JPH1162316A - Earthquake resistive damping construction - Google Patents

Earthquake resistive damping construction

Info

Publication number
JPH1162316A
JPH1162316A JP9225764A JP22576497A JPH1162316A JP H1162316 A JPH1162316 A JP H1162316A JP 9225764 A JP9225764 A JP 9225764A JP 22576497 A JP22576497 A JP 22576497A JP H1162316 A JPH1162316 A JP H1162316A
Authority
JP
Japan
Prior art keywords
construction
structures
damper
earthquake
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9225764A
Other languages
Japanese (ja)
Inventor
Etsuro Suzuki
悦郎 鈴木
Masanori Yoshimura
正憲 吉村
Masami Miyazawa
正躬 宮澤
Koji Yanagisawa
孝次 柳澤
Seiji Kiyota
清司 清田
Yasuhiro Kimura
康弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAJIMI ENG SERVICE KK
V N ENG KK
Taisei Corp
Original Assignee
TAJIMI ENG SERVICE KK
V N ENG KK
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAJIMI ENG SERVICE KK, V N ENG KK, Taisei Corp filed Critical TAJIMI ENG SERVICE KK
Priority to JP9225764A priority Critical patent/JPH1162316A/en
Publication of JPH1162316A publication Critical patent/JPH1162316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To absorb vibration energy during a great earthquake, and lessen the deformation of a construction by setting a plurality of constructions side by side, and interposing a damper between respective constructions for joining them. SOLUTION: The earthquake resistive construction is a double-construction comprising an inner construction A being circular in its plane and a concentric outer construction B being located at predetermined distances outside of the Inner construction A; then dampers D are interposed between the circular constructions A, B in desired positions. The inner construction A is formed into a super rahmen structure constructed from a plurality of frame layers including pillars 1, beams 2 or truss beams, and a floor or the like. The outer construction B is formed into a lofty layer rahmen structure of an RC construction, steel frame construction, or steel work bar-reinforced concrete construction made of a plurality of skeleton layers including pillars 6, and beams 7, the floor 9, and so on. Since the inner construction A is made to have larger rigidity or weight in its frame than that of the inner structure B, and further dampers are interposed between both constructions A, B, shake is damped extremely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐震制振構造物に関
するもので、低層から高層までの建築物に適用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic vibration control structure, and is applied to buildings from low to high.

【0002】[0002]

【従来の技術】[Prior art]

<イ>従来の耐震構造物は、単独の構造物における柱、
壁などの耐震部材が、地震時の振動エネルギ−を吸収し
て抵抗する構造物である。 <ロ>従来の制振構造物は、単独の構造物における柱、
梁、壁などの耐震部材の他に制振部材を設けて、大地震
時に制振部材が他の耐震部材よりも先行降伏することに
より、振動エネルギ−を吸収して抵抗する構造物であ
る。
<A> Conventional seismic structures are columns in a single structure,
An earthquake-resistant member such as a wall is a structure that absorbs and resists vibration energy during an earthquake. <B> Conventional vibration damping structures are columns in a single structure,
A structure in which a vibration damping member is provided in addition to an earthquake-resistant member such as a beam or a wall, and the vibration-damping member yields earlier than other earthquake-resistant members during a large earthquake, thereby absorbing and resisting vibration energy.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be solved by the invention]

<イ>従来の耐震構造物は、大地震時に振動エネルギ−
の吸収が過大になると、柱、梁、壁の塑性変形が大きく
なり、損傷が生じて鉛直荷重の支持能力を失い、ついに
は崩壊に至る場合がある。 <ロ>従来の制振構造物は、大地震時に振動エネルギ−
を吸収して制振部材が降伏し、損傷が生じたとき取替え
が必要になるため多大な手間を要する。
<A> Conventional seismic structures have vibration energy during large earthquakes.
Excessive absorption of plastics can lead to increased plastic deformation of columns, beams, and walls, causing damage and loss of the ability to support vertical loads, eventually leading to collapse. <B> Conventional vibration damping structures use vibration energy during a large earthquake.
When the damping member yields due to the absorption of the vibration and the damage occurs, it is necessary to replace the damping member.

