JP5725331B2 - Beam vibration reduction mechanism - Google Patents

Beam vibration reduction mechanism Download PDF

Info

Publication number
JP5725331B2
JP5725331B2 JP2011027109A JP2011027109A JP5725331B2 JP 5725331 B2 JP5725331 B2 JP 5725331B2 JP 2011027109 A JP2011027109 A JP 2011027109A JP 2011027109 A JP2011027109 A JP 2011027109A JP 5725331 B2 JP5725331 B2 JP 5725331B2
Authority
JP
Japan
Prior art keywords
vibration
cantilever
slab
additional
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011027109A
Other languages
Japanese (ja)
Other versions
JP2012167438A (en
Inventor
徹也 半澤
徹也 半澤
磯田 和彦
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2011027109A priority Critical patent/JP5725331B2/en
Publication of JP2012167438A publication Critical patent/JP2012167438A/en
Application granted granted Critical
Publication of JP5725331B2 publication Critical patent/JP5725331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は建物における梁の振動を低減させるための機構に関する。   The present invention relates to a mechanism for reducing vibration of a beam in a building.

建物の床(スラブ)はそれを支持する梁の剛性の不足や外乱振動との共振などによって居住者が不快感を覚える振動障害が生じる場合がある。
それに対処する従来技術として、たとえば特許文献1に示されるようなTMD(Tuned Mass Damper)がある。これは床上に付加質量として設置したTMDを床の振動周期に対して同調するように振動させることによって床の振動低減を図るものであるが、この種のTMDは一般に500kg〜1tonもの質量を要するから制振対象の床やそれを支持する梁に大きな負担がかかるという問題がある。
The floor (slab) of a building may cause vibration disturbance that causes residents to feel uncomfortable due to lack of rigidity of the beam supporting the slab or resonance with disturbance vibration.
As a conventional technique for dealing with this, there is a TMD (Tuned Mass Damper) as disclosed in Patent Document 1, for example. This is intended to reduce the vibration of the floor by vibrating the TMD installed as an additional mass on the floor so as to synchronize with the vibration period of the floor. This type of TMD generally requires a mass of 500 kg to 1 ton. Therefore, there is a problem that a heavy burden is placed on the floor to be damped and the beam supporting it.

そのため、たとえば特許文献2や特許文献3に示されるように、付加質量として回転慣性質量を利用することによって小質量であっても従来のTMDと同等以上の制振効果が得られる振動低減機構が提案されている。
これによれば、小形軽量の回転錘の実際の質量を慣性質量効果によって数百倍にも拡大して付加質量として利用し得るので、回転錘の実際の質量は十分に小さくて済み、したがって通常のTMDを設置する場合のように梁や床に対して大きな負担になることがない。
Therefore, as shown in Patent Document 2 and Patent Document 3, for example, there is a vibration reduction mechanism that can obtain a vibration damping effect equivalent to or higher than that of conventional TMD even if the mass is small by using a rotational inertial mass as an additional mass. Proposed.
According to this, since the actual mass of the small and lightweight rotating weight can be used as an additional mass by expanding it by several hundred times by the inertial mass effect, the actual mass of the rotating weight can be sufficiently small, and therefore normally As in the case of installing TMD, there is no heavy burden on the beam and floor.

特開平10−252253号公報JP-A-10-252253 特開2008−115552号公報JP 2008-115552 A 特開2010−38318号公報JP 2010-38318 A

ところで、現代の多様な建築空間においては建物の外周側あるいは吹き抜け空間側に大きく跳ね出す形態で跳ね出しスラブが設けられることも多く、その場合には跳ね出しスラブを支持するための片持ち梁が設けられる。
図10はその一例を示すもので、柱2、大梁3、小梁4、主スラブ5により構成される主架構1の側方(図示例では左方)に跳ね出しスラブ6を設けるために、基端部を柱2および大梁3により支持して片持ち梁7を設け、それら片持ち梁7の全体で跳ね出しスラブ6を支持するようにしたものである。
なお、以下の説明では、上記の片持ち梁7のうち柱2に支持されて1スパンの両側に設けられている2本の片持ち梁7を片持ち大梁7aとし、大梁3に支持されて片持ち大梁7aの間に設置されている3本の片持ち梁7を片持ち小梁7bとして、必要に応じてそれらを区別する。
By the way, in various modern architectural spaces, the slab is often provided in a form that largely jumps to the outer peripheral side or the atrium space side of the building, and in that case, a cantilever beam for supporting the slab is provided. Provided.
FIG. 10 shows an example of this. In order to provide a slab 6 that protrudes to the side (left side in the illustrated example) of the main frame 1 composed of the pillar 2, the large beam 3, the small beam 4, and the main slab 5, The base end portion is supported by the pillar 2 and the large beam 3 to provide the cantilever 7, and the cantilever 7 is entirely supported to support the slab 6.
In the following description, two cantilevers 7 supported on the pillar 2 and provided on both sides of one span of the above cantilevers 7 are referred to as cantilever large beams 7a, and are supported by the large beams 3. The three cantilevers 7 installed between the cantilever beams 7a are designated as cantilever beams 7b, and are distinguished as necessary.

そのような片持ち梁7は基端のみが支持されて先端が自由端とされていることから、通常の両端支持梁に比べて居住者の歩行による振動が生じ易く、したがってそれらの片持ち梁7により支持される跳ね出しスラブ6は振動障害が問題となることも多い。   Since such a cantilever beam 7 is supported only at the base end and has a free end at the distal end, vibration is more likely to occur due to walking by the occupant than a normal both-end support beam. The pop-up slab 6 supported by 7 often has vibration problems.

