007916A (en) Vibration damping structure and its specification setting method
JP3162421B2 (en) Damping structure
JP2020101081A (en) Vibration control device and architectural structure having this
TWI623674B (en) Support structure
JP5725331B2 (en) Beam vibration reduction mechanism
JP5234432B2 (en) Vibration control structure
WO2015098084A1 (en) Boiler support structure
JP2007002455A (en) Vibration control device
JP6622568B2 (en) Building vibration control structure
JP2010189902A (en) Vibration control structure and method for setting specification thereof
JP5458374B2 (en) Vibration control system
JP2009155801A (en) Vibration control structure
JP3747282B2 (en) Hybrid seismic isolation device
JP6289929B2 (en) Structure damping device and specification setting method thereof
JP2011052494A (en) Vibration control mechanism
JP2005090101A (en) Seismic response control structure
JP2019065635A (en) Vibration controlled building
JP3955601B2 (en) Building and construction method of building
JP6298402B2 (en) Partial seismic isolation structure
JP2003313952A (en) Building
JP5483097B2 (en) Vibration control structure
JP2010242450A (en) Vibration control method, vibration control structure, and aseismatic reinforcing method
JP6505272B2 (en) Intermediate seismic isolation structure
JP6143065B2 (en) Damping structure of large span frame building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403