【0004】[0004]

【本発明の目的】上記のような課題を解決するためにな
された本発明は、固有周期が夫々異なる各構造体の間に
ダンパ−を介装して連結したことにより、大地震時の振
動エネルギ−を吸収し構造物の変形を小さくする、耐震
と制振を兼ね備えた構造物を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the present invention provides a structure in which a damper is interposed between structures having different natural periods to provide vibrations during a large earthquake. An object of the present invention is to provide a structure having both earthquake resistance and vibration suppression, which absorbs energy and reduces the deformation of the structure.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の耐震制振構造物は、複数の構造体を並設
してなり、各構造体との間にダンパ−を介装して連結し
た構成であり、或いは、中央に位置する内部構造体と、
その外側の外部構造体との二重構造体からなり、両構造
体の間にダンパ−を介装して連結した構成であり、各構
造体は固有の周期特性が夫々異なる構造体で構成してあ
る。
In order to achieve the above object, a seismic vibration damping structure according to the present invention comprises a plurality of structures arranged side by side, and a damper interposed between each structure. And an internal structure located at the center,
It consists of a double structure with an external structure on the outside, and is connected by interposing a damper between both structures. It is.

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<イ>構造物、構造体、骨組及び部材の構成関係 構造物は、並設する複数の構造体、或いは内部構造体と
外部構造体の二重構造体からなり、各構造体は夫々柱、
梁、壁等の部材からなる骨組により構成してある。上記
各構造体は柱、梁等からなる骨組、即ちラ−メン構造の
他、フラットスラブ構造、壁式構造など各種の構造形式
が適用される。
<B> Structure, structure, structure, and structural relationship of members A structure is composed of a plurality of juxtaposed structures, or a double structure of an internal structure and an external structure.
It is composed of a skeleton composed of members such as beams and walls. Each of the above structures employs various types of structures such as a flat slab structure and a wall type structure in addition to a frame structure including columns and beams, that is, a frame structure.

【0007】以下、図面を用いて本発明の実施の形態を
説明する。 <ロ>耐震制振構造物の実施の形態(1) 図1及び図2に示す耐震制振構造物は、平面形状が円形
の内部構造体Aと、同構造体Aの外側に所定の間隔を設
けて位置する同心円状の外部構造体Bとからなる二重構
造であり、両構造体A,B間の所用箇所にダンパ−Dが
介装してある。 内部構造体Aは、柱1、梁2又はトラ
ス梁からなる複数層(図示では6層)の骨組と床4等と
から構成したス−パ−ラ−メン構造である。この構造体
Aの骨組は鉄骨造又は鉄骨鉄筋コンクリ−ト造、若しく
はプレストレストコンクリ−ト造である。外部構造体B
は、柱6、梁7からなる複数階(図示では12階)の骨
組と床9及び壁等から構成したRC造又は鉄骨造、若し
くは鉄骨鉄筋コンクリ−ト造の高層ラ−メン構造であ
る。即ち、前記内部構造体Aは外部構造体Bと比べて骨
組の剛性又は重量が大きくしてあり、従って、両構造体
A,Bは振動特性、即ち固有の周期特性が異なることに
より地震時に夫々異なる振動性状を示し、両構造体A,
B間にダンパ−Dが介在することにより振動が著しく減
衰するように構成してある。尚、前記外部構造体Bは集
合住宅、ホテル、病棟、校舎などであって、内部構造体
Aはそれらのための共用部分、例えば階段やエレベ−タ
−等の昇降施設、各種ユ−ティリティ−、庭園、広場な
どの用途に供されるコアスペ−スである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. <B> Embodiment of Seismic Damping Structure (1) The seismic damping structure shown in FIGS. 1 and 2 has an inner structure A having a circular planar shape and a predetermined space outside the structure A. And a concentric external structure B located at the position where the damper D is interposed between the two structures A and B. The internal structure A is a super-ramen structure composed of a frame of a plurality of layers (six layers in the drawing) composed of columns 1, beams 2, or truss beams, a floor 4, and the like. The frame of the structure A is a steel frame, a steel reinforced concrete structure, or a prestressed concrete structure. External structure B
Is a high-rise frame structure of an RC structure or a steel frame structure or a steel-framed reinforced concrete structure composed of a frame of a plurality of floors (12 floors in the figure) composed of columns 6 and beams 7 and a floor 9 and walls. That is, the inner structure A has a higher stiffness or weight of the frame than the outer structure B. Therefore, the two structures A and B have different vibration characteristics, that is, their inherent periodic characteristics, so that each of the structures A and B has a different characteristic during an earthquake. The two structures A, which show different vibration properties,
Vibration is remarkably attenuated by the interposition of the damper D between B. The external structure B is an apartment house, a hotel, a ward, a school building, etc., and the internal structure A is a common part for them, for example, stairs, elevators and other elevating facilities, various utilities. It is a core space used for applications such as gardens, open spaces, etc.