そのことについて図11を参照して説明する。
図11に示すように、跳ね出しスラブ6上を居住者が歩行した場合には、片持ち梁7の自由端となっている先端側(図中にA点として示す)が下方に大きく撓むように変形し易く、したがって跳ね出しスラブ6は上下方向の振動を生じ易いものである。
しかも、図示例のように片持ち小梁7bの基端は大梁3を介して主架構1の小梁4に対して構造的に接合されていることが通常であるし、その小梁4は通常の両端支持梁(両側の大梁3に対する支持点をB点およびD点として示す)としてピン接合するのではなく、片持ち小梁7bとの接合点(B点)には曲げ力を有効に伝達するために双方のフランジどうしを補剛材8により連結したり、大梁に溶接で一体化したりして剛接合することが通常であるから、片持ち小梁7bが上下振動を生じた際にはその振動がそのまま小梁4にも伝達されてしまって、図11に示しているようにそれらの全体が小梁4の両端支持点(B点およびD点)を支点(振動の節)として同期して振動してしまい、特に小梁4の中間部(C点)が振動の腹となってそこに大きな振動が励起されてしまうことがある。
This will be described with reference to FIG.
As shown in FIG. 11, when a resident walks on the jumping slab 6, the distal end side (shown as point A in the figure) that is the free end of the cantilever 7 is greatly bent downward. Therefore, the spring-out slab 6 is likely to generate vertical vibrations.
Moreover, the base end of the cantilever beam 7b is usually structurally joined to the beam 4 of the main frame 1 via the large beam 3 as shown in the figure. Rather than pin-bonding as normal both-end support beams (support points for the large beams 3 on both sides are shown as point B and point D), the bending force is effectively applied to the junction point (point B) with the cantilever beam 7b. Usually, both flanges are connected to each other by a stiffener 8 for transmission, or are integrally joined to a large beam by welding, so that when the cantilever beam 7b is vibrated up and down, it is normal. The vibration is transmitted to the small beam 4 as it is, and as shown in FIG. 11, the whole of them uses the both end support points (points B and D) of the small beam 4 as fulcrums (vibration nodes). It will vibrate synchronously, especially the middle part (C point) of the small beam 4 becomes the antinode of vibration there Large vibration is sometimes excited.

このように、片持ち梁7により支持される跳ね出しスラブ6はそれ自体が振動し易いばかりでなく、それに連なる主架構1の主スラブ5に対しても振動障害が及んでしまうことから、その対策として特許文献2,3に示されているような回転慣性効果を利用した振動低減機構によって片持ち梁7の振動を抑制することが検討されている。   In this way, the spring slab 6 supported by the cantilever 7 not only vibrates itself, but also causes vibration disturbances to the main slab 5 of the main frame 1 connected thereto. As a countermeasure, it has been studied to suppress the vibration of the cantilever 7 by a vibration reduction mechanism using a rotational inertia effect as shown in Patent Documents 2 and 3.

しかし、上記従来の振動低減機構は通常の両端支持梁に対しては有効に適用可能であるが、上記のような片持ち梁7に対しては必ずしも有効に適用できるものではない。
すなわち、上記従来の振動低減機構は制振対象の梁に対して最も振動が卓越する点に設置することが有効であるから、片持ち梁7を対象とする場合にはその先端部(図11におけるA点)に対して回転慣性質量ダンパーを設置し、かつその回転慣性質量ダンパーを支持して作動させるための支持部材(特許文献2に示される振動低減機構においては付加梁。特許文献3に示される振動低減機構においては斜材)を片持ち梁7の先端部に対して架設する必要があるが、片持ち梁7の先端部には意匠的にそれらの設置スペースを確保し難い場合も多いし、設置スペースを確保し得る場合であっても必ずしも有効に機能し得ない場合もある。
However, although the conventional vibration reduction mechanism can be effectively applied to a normal both-end support beam, it is not necessarily applicable to the cantilever 7 as described above.
That is, since it is effective to install the conventional vibration reduction mechanism at a point where vibration is most excellent with respect to the beam to be controlled, when the cantilever 7 is a target, its tip (FIG. 11). A support member for installing and rotating the rotary inertia mass damper with respect to the point A in FIG. 2 (additional beam in the vibration reduction mechanism shown in Patent Document 2). In the vibration reduction mechanism shown, it is necessary to construct a diagonal material) on the tip of the cantilever 7, but it may be difficult to secure the installation space on the tip of the cantilever 7 by design. In many cases, even if an installation space can be secured, it may not always function effectively.

具体的には、図10〜図11に示した構造の跳ね出しスラブ6を制振対象とする場合、その跳ね出しスラブ6の中央部を支持している片持ち小梁7bの先端部に回転慣性質量ダンパーを設置することが最も効率的であるから、その場合にはたとえば図12に示すように支持部材9としての付加梁を直近の両側の柱2からその片持ち小梁7bの先端部(つまりA点)に向けてそれぞれ斜め方向に架設するか、あるいは支持部材9としての斜材を片持ち小梁7bの先端部を頂点とするような山形に張設したうえで、それら付加梁の先端部や斜材の頂点と片持ち小梁7bの先端部との間に回転慣性質量ダンパー(図示せず)を介装することになる。   Specifically, when the jumping slab 6 having the structure shown in FIGS. 10 to 11 is to be controlled, it rotates to the tip of the cantilever beam 7b that supports the central part of the jumping slab 6. Since it is most efficient to install the inertia mass damper, in this case, for example, as shown in FIG. 12, the additional beam as the support member 9 is connected to the tip of the cantilever beam 7b from the columns 2 on both sides. (I.e., point A), each of which is installed in an oblique direction, or a diagonal member as a support member 9 is stretched in a mountain shape with the tip of the cantilever beam 7b as a vertex, and the additional beams A rotary inertia mass damper (not shown) is interposed between the front end of each of the members and the top of the diagonal member and the front end of the cantilever beam 7b.

しかし、支持部材9としての付加梁や斜材を斜め方向に設置することでは、それらの所要長さが長くなるし捩れも生じるので回転慣性質量ダンパーを有効に作動させるに十分な反力を確保し難く、したがって十分な反力を確保するためには十分に高剛性かつ大断面の付加梁を必要とするし、あるいは斜材による場合にはその所要張力を極めて大きくせざるを得ず、現実的ではない。
しかも、付加梁や斜材を斜め方向に架設あるいは張設することでは、柱2や片持ち小梁7bに対する接合形態が複雑にならざるを得ないし、図示しているように他の片持ち小梁7bに対する梁貫通も必要となるから、そのための面倒な加工や手間を必要とし、施工性や納まりの点でも好ましくない。
However, if the additional beam or diagonal member as the support member 9 is installed in an oblique direction, the required length becomes longer and twisting occurs, so that sufficient reaction force is ensured to effectively operate the rotary inertia mass damper. Therefore, in order to secure a sufficient reaction force, it is necessary to use an additional beam with sufficiently high rigidity and a large cross section, or in the case of diagonal materials, the required tension must be extremely large, Not right.
In addition, when the additional beam or the diagonal member is installed or stretched in an oblique direction, the joining form to the column 2 or the cantilever beam 7b has to be complicated, and as shown in FIG. Since beam penetration with respect to the beam 7b is also necessary, troublesome processing and labor for that are required, which is not preferable in terms of workability and fit.

以上のように、特許文献2,3に示されるような回転慣性質量ダンパーによる梁の振動低減機構は通常の両端支持梁に対しては有効ではあるものの片持ち梁に対しては適用し難いことから、それを可能とする有効適切な手法の開発が望まれているのが実情である。
上記事情に鑑み、本発明は片持ち梁の振動を低減させ得る有効適切な振動低減機構を提供することを目的とする。
As described above, the vibration reduction mechanism of the beam by the rotary inertia mass damper as shown in Patent Documents 2 and 3 is effective for a normal both-end support beam, but is difficult to apply to a cantilever beam. Therefore, it is the actual situation that the development of an effective and appropriate method that enables this is desired.
In view of the above circumstances, an object of the present invention is to provide an effective and appropriate vibration reduction mechanism that can reduce vibration of a cantilever beam.

請求項1記載の発明は、基端部が支持され先端部が自由端とされた状態で設置される片持ち梁を対象として、該片持ち梁の振動を低減するための機構であって、前記片持ち梁の基端に両端支持梁の一端が接合されてその接合点を支持点としてそれら片持ち梁の基端と両端支持梁の一端とが一体に支持されることにより、前記片持ち梁の振動が前記支持点を介して前記両端支持梁に伝達されてそれら片持ち梁と両端支持梁とが前記支持点を支点として同期して振動可能とされ、前記両端支持梁の中間部を支持する支持部材が前記両端支持梁と相対振動可能に設けられて、該支持部材と前記両端支持梁との間にそれらの相対振動により作動する回転慣性質量ダンパーが介装されてなることを特徴とする。   The invention according to claim 1 is a mechanism for reducing the vibration of the cantilever beam targeting a cantilever beam installed in a state where the base end portion is supported and the tip end portion is a free end, One end of both end support beams are joined to the base end of the cantilever beam, and the base end of the cantilever beam and one end of the both end support beam are integrally supported by using the joint point as a support point. The vibration of the beam is transmitted to the support beams at both ends via the support points, and the cantilever beams and the support beams at both ends can be vibrated synchronously with the support points as fulcrums. A support member to be supported is provided so as to be capable of relative vibration with the both-end support beams, and a rotary inertia mass damper that is operated by the relative vibration is interposed between the support member and the both-end support beams. And

請求項2記載の発明は、請求項1記載の梁の振動低減機構であって、前記回転慣性質量ダンパーと前記支持部材とにより構成される付加振動系の固有振動数を、制振対象の主振動系の固有振動数に同調させてなることを特徴とする。   The invention according to claim 2 is the beam vibration reducing mechanism according to claim 1, wherein the natural frequency of the additional vibration system constituted by the rotary inertia mass damper and the support member is set to a main vibration suppression target. It is characterized by being tuned to the natural frequency of the vibration system.

請求項3記載の発明は、請求項2記載の梁の振動低減機構であって、前記回転慣性質量ダンパーと前記支持部材との間に付加ばねを介装し、該付加ばねのばね剛性の調整により前記付加振動系の固有振動数を調整可能に構成してなることを特徴とする。   The invention according to claim 3 is the beam vibration reducing mechanism according to claim 2, wherein an additional spring is interposed between the rotary inertia mass damper and the support member, and adjustment of the spring rigidity of the additional spring is performed. Thus, the natural frequency of the additional vibration system can be adjusted.

本発明によれば、制振対象の片持ち梁に連なる主架構の梁の中間部に対して回転慣性質量ダンパーを設置することにより、片持ち梁に連動してその梁に生じる振動を抑制することによって片持ち梁の振動も有効に抑制することができる。したがって通常の手法のように回転慣性質量ダンパーを直接片持ち梁の先端部に設けずとも同様の制振効果を得ることができ、片持ち梁の先端部に設置スペースを確保し得ない場合や、そこに設置しても有効に作動し得ない場合の代替策として好適である。   According to the present invention, by installing the rotary inertia mass damper to the middle part of the beam of the main frame that is connected to the cantilever beam to be damped, vibration generated in the beam in conjunction with the cantilever beam is suppressed. Thus, vibration of the cantilever can be effectively suppressed. Therefore, it is possible to obtain the same vibration damping effect without providing a rotary inertia mass damper directly at the tip of the cantilever as in the normal method, and when the installation space cannot be secured at the tip of the cantilever. It is suitable as an alternative measure when it cannot be operated effectively even if it is installed there.

本発明の実施形態である振動低減機構の概要を示す図である。It is a figure which shows the outline | summary of the vibration reduction mechanism which is embodiment of this invention. 同、要部拡大図である。FIG. 同、解析モデルを示す図である。It is a figure which shows an analysis model same as the above. 同、解析モデルにおける部材諸元を示す図である。It is a figure which shows the member specification in an analysis model same as the above. 同、固有値解析結果を示す図である。It is a figure which shows an eigenvalue analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析に用いる歩行荷重波形を示す図である。It is a figure which shows the walking load waveform used for an analysis similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 従来一般の跳ね出しスラブおよび片持ち梁の設置形態を示す図である。It is a figure which shows the installation form of the conventional general splash slab and a cantilever beam. 同、振動時の挙動を示す図である。It is a figure which shows the behavior at the time of a vibration. 同、従来における跳ね出しスラブに対する振動低減機構の設置形態の一例を示す図である。It is a figure which shows an example of the installation form of the vibration reduction mechanism with respect to the conventional spring slab.