【0008】<ハ>耐震制振構造物の実施の形態(2) 図3及び図4に示す耐震制振構造物は、平面形状が角形
の内部構造体Eと、同構造体Eの外側に所定の間隔を設
け,且つ分割して位置する4箇所の外部構造体Fとから
なる二重構造であり、両構造体E,F間の所用箇所にダ
ンパ−Dが介装してある。内部構造体Eは、柱11、梁
12からなる骨組と床14等とから構成した高層のラ−
メン構造で、その骨組は鉄筋コンクリ−ト造又は鉄骨鉄
筋コンクリ−ト造、若しくは鉄骨造である。外部構造体
Fは、柱16、梁17、斜材18からなる骨組と床19
及び壁とから構成したトラス構造であり、前記内部構造
体Eと比べて骨組の剛性又は重量が大きくしてあり、従
って、両構造体E,Fは固有周期が異なることにより地
震時に夫々異なる振動性状を示し、ダンパ−Dにより振
動が著しく減衰するように構成してある。尚、前記内部
構造体Eはオフイス、集合住宅、店舗などであって、外
部構造体Fはそれらのための共用部分、例えば昇降施
設、各種ユ−ティリティ−などの用途に供されるコアス
ペ−スである。
<C> Embodiment of Seismic Vibration Suppression Structure (2) The seismic vibration suppression structure shown in FIGS. 3 and 4 has an inner structure E having a square planar shape and an outer structure outside the structure E. It has a double structure consisting of four external structures F provided at predetermined intervals and divided, and a damper D is interposed at a required position between both structures E and F. The internal structure E is a high-rise building composed of a frame composed of columns 11 and beams 12 and a floor 14 and the like.
The frame structure is a reinforced concrete structure or a steel reinforced concrete structure, or a steel frame structure. The external structure F is composed of a frame composed of columns 16, beams 17, and diagonal members 18 and a floor 19.
And a truss structure composed of a wall and a wall. The stiffness or weight of the skeleton is larger than that of the internal structure E. Therefore, the two structures E and F have different natural periods and therefore have different vibrations during an earthquake. It is configured so that it exhibits properties and the vibration is significantly attenuated by the damper D. The internal structure E is an office, an apartment house, a store, etc., and the external structure F is a common space for them, for example, a core space used for applications such as elevating facilities and various utilities. It is.

【0009】<ニ>ダンパ−の設置位置 ダンパ−Dは、図1及び図2では前記内部構造体Aと外
部構造体Bの間に24(8箇所×3層)箇所設置してあ
り、その設置位置は、内部構造体Aの柱梁接合部5と外
部構造体Bの柱梁接合部10との間に設置してある。図
3及び図4では、両構造体E,Fの間に32(8箇所×
4層)箇所設置してあり、内部構造体Eの柱梁接合部1
5と外部構造体Fの柱梁接合部20間に設置してある。
<D> Installation Position of Damper In FIG. 1 and FIG. 2, the damper D is installed between the internal structure A and the external structure B in 24 (8 places × 3 layers) places. The installation position is located between the beam-to-column joint 5 of the internal structure A and the beam-to-column joint 10 of the external structure B. In FIG. 3 and FIG. 4, 32 (8 places ×
4 layers) installed at the location, the beam-to-column joint 1 of the internal structure E
5 and the beam-to-column joint 20 of the external structure F.

【0010】ダンパ−Dの設置位置は、上記にように、
両構造体の柱梁接合部間に集約的に介装してあるが、そ
れに限定せず、柱及び梁間又は構造体間の任意の部位
に、断続若しくは連続的に設置してもよく、また上層階
に重点的に配置してもよい。ダンパ−Dの個数や設置位
置は、両構造体の規模、骨組性状、振動性状、及びダン
パ−Dの特性、即ち、ばね剛性(ばねの強弱)等を考慮
して設定することができる。
The installation position of the damper D is as described above.
It is intensively interposed between the column and beam joints of both structures, but is not limited thereto, and may be installed intermittently or continuously between columns and beams or at any portion between structures. It may be placed on the upper floor. The number and the installation position of the dampers D can be set in consideration of the scales of both structures, the frame properties, the vibration properties, and the characteristics of the dampers D, that is, the spring rigidity (spring strength).

【0011】<ホ>適用するダンパ−の例 本発明の耐震制振構造物は下記のダンパ−を適用するこ
とができる。 (a)板ばねダンパ− (b)コイルばねダンパ− (c)硬質ゴムダンパ− (d)金属板積層ゴムダンパ− (e)エアダンパ−(エアチュ−ブ) (f)粘性体ダンパ−(オイル又は水をチュ−ブに封
入) などである。
<E> Example of Damper to be Applied The following damper can be applied to the seismic vibration damping structure of the present invention. (A) Leaf spring damper (b) Coil spring damper (c) Hard rubber damper (d) Laminated rubber damper for metal plate (e) Air damper (air tube) (f) Viscous material damper (oil or water (Enclosed in a tube).

【0012】<ヘ>耐震制振構造物の実施の形態(3) 図5に示す耐震制振構造物は、二つの構造体G,Hが並
設してあり、両構造体G,Hは振動特性、即ち固有周期
が夫々異なり、この構造体G,Hの間にダンパ−Dを介
装し連結した構成になっている。それによって構造物に
作用する地震エネルギ−が吸収されるため、変形を小さ
くすることができる。尚、構造物は3以上の構造体を並
設して、各構造体の間にダンパ−Dを介装し連結しても
よい。
<F> Embodiment of Seismic Vibration Suppression Structure (3) In the seismic vibration suppression structure shown in FIG. 5, two structures G and H are arranged side by side. Vibration characteristics, that is, natural periods are different from each other, and a damper D is interposed between the structures G and H to be connected. Thereby, the seismic energy acting on the structure is absorbed, so that the deformation can be reduced. In addition, three or more structures may be arranged side by side, and a damper D may be interposed between the structures to be connected.

【0013】<ト>構造物の平面形状の実施形態(1) 構造物の内部構造体及び外部構造体の平面形状が円形又
は多角形の場合は以下に示してある。図6に示す構造物
は、内部構造体30及び外部構造体31とも平面形状が
四角形で、両構造体30,31の間にダンパ−Dを介装
し連結してある。尚、内部構造体30はコアスペ−スで
ある。
<G> Embodiment of Planar Shape of Structure (1) The case where the planar shape of the internal structure and the external structure of the structure is circular or polygonal is described below. In the structure shown in FIG. 6, both the internal structure 30 and the external structure 31 have a square planar shape, and a damper D is interposed between the two structures 30 and 31 for connection. The internal structure 30 is a core space.