本発明の実施形態を図1〜図2に示す。
本実施形態は、図10に示した構造で設置されて図11に示したような振動を生じる跳ね出しスラブ6を対象として、特許文献2に示されるような回転慣性質量ダンパーとそれを作動させるための付加梁とを主体として構成される振動低減機構によって、跳ね出しスラブ6を支持している片持ち梁7の振動を制御することを目的とするものである。
ただし、本実施形態では、図12に示したようにその振動低減機構を振動が卓越する先端部(図1、図12におけるA点)に対して設置するという通常の手法によるのではなく、制振対象の片持ち小梁7bに対して大梁3を介して接合されている小梁4の中間部(同、C点)に対して振動低減機構を設置することにより、その小梁4を介して片持ち小梁7bの振動を制御し、以て、跳ね出しスラブ6および主スラブ5全体に対する振動低減効果を得ることを主眼とする。
An embodiment of the present invention is shown in FIGS.
In the present embodiment, a rotary inertia mass damper as shown in Patent Document 2 is operated for a spring slab 6 that is installed with the structure shown in FIG. 10 and generates vibration as shown in FIG. The purpose of this is to control the vibration of the cantilever beam 7 that supports the spring-out slab 6 by a vibration reduction mechanism mainly composed of an additional beam.
However, in the present embodiment, as shown in FIG. 12, the vibration reducing mechanism is not based on the usual method of installing the vibration reducing mechanism at the tip portion (point A in FIGS. 1 and 12) where vibration is dominant. By installing a vibration reduction mechanism at the middle part (same point C) of the small beam 4 joined to the cantilevered small beam 7b via the large beam 3, the small beam 4 Thus, the main object is to control the vibration of the cantilever beam 7b and thereby obtain a vibration reduction effect on the entire slab 6 and the main slab 5.

すなわち、本実施形態が対象としている跳ね出しスラブ6は、図10に示した従来一般の構造と同様に、1スパンにつき2本の片持ち大梁7aとそれらの間に設置された3本の片持ち小梁7bにより支持されて設置され、かつ各片持ち小梁7bの基端には大梁3を介して小梁4が一体に接合され、それら片持ち小梁7bと小梁4とは曲げ力伝達のために補剛材8によってフランジどうしが連結されており、かつ小梁4はその両端部(B点およびD点)が支持されている両端支持梁であり、したがって片持ち梁7に生じる振動に対して無体策であると図11に示したようにその片持ち梁7のみならずそれに接合されている小梁4およびそれに支持されている主スラブ5にも振動を生じてしまうものである。   That is, the pop-out slab 6 targeted by the present embodiment has two cantilever beams 7a per span and three pieces installed between them as in the conventional general structure shown in FIG. The cantilever beams 7b are supported and installed, and the cantilever beam 7b is joined to the base end of each cantilever beam 7b via the large beam 3, and the cantilever beam 7b and the beam 4 are bent. The flanges are connected to each other by a stiffener 8 for force transmission, and the small beam 4 is a both-end support beam whose both ends (points B and D) are supported. As shown in FIG. 11, if it is an intangible measure against the generated vibration, not only the cantilever beam 7 but also the small beam 4 joined thereto and the main slab 5 supported by the beam will generate vibration. It is.

そこで本実施形態では、図1に示すように、回転慣性質量ダンパーを作動させるための支持部材としての付加梁10を各小梁4の中間部においてそれらと交差する方向に設けて、その付加梁10の両端を両側の大梁3に対して接合している。
本実施形態における付加梁10は図2に示すようなトラス梁であって、この付加梁10と小梁4とは構造的にはそれぞれ独立に挙動して上下方向の相対振動が許容されるようになっている。
なお、図示例では付加梁10としてのトラス梁における上弦材11を小梁4に形成されている貫通孔4a内に挿通させることにより付加梁10と小梁4とを構造的に絶縁しつつ相対振動を可能としており、それにより付加梁10を両側の大梁3の梁せいの範囲内に納めることができて室内有効高さを確保するうえで、また階高を節約するうえで有利であるが、その必要がない場合、あるいは付加梁10を充腹梁とするような場合には、付加梁10を単に小梁4の下方を通過する状態で交差させることでも良い。
Therefore, in the present embodiment, as shown in FIG. 1, an additional beam 10 as a support member for operating the rotary inertia mass damper is provided in a direction intersecting with each other at an intermediate portion of each small beam 4, and the additional beam is provided. Both ends of 10 are joined to the large beams 3 on both sides.
The additional beam 10 in the present embodiment is a truss beam as shown in FIG. 2, and the additional beam 10 and the small beam 4 are structurally independent of each other so that relative vibration in the vertical direction is allowed. It has become.
In the illustrated example, the upper chord member 11 of the truss beam as the additional beam 10 is inserted into the through-hole 4a formed in the small beam 4 so that the additional beam 10 and the small beam 4 are structurally insulated from each other. Although vibration is possible, the additional beam 10 can be accommodated within the range of the beams of the large beams 3 on both sides, which is advantageous in securing the effective height in the room and saving the floor height. If this is not necessary, or if the additional beam 10 is used as a full beam, the additional beam 10 may be simply crossed so as to pass under the small beam 4.

そして、3本の小梁4のうちの中央に位置する小梁4の中間部(図示C点の近傍位置。特に振動の腹となるスパン中央位置とすることが好ましい)に対して、図2(b)に示すように回転慣性質量ダンパー14を下向きに固定し、回転慣性質量ダンパー14の下端に付加ばねとしての板ばね20の中央部を連結し、板ばね20の両端部を上記の付加梁10の下弦材12に対して連結具13を介して固定しており、これにより小梁4が上下振動(付加梁10に対する相対振動)を生じた際には回転慣性質量ダンパー14が作動するようになっている。   2 with respect to an intermediate portion of the small beam 4 located at the center of the three small beams 4 (position in the vicinity of the point C in the drawing, particularly preferably the center position of the span which causes vibration). As shown in (b), the rotary inertia mass damper 14 is fixed downward, the central portion of the leaf spring 20 as an additional spring is connected to the lower end of the rotary inertia mass damper 14, and both ends of the leaf spring 20 are added as described above. When the beam 4 is fixed to the lower chord member 12 of the beam 10 via the coupling tool 13, and the small beam 4 generates vertical vibration (relative vibration with respect to the additional beam 10), the rotary inertia mass damper 14 is activated. It is like that.

本実施形態の振動低減機構は、特許文献2に示されているものと同様に、回転慣性質量ダンパー14と板ばね20と付加梁10とが直列に接続されることにより、制振対象の主振動系(この場合は跳ね出しスラブ6と主スラブ5およびそれを支持する躯体の全体)に対する付加振動系としてのTMDを構成するものであって、上記の付加梁10および板ばね20はこのTMDの固有振動数を主振動系の固有振動数(ないし所望の制振対象振動数)に同調させるためのばね要素として機能するものであり、それらのばね剛性を適切に調整し、かつ回転慣性質量ダンパー14による慣性質量を適切に設定することにより、主振動系に対してTMDとして有効に機能して優れた制振効果が得られるものである。
なお、付加梁10のばね剛性の調整のみで所望の同調が可能な場合には付加ばねとしての板ばね20は省略することも可能であるし、あるいは必要に応じて板ばね20に代えて、あるいはそれに加えて適宜のばね要素を用いることでも良い。勿論、必要に応じてオイルダンパー等の適宜の減衰要素を付加しても良い。
The vibration reduction mechanism of the present embodiment is similar to that shown in Patent Document 2 in that the rotary inertia mass damper 14, the leaf spring 20, and the additional beam 10 are connected in series, so that A TMD as an additional vibration system for the vibration system (in this case, the spring-out slab 6 and the main slab 5 and the entire housing supporting the slab 6) constitutes the TMD. Functions as a spring element for synchronizing the natural frequency of the main vibration system with the natural frequency of the main vibration system (or the desired vibration-supplied frequency), and appropriately adjusts the spring stiffness and rotational inertial mass. By appropriately setting the inertial mass due to the damper 14, it effectively functions as a TMD with respect to the main vibration system, and an excellent damping effect can be obtained.
In addition, when desired tuning is possible only by adjusting the spring rigidity of the additional beam 10, the leaf spring 20 as the additional spring can be omitted, or instead of the leaf spring 20 as necessary, Alternatively, an appropriate spring element may be used in addition thereto. Of course, an appropriate damping element such as an oil damper may be added as necessary.

本実施形態によれば、図11に示したように制振対象の片持ち梁7bの振動に同期して小梁4に生じる振動が回転慣性質量ダンパー14の作動によって効果的に抑制され、その小梁4に対する振動抑制効果はそれに構造的に接合されていて同期振動を生じる片持ち小梁7bに対しても当然に及ぶから、通常の手法のように回転慣性質量ダンパー14を片持ち小梁7bの先端部に設けずともそれに連なっている小梁4の中間部に対して回転慣性質量ダンパー14を設置することで同様の制振効果を得ることができ、したがって片持ち梁7の先端部に設置スペースを確保し得ない場合や、そこに設置しても有効に作動し得ない場合の代替策として好適である。   According to the present embodiment, as shown in FIG. 11, the vibration generated in the small beam 4 in synchronization with the vibration of the cantilever 7b to be controlled is effectively suppressed by the operation of the rotary inertia mass damper 14, Since the vibration suppressing effect on the beam 4 extends naturally to the cantilever beam 7b that is structurally joined to the beam and generates synchronous vibration, the rotary inertia mass damper 14 is mounted on the cantilever beam as in a normal method. A similar damping effect can be obtained by installing the rotary inertia mass damper 14 at the intermediate portion of the small beam 4 connected to the end portion of the cantilever 7 without being provided at the end portion of the cantilever 7b. It is suitable as an alternative measure when the installation space cannot be secured, or when the installation space cannot be operated effectively.

以下、本発明の効果を解析により具体的に検証する。
解析対象モデルを図3に示す。これは建物平面の一部であり、吹き抜け部に面して三角形状に跳ね出す形状で形成された跳ね出しスラブとそれに連なる1スパン分の矩形の主スラブを対象とする。
跳ね出しスラブおよび主スラブを構成している各構造部材(大梁BUB、小梁UB、先端小梁UC)の諸元を図4に示す。なお、図1では3本として示した片持ち小梁7bおよびそれに連なる小梁4を本解析モデルでは5本としており、また本解析モデルでは小梁の中間部を支持する直交方向の小梁(図1では示していない)も設けて付加梁はその小梁の側部に並行するように設けている。
スラブ(主スラブ5および跳ね出しスラブ6)は厚さ130mm、自重5kN/m2、載荷加重2.7kN/m2、スラブのコンクリートはFc=24N/mm2、ヤング係数は15470N/mm2、ポアソン比0.2とした。
各梁は自重を別途考慮し、境界部分については隣接するスパンの1/4分の床荷重を梁に上乗せした。本解析モデルでは床をシェル構造でモデル化した。梁はビーム要素とし、合成スラブ正曲げの剛性となるように床面からリジッドリンクした。ただし、跳ね出し部については、長期応力でスラブが凸面になって負曲げ状態になると想定してリジッドリンクはしていない。各接点の自由度は上下並進および水平2軸周りの回転のみを考慮した。
Hereinafter, the effect of the present invention will be specifically verified by analysis.
The analysis target model is shown in FIG. This is a part of a building plane, and is intended for a jump-out slab formed in a triangular shape facing the atrium and a rectangular main slab for one span.
FIG. 4 shows the specifications of each structural member (large beam BUB, small beam UB, tip small beam UC) constituting the spring-out slab and the main slab. In this analysis model, the number of cantilever beams 7b shown in FIG. 1 and the beam beams 4 connected thereto are five in this analysis model. In this analysis model, the beam beams in the orthogonal direction supporting the intermediate portion of the beam ( (Not shown in FIG. 1) is also provided, and the additional beam is provided in parallel with the side portion of the small beam.
Slabs (main slab 5 and spring slab 6) are 130mm thick, own weight 5kN / m 2 , load weight 2.7kN / m 2 , slab concrete Fc = 24N / mm 2 , Young's modulus 15470N / mm 2 , Poisson The ratio was 0.2.
Each beam took into account its own weight, and a floor load of 1/4 of the adjacent span was added to the beam at the boundary. In this analysis model, the floor was modeled with a shell structure. The beam was a beam element, and was rigidly linked from the floor so that the composite slab had a positive bending stiffness. However, the jumping portion is not rigidly linked assuming that the slab becomes a convex surface due to long-term stress and enters a negative bending state. The degree of freedom of each contact was considered only for vertical translation and rotation around two horizontal axes.