【0014】図7に示す構造物は、二つの内部構造体3
0、30及び外部構造体33とからなり、平面形状が四
角形で、各構造体30,33の間にダンパ−Dを介装し
連結してある。尚、内部構造体30はコアスペ−スであ
る。
The structure shown in FIG. 7 has two internal structures 3
0, 30 and an external structure 33, and the plane shape is a quadrangle, and a damper D is interposed between the structures 30, 33 and connected. The internal structure 30 is a core space.

【0015】図8は、内部構造体30は平面形状が四角
形であり、外部構造体の平面形状は下層階が四角形の構
造体31で、上層階は四隅が多角形の構造体32で構成
し、両構造体30、31,32の間にダンパ−Dを介装
し連結してある。尚、外部構造体32はコアスペ−スな
どである。
FIG. 8 shows that the internal structure 30 has a square planar shape, the external structure has a rectangular structure 31 with a lower floor of a square shape, and the upper floor has a polygonal structure 32 with four corners at the upper floor. A damper D is interposed and connected between the two structures 30, 31, 32. The external structure 32 is a core space or the like.

【0016】図9に示す構造物は、内部構造体60の四
隅に四角形の外部構造体61を組込み、又は分割した各
構造体60,61の間にダンパ−Dを介装し連結してあ
る。尚、外部構造体61はコアスペ−スである。
In the structure shown in FIG. 9, a quadrangular outer structure 61 is incorporated at the four corners of the inner structure 60, or a damper D is interposed between the divided structures 60, 61 and connected. . The external structure 61 is a core space.

【0017】図10に示す構造物は、長方形の内部構造
体70とその両側のコの字型の外部構造体71,71と
で構成し、両構造体70,71の間にダンパ−Dを介装
し連結してある。尚、外部構造体71はサイドコアであ
る。
The structure shown in FIG. 10 comprises a rectangular internal structure 70 and U-shaped external structures 71, 71 on both sides thereof, and a damper D is provided between the two structures 70, 71. It is interposed and connected. Note that the outer structure 71 is a side core.

【0018】図11に示す構造物は、内部構造体50及
び外部構造体51とも平面形状が略三角形で、両構造体
50,51の間にダンパ−Dを介装し連結してある。
尚、内部構造体50はコアスペ−スである。
In the structure shown in FIG. 11, both the internal structure 50 and the external structure 51 have a substantially triangular planar shape, and a damper D is interposed between the two structures 50 and 51 to be connected.
The internal structure 50 is a core space.

【0019】図12及び図13は、内部構造体40,3
0及び外部構造体34,41のいずれかが、平面形状が
円形又は多角形の場合である。
FIGS. 12 and 13 show the internal structures 40 and 3 respectively.
0 and either of the external structures 34 and 41 have a circular or polygonal planar shape.

【0020】図14に示す構造物は、内部構造体80及
び外部構造体43は平面形状が円形で、両構造体80,
43の間にダンパ−Dを介装し連結してある。
In the structure shown in FIG. 14, the inner structure 80 and the outer structure 43 are circular in plan view.
43, a damper D is interposed and connected.

【0021】図15は、内部構造体40及び外部構造体
42は平面形状が円形で、両構造体40,42の間にダ
ンパ−Dを介装し連結してある。
FIG. 15 shows that the inner structure 40 and the outer structure 42 are circular in plan view, and are connected by interposing a damper D between the two structures 40 and 42.

【0022】<チ>構造物の平面形状の実施形態(2) 図6、図8、図9、図11、図12、図13、図14及
び図15に示す構造物は、内部構造体及び外部構造体の
平面が同心形状である。
<H> Embodiment of Planar Shape of Structure (2) The structures shown in FIGS. 6, 8, 9, 11, 12, 13, 14, and 15 are internal structures and The plane of the outer structure is concentric.

【0023】<リ>構造物の平面形状の実施形態(3) 図8、図9及び図10に示す構造物は、内部構造体及び
外部構造体のうち、外部構造体が複数に分割して構成し
てある。
<3> Embodiment of Planar Shape of Structure (3) The structure shown in FIGS. 8, 9 and 10 has a structure in which the outer structure is divided into a plurality of inner structures and outer structures. It is composed.

【0024】<ヌ>構造物の側断面形状の実施形態
(1) 図14に示す構造物は、内部構造体80及び外部構造体
43ともに側断面の形状が山形状である。但し両構造体
80,43の平面形状は多角形であってもよい。
<N> Embodiment of Side-Section Shape of Structure (1) In the structure shown in FIG. 14, both the internal structure 80 and the external structure 43 have a mountain-shaped side cross-section. However, the planar shape of both structures 80 and 43 may be polygonal.

【0025】<ル>構造物の側断面形状の実施形態
(2) 図15に示す構造物は外部構造体42の側断面の形状が
山形状である。但し、両構造体40,42の平面形状は
多角形であってもよい。
<1> Embodiment of Side-Section Shape of Structure (2) In the structure shown in FIG. 15, the side structure of the external structure 42 is a mountain shape. However, the planar shape of both structures 40 and 42 may be polygonal.

【0026】[0026]

【作用】[Action]

地震時における構造物のダンパ−作用 以下、図1及び図2の例について説明する。 <イ>本発明の耐震制振構造物は、内部構造体Aと外部
構造体Bが夫々異なる振動特性、即ち固有周期を有し、
この構造体A、Bに図示のようにダンパ−Dで連結した
ことによって、地震時に両構造体A、Bは夫々異なった
振動性状を呈して相対変形が生じる。図18に、板ばね
ダンパ−Dを適用した本発明の耐震制振構造物と、同一
規模の単独の従来構造物の応答変位の比較図を示す。図
示の破線はダンパ−のない従来構造物の応答変位を示
し、その変位は最上階で21cmである。それに対し本
発明の耐震制振構造物の変位は実線で示すように、剛性
の高い内部構造体Aは最上階で7cm、剛性の低い外部
構造体Bは最上階で16cmであり、従来の構造物より
も約25%低下する。この変位の低下は主にダンパ−D
が変形して地震エネルギ−が吸収されたことを示してい
る。従って二重構造体A、Bの間にダンパ−Dを介装す
ることにより、構造物の振動が減衰し変形を小さくする
ことが可能となる。
The damper action of a structure during an earthquake Hereinafter, examples of FIGS. 1 and 2 will be described. <A> In the seismic vibration damping structure of the present invention, the internal structure A and the external structure B have different vibration characteristics, that is, natural periods,
By connecting the structures A and B with the damper D as shown in the figure, the two structures A and B exhibit different vibration properties and undergo relative deformation during an earthquake. FIG. 18 shows a comparison diagram of the response displacement of the earthquake-resistant vibration damping structure of the present invention to which the leaf spring damper D is applied, and a single conventional structure of the same scale. The dashed line in the figure shows the response displacement of the conventional structure without a damper, the displacement being 21 cm on the top floor. On the other hand, as shown by the solid line, the displacement of the seismic vibration-damping structure of the present invention is 7 cm on the top floor of the highly rigid internal structure A and 16 cm on the top floor of the low rigid external structure B. Approximately 25% lower than the product. This decrease in displacement is mainly due to damper D
Indicates that the seismic energy has been absorbed. Accordingly, by interposing the damper D between the double structures A and B, the vibration of the structure is attenuated and the deformation can be reduced.

【0027】<ロ>前記ダンパ−Dの設置に際しては、
振動特性、即ち固有周期の異なる構造体A、Bに対応し
て最適な状態にダンパ−Dを設定することにより、前記
構造物の振動を更に低減することができる。即ち、ダン
パ−Dの設置個数,設置箇所,ダンパ−Dの特性を適宜
に変えることによって、目的に合った最適な耐震制振構
造物の設計・構築を可能にする。
<B> When installing the damper D,
By setting the damper D in an optimal state corresponding to the vibration characteristics, that is, the structures A and B having different natural periods, the vibration of the structure can be further reduced. That is, by appropriately changing the number and locations of the dampers D, the locations of the dampers D, and the characteristics of the dampers D, it is possible to design and construct an optimal seismic vibration control structure suitable for the purpose.