回転慣性質量ダンパー14はC点(主スラブのほぼ中央位置)に2台並設し、それぞれを1次、2次の2つのモードに対処するように同調した。
それぞれの慣性質量はいずれも4tonとしたが、実際のフライホイールの質量はその数百分の一であり、たとえばボールねじのリード10mmとすると、半径71.5mm、厚さ32mmの鋼材からなる円盤(実質量4kg)でそのような慣性質量が得られる。
減衰係数はそれぞれ170N/kine、160N/kineとし、ボールねじ内部の減衰によるものとした。
板ばね20によるばね値はそれぞれ3700kN/m、38000kN/m(各板ばねの長さ×幅×板厚をそれぞれ40cm×10cm×9mm、40cm×10.8cm×19mm)とした。
付加梁10としてのトラス梁は上弦材および下弦材をCT-250×150×9×25、腹材をL-75×9、梁せいを750mmとし、断面2次モーメントI=1.89×109mm、せん断断面積1122mm2とした。主系の減衰は1次固有振動数に対し1%の初期剛性比例型とする。
Two rotary inertia mass dampers 14 were juxtaposed at point C (approximately the center position of the main slab), and tuned so as to cope with the first and second modes.
Each inertial mass is 4 tons, but the actual flywheel mass is one-hundredth. For example, if the lead of a ball screw is 10 mm, a disk made of steel with a radius of 71.5 mm and a thickness of 32 mm ( Such an inertial mass is obtained in a substantial amount of 4 kg).
The damping coefficients were 170 N / kine and 160 N / kine, respectively, and were due to damping inside the ball screw.
The spring values of the leaf springs 20 were 3700 kN / m and 38000 kN / m, respectively (length × width × plate thickness of each leaf spring 40 cm × 10 cm × 9 mm, 40 cm × 10.8 cm × 19 mm, respectively).
The truss beam as the additional beam 10 is CT-250 × 150 × 9 × 25 for the upper chord material and lower chord material, L-75 × 9 for the abdomen, 750 mm for the beam bar, and the secondary moment of inertia I = 1.89 × 10 9 mm The shear sectional area was 1122 mm 2 . The damping of the main system is assumed to be 1% of the initial stiffness proportional to the primary natural frequency.

固有値解析結果を図5〜図6に示す。1次モードは跳ね出しスラブの振動であり、固有振動数は3.46Hzである。
人間の一人歩行〜一人小走りでの卓越振動数は1.6〜3.3Hz程度の幅があり、跳ね出しスラブの固有振動数はこの範囲をやや外れているが、倍長(つまり3.46/2=1.73Hz)の外乱に共振する虞があるので、歩行荷重の刻み時間を調整し、その卓越振動数が1.73HzになるようにA点(跳ね出しスラブの先端部)に荷重を加えた。
歩行荷重による荷重波形を図7に示す。荷重レベルは二人歩行を想定して原波の1.5倍としている。
The eigenvalue analysis results are shown in FIGS. The primary mode is the vibration of the jumping slab, and the natural frequency is 3.46Hz.
The dominant frequency of a single person walking to a single person has a width of about 1.6 to 3.3 Hz, and the natural frequency of the jumping slab is slightly outside this range, but it is a double length (ie 3.46 / 2 = 1.73 Hz) Therefore, the step time of the walking load was adjusted and the load was applied to point A (the tip of the slab) so that the dominant frequency was 1.73 Hz.
A load waveform due to walking load is shown in FIG. The load level is 1.5 times the original wave, assuming two people walking.

解析結果として、非制振および本発明による制振の場合のA点の加速度応答波形を図8に示し、A点、C点、D点の応答加速度の1/3オクターブバンド解析結果を図9に示す。
図8の結果から、最大加速度は非制振での場合は6galであるが、本発明の制振により4gal程度となり、後揺れも急進に小さくなることが分かる。
また、図9の結果から、応答レベルは非制振の場合には殆どの居住者が揺れを感じるレベルであるが、本発明による制振の場合はほぼ半減し、一般的な建物としての許容範囲内に納まることが分かる。
As an analysis result, an acceleration response waveform at point A in the case of non-damping and damping according to the present invention is shown in FIG. 8, and a 1/3 octave band analysis result of response acceleration at points A, C, and D is shown in FIG. Shown in
From the results of FIG. 8, it can be seen that the maximum acceleration is 6 gal in the case of non-vibration suppression, but is about 4 gal by the vibration suppression of the present invention, and the rear shaking is rapidly reduced.
Further, from the result of FIG. 9, the response level is a level at which most residents feel shaking in the case of non-vibration suppression, but in the case of vibration suppression according to the present invention, the response level is almost halved and is acceptable as a general building. You can see that it falls within the range.

以上の解析結果から、本発明によれば、回転慣性質量ダンパーを有効に設置することが困難である片持ち梁の先端部に対して回転慣性質量ダンパーを直接設置せずとも、それに連なる小梁の中間部に対して回転慣性質量ダンパーを設置することで制振対象の跳ね出し梁の振動を有効に低減できることが確認できた。
したがって、本発明によれば、跳ね出し梁に支持される跳ね出しスラブはもとより、それに連動して振動する主スラブ5の振動をも有効に抑制できて建物全体の居住性を大幅に改善することが可能である。
From the above analysis results, according to the present invention, it is difficult to effectively install the rotary inertia mass damper. It was confirmed that the vibration of the jumping beam to be controlled can be effectively reduced by installing the rotary inertia mass damper in the middle part of
Therefore, according to the present invention, it is possible to effectively suppress the vibration of the main slab 5 that vibrates in conjunction with the protruding slab supported by the protruding beam, thereby greatly improving the comfortability of the entire building. Is possible.