【0028】<ハ>また、ダンパ−Dの設置個数、設置
箇所を考慮すると共に、一定の特性を持つダンパ−Dを
設定し、構造物の変形が小さくなるような構造体A、B
の固有周期を選定することにより、目的に合った耐震制
振構造物の設計・構築も可能である。
<C> In addition to considering the number and locations of the dampers D to be installed, the dampers D having a certain characteristic are set so that the structures A and B can reduce the deformation of the structures.
By selecting the natural period, it is possible to design and build a seismic vibration control structure that meets the purpose.

【0029】<ニ>大地震時に対しては、ダンパ−Dが
機能して地震エネルギ−が吸収され、構造物の変形が小
さくなることによって、構造体A、Bの骨組を構成する
柱や壁などの鉛直部材の塑性変形を小さく押さえること
ができるので、構造体A、Bの安全性が効果的に改善さ
れる。
<D> During a large earthquake, the damper D functions to absorb seismic energy and reduce the deformation of the structure, thereby reducing the columns and walls constituting the framework of the structures A and B. Since the plastic deformation of the vertical member such as the above can be suppressed to a small level, the safety of the structures A and B is effectively improved.

【0030】<ホ>尚、ダンパ−Dは鉛直荷重支持機構
(柱、梁及び壁)とは無関係であるため、ダンパ−D自
体の変形が鉛直荷重の支持能力を阻害することはない。
<E> Since the damper D is independent of the vertical load supporting mechanism (column, beam and wall), the deformation of the damper D itself does not hinder the vertical load supporting ability.

【0031】<ヘ>図16は構造体A、B間の側断面を
示し、(a)は平常時、(b)は地震時の状態を示し、
地震時にダンパ−Dが変形すると共に構造体Bが矢印の
方向に変形した状態である。図17は構造体A、B間の
昇降部28(階段、エスカレ−タ−等)の側断面を示
す。図中29は構造体A、B間を通行する張出し床であ
る。その他の符号は図1及び図2と同一符号が付してあ
る。
<F> FIG. 16 shows a side cross section between structures A and B, (a) showing a normal state, (b) showing a state at the time of an earthquake,
This is a state in which the damper D is deformed during the earthquake and the structure B is deformed in the direction of the arrow. FIG. 17 shows a side cross section of the elevating part 28 (stairs, escalator, etc.) between the structures A and B. In the figure, reference numeral 29 denotes an overhanging floor that passes between the structures A and B. Other reference numerals are the same as those in FIGS. 1 and 2.

【0032】[0032]

【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。 <イ>本発明の耐震制振構造物は、複数の構造体を並設
してなり、或いは内部構造体と外部構造体の二重構造体
からなり、各構造体の間にダンパ−を介装し連結したこ
とによって、 (a)構造物に作用する地震エネルギ−が著しく吸収さ
れるので、従来の構造物と比べて振動が少なく、変形を
小さくすることができる。 (b)その結果、合理的且つ経済的な構造物の設計・構
築が可能となる。 (c)また、大地震に対する構造物の安全性が飛躍的に
向上する。 (d)更に、従来の耐震制振構造物に予想される地震後
の補強は必要としない。 <ロ>固有周期が夫々異なる各構造体との間にダンパ−
を介装して連結したことによって、 (a)地震に対する構造物の変形を更に小さくすること
ができる。 (b)その結果、剛性が低い方の構造体の骨組は靭性性
能が向上する。 (c)またその結果、剛性が低い方の構造体の骨組
(柱、梁、壁)は、従来と比べて躯体数量が減少するの
で、設計・構築が容易且つ経済的である。 (d)更に、上記構造体の骨組が大きくならないので、
利用上、従来と比べて居住性が向上する。
As described above, the present invention has the following effects. <A> The anti-seismic structure according to the present invention comprises a plurality of structures arranged side by side, or a double structure consisting of an internal structure and an external structure, with a damper interposed between each structure. By mounting and connecting, (a) the seismic energy acting on the structure is remarkably absorbed, so that the vibration can be reduced and the deformation can be reduced as compared with the conventional structure. (B) As a result, a rational and economical structure can be designed and constructed. (C) Also, the safety of the structure against a large earthquake is dramatically improved. (D) Further, the post-earthquake reinforcement expected for conventional seismic vibration control structures is not required. <B> A damper is provided between each structure having a different natural period.
(A) The deformation of the structure due to the earthquake can be further reduced. (B) As a result, the skeleton of the structure having the lower rigidity has improved toughness performance. (C) As a result, the frame (column, beam, wall) of the structure having the lower rigidity has a reduced number of frames as compared with the related art, so that design and construction are easy and economical. (D) Further, since the frame of the above-mentioned structure does not become large,
In terms of use, livability is improved as compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る、耐震制振構造物の第1の実施
例を示す平面図
FIG. 1 is a plan view showing a first embodiment of an earthquake-resistant vibration control structure according to the present invention.