以上で本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることなく、たとえば以下に列挙するような設計的変更や応用が可能である。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and for example, design changes and applications listed below are possible.

回転慣性質量ダンパー14としては特許文献2、3に示されているようなボールねじ機構を利用するものが現実的であるが、特に限定されるものではなく、たとえばてこ機構を利用したもの等、任意の形式の回転慣性質量ダンパーを採用可能であるし、特に図2(c)に示すように磁力による減衰機構を備えたものも好適に採用可能である。
これは、ケーシング15内にボールナット16を回転自在に支持してそれにボールねじ軸17を螺着し、ボールナット16に磁性材料からなるフライホイール18を連結するとともにフライホイール18に対して磁石19を近接配置したものであり、この回転慣性質量ダンパー14が作動してフライホイール18が回転した際には磁石19によりフライホイール18に渦電流が発生して運動エネルギーを消費することにより減衰効果を得る構成のものである。
The rotary inertia mass damper 14 is practically one using a ball screw mechanism as shown in Patent Documents 2 and 3, but is not particularly limited, such as one using a lever mechanism, etc. Arbitrary types of rotary inertia mass dampers can be employed, and in particular, those equipped with a magnetic damping mechanism as shown in FIG. 2C can be suitably employed.
The ball nut 16 is rotatably supported in the casing 15, and a ball screw shaft 17 is screwed to the ball nut 16. A flywheel 18 made of a magnetic material is connected to the ball nut 16 and a magnet 19 is connected to the flywheel 18. When the rotary inertia mass damper 14 is actuated and the flywheel 18 rotates, an eddy current is generated in the flywheel 18 by the magnet 19 to consume kinetic energy, thereby reducing the damping effect. It is the structure of obtaining.

上記実施形態では1スパンの跳ね出しスラブ6に連なる1スパンの主スラブ5の中央位置の1個所に対してのみ回転慣性質量ダンパー14を設置したが、要は跳ね出しスラブ6およびそれに連なる主スラブ5に対して所望の制振効果が得られるように回転慣性質量ダンパー14を適正位置に適正配置すれば良い。
たとえば、跳ね出しスラブ6やそれに連なる主スラブ5の面積が大きいような場合には複数個所に回転慣性質量ダンパー14を設置しても良く、そのためには、上記実施形態における各小梁4と付加梁10との交差部にそれぞれ回転慣性質量ダンパー14を設置したり、各小梁4に対して複数の付加梁10を交差させてそれらの交差部にそれぞれ回転転慣性質量ダンパー14を設置しても良い。
勿論、必要であれば、上記実形態のように大梁3に支持されて設置される片持ち小梁7bのみを制振対象とするのみならず、柱2に支持されて設置される片持ち大梁7aを制振対象としても良く、その場合は柱2を介して片持ち大梁7aに対して接合されている主架構1の大梁3の中間部に対して交差するように付加梁10を設けて、その付加梁10と大梁3との間に回転慣性質量ダンパー14を設置すれば良い。
In the above embodiment, the rotary inertia mass damper 14 is installed only at one central position of the one-span main slab 5 connected to the one-span jumping slab 6, but the jumping slab 6 and the main slab connected thereto are essential. For example, the rotary inertia mass damper 14 may be appropriately disposed at an appropriate position so that a desired vibration damping effect can be obtained.
For example, when the area of the spring slab 6 or the main slab 5 connected thereto is large, the rotary inertia mass dampers 14 may be installed at a plurality of locations. For this purpose, each of the small beams 4 in the above embodiment is added. Rotating inertia mass dampers 14 are respectively installed at the intersections with the beams 10, or a plurality of additional beams 10 are intersected with the respective small beams 4, and the rotary rolling inertia mass dampers 14 are respectively installed at the intersections. Also good.
Of course, if necessary, not only the cantilever beam 7b supported and installed on the large beam 3 as described above, but also the cantilever beam installed and supported on the column 2 is supported. 7a may be a vibration control target. In that case, an additional beam 10 is provided so as to intersect with the middle portion of the main beam 3 of the main frame 1 joined to the cantilever beam 7a via the column 2. The rotary inertia mass damper 14 may be installed between the additional beam 10 and the large beam 3.

上記実施形態では回転慣性質量ダンパー14を支持してそれを作動させるための支持部材としての付加梁10をトラス梁としたが、トラス梁に限らず任意断面の充腹梁とすることでも良いし、あるいは付加梁10に代えて特許文献3に示されるような斜材を支持部材として張設することも可能である。
さらに、上記実施形態では制振対象の片持ち梁に連動する梁の中間部に交差するように支持部材を架設したが、可能であればその支持部材を特許文献2,3に示されるように梁の側部に沿わせた状態でそれに並行に設けることでも良い。
In the above embodiment, the additional beam 10 as a support member for supporting and operating the rotary inertia mass damper 14 is a truss beam, but it is not limited to a truss beam, and may be a satiety beam having an arbitrary cross section. Alternatively, an oblique member as shown in Patent Document 3 can be stretched as a support member instead of the additional beam 10.
Further, in the above embodiment, the support member is installed so as to intersect the intermediate portion of the beam interlocking with the cantilever beam to be damped. If possible, the support member is as shown in Patent Documents 2 and 3, respectively. It may be provided in parallel with the side of the beam.

1 主架構
2 柱
3 大梁
4 小梁(両端支持梁)
4a 貫通孔
5 主スラブ
6 跳ね出しスラブ
7 片持ち梁
7a 片持ち大梁
7b 片持ち小梁
8 補剛材
10 付加梁(トラス梁、支持部材)
11 上弦材
12 下弦材
13 連結具
14 回転慣性質量ダンパー
15 ケーシング
16 ボールナット
17 ボールねじ軸
18 フライホイール
19 磁石
20 板ばね(付加ばね)
1 Main frame 2 Pillar 3 Large beam 4 Small beam (support beam on both ends)
4a Through-hole 5 Main slab 6 Bounce slab 7 Cantilever 7a Cantilever large beam 7b Cantilever small beam 8 Stiffener 10 Additional beam (truss beam, support member)
11 Upper chord material 12 Lower chord material 13 Connector 14 Rotary inertia mass damper 15 Casing 16 Ball nut 17 Ball screw shaft 18 Flywheel 19 Magnet 20 Leaf spring (additional spring)

Claims (3)

基端部が支持され先端部が自由端とされた状態で設置される片持ち梁を対象として、該片持ち梁の振動を低減するための機構であって、
前記片持ち梁の基端に両端支持梁の一端が接合されてその接合点を支持点としてそれら片持ち梁の基端と両端支持梁の一端とが一体に支持されることにより、前記片持ち梁の振動が前記支持点を介して前記両端支持梁に伝達されてそれら片持ち梁と両端支持梁とが前記支持点を支点として同期して振動可能とされ、
前記両端支持梁の中間部を支持する支持部材が前記両端支持梁と相対振動可能に設けられて、該支持部材と前記両端支持梁との間にそれらの相対振動により作動する回転慣性質量ダンパーが介装されてなることを特徴とする梁の振動低減機構。
A mechanism for reducing the vibration of the cantilever beam for a cantilever beam that is installed in a state where the base end portion is supported and the distal end portion is a free end,
One end of both end support beams are joined to the base end of the cantilever beam, and the base end of the cantilever beam and one end of the both end support beam are integrally supported by using the joint point as a support point. The vibration of the beam is transmitted to the both-end support beams through the support points, and the cantilever beams and the both-end support beams can be vibrated synchronously with the support points as fulcrums,
A support member that supports the middle part of the both-end support beams is provided so as to be capable of relative vibration with the both-end support beams, and a rotary inertia mass damper that operates between the support member and the both-end support beams is operated by the relative vibration. A vibration reduction mechanism for a beam, characterized by being interposed.
請求項1記載の梁の振動低減機構であって、
前記回転慣性質量ダンパーと前記支持部材とにより構成される付加振動系の固有振動数を、制振対象の主振動系の固有振動数に同調させてなることを特徴とする梁の振動低減機構。
A vibration reduction mechanism for a beam according to claim 1,
A beam vibration reduction mechanism characterized in that a natural frequency of an additional vibration system constituted by the rotary inertia mass damper and the support member is synchronized with a natural frequency of a main vibration system to be controlled.
請求項2記載の梁の振動低減機構であって、
前記回転慣性質量ダンパーと前記支持部材との間に付加ばねを介装し、該付加ばねのばね剛性の調整により前記付加振動系の固有振動数を調整可能に構成してなることを特徴とする梁の振動低減機構。
A vibration reduction mechanism for a beam according to claim 2,
An additional spring is interposed between the rotary inertia mass damper and the support member, and the natural frequency of the additional vibration system can be adjusted by adjusting the spring stiffness of the additional spring. Beam vibration reduction mechanism.
JP2011027109A 2011-02-10 2011-02-10 Beam vibration reduction mechanism Active JP5725331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011027109A JP5725331B2 (en) 2011-02-10 2011-02-10 Beam vibration reduction mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027109A JP5725331B2 (en) 2011-02-10 2011-02-10 Beam vibration reduction mechanism

Publications (2)

Publication Number Publication Date
JP2012167438A JP2012167438A (en) 2012-09-06
JP5725331B2 true JP5725331B2 (en) 2015-05-27

Family

ID=46971839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011027109A Active JP5725331B2 (en) 2011-02-10 2011-02-10 Beam vibration reduction mechanism

Country Status (1)

Country Link
JP (1) JP5725331B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164444B2 (en) * 2012-11-09 2017-07-19 清水建設株式会社 Cantilever frame vertical vibration control structure
JP6210768B2 (en) * 2013-07-18 2017-10-11 株式会社竹中工務店 Structure
CN104033520B (en) * 2014-03-25 2016-04-06 北京工业大学 A kind of tension based on linear rail, torsion proof combined isolation device
CN104032847B (en) * 2014-06-18 2016-05-04 辽宁工程技术大学 A kind of compounded shock isolating pedestal based on displacement control
CN105046058B (en) * 2015-06-25 2017-12-29 成都飞机工业(集团)有限责任公司 A kind of calculating method of stiffness of open vallecular cavity web
CN113638515B (en) * 2021-08-25 2022-06-21 湖南大学 Variable-rigidity variable-mass variable-damping tuned mass damper and design method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971759B2 (en) * 2006-11-24 2012-07-11 大和ハウス工業株式会社 Mass damper and beam damping structure using it
JP2010196448A (en) * 2009-02-27 2010-09-09 Daiwa House Industry Co Ltd Arrangement structure of projecting beam and balcony framework using the same
JP5458374B2 (en) * 2009-07-08 2014-04-02 清水建設株式会社 Vibration control system

Also Published As

Publication number Publication date
JP2012167438A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5725331B2 (en) Beam vibration reduction mechanism
JP2008101769A (en) Vibration reducing mechanism and its specification setting method
JP5648821B2 (en) Vibration control mechanism
JP2009007916A (en) Vibration damping structure and its specification setting method
JP5516934B2 (en) Vibration control mechanism
JP2008163727A (en) Vibration reducing mechanism and method for setting specifications thereof
JP5777044B2 (en) Beam vibration reduction mechanism
JP4741877B2 (en) Building outer wall mounting structure
JP2001349094A (en) Synchronous pendulum type vibration control device
JP5146770B2 (en) Damping structure and its specification method
JP2011122345A (en) Floor damping system
JP2014169604A (en) Vibration control structure for large-span frame building
JP5458374B2 (en) Vibration control system
JP2011102530A (en) Vibration control building
JP2006169719A (en) Horizontal base isolating apparatus
JP5915992B2 (en) Vibration reduction structure
JP2012247006A (en) Vibration damping device of long-sized structure
JP6164444B2 (en) Cantilever frame vertical vibration control structure
JP4706281B2 (en) Building seismic control structure
JP2007126940A (en) Vibration control structure for building
JP2019065635A (en) Vibration controlled building
JP6143065B2 (en) Damping structure of large span frame building
JP4401095B2 (en) Long column vibration damping device and long column vibration damping structure
JP3193182B2 (en) Multiple mode control mass damper
JP4573109B2 (en) Damping structure and seismic reinforcement method for structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5725331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150