【図2】 図1の側断面図FIG. 2 is a side sectional view of FIG.

【図3】 本発明に係る、耐震制振構造物の第2の実施
例を示す平面図
FIG. 3 is a plan view showing a second embodiment of the seismic vibration damping structure according to the present invention.

【図4】 図3の側断面図FIG. 4 is a side sectional view of FIG. 3;

【図5】 第3の実施例を示す平面図FIG. 5 is a plan view showing a third embodiment.

【図6】 第4の実施例を示す平面図FIG. 6 is a plan view showing a fourth embodiment.

【図7】 第4の実施例の変化例を示す平面図FIG. 7 is a plan view showing a modification of the fourth embodiment.

【図8】(a)第5の実施例を示す平面図 (b)は(a)の斜視図8A is a plan view showing a fifth embodiment, and FIG. 8B is a perspective view of FIG.

【図9】 第6の実施例を示す平面図FIG. 9 is a plan view showing a sixth embodiment.

【図10】第7の実施例を示す平面図FIG. 10 is a plan view showing a seventh embodiment.

【図11】第8の実施例を示す平面図FIG. 11 is a plan view showing an eighth embodiment.

【図12】第9の実施例を示す平面図FIG. 12 is a plan view showing a ninth embodiment.

【図13】第10の実施例を示す平面図FIG. 13 is a plan view showing a tenth embodiment.

【図14】第11の実施例を示す(a)は(c)のa−
a視平面図 (b)は(c)のb−b視平面図 (c)は側断面図
FIGS. 14A and 14B show an eleventh embodiment; FIG.
(b) is a bb plan view of (c). (c) is a side sectional view.

【図15】第12の実施例を示す(a)は(b)のa−
a視平面図 (b)は側断面図
FIGS. 15A and 15B show a twelfth embodiment; FIG.
(a) is a side sectional view.

【図16】(a)、(b)は夫々平常時及び地震時の構
造体間の部分拡大側断面図
16 (a) and (b) are partially enlarged side sectional views between structures during normal times and during an earthquake, respectively.

【図17】構造体間における昇降部の側断面図FIG. 17 is a side sectional view of a lifting unit between structures.

【図18】第1の実施例の耐震制振構造物と従来構造物
の応答変位を比較した説明図
FIG. 18 is an explanatory diagram comparing response displacements of the seismic control structure of the first embodiment and a conventional structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 悦郎 神奈川県川崎市中原区今井南町441 (72)発明者 吉村 正憲 東京都新宿区西新宿三丁目2番26号 株式 会社田治見エンジニアリングサ−ビス内 (72)発明者 宮澤 正躬 東京都新宿区西新宿三丁目2番26号 株式 会社田治見エンジニアリングサ−ビス内 (72)発明者 柳澤 孝次 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 清田 清司 埼玉県浦和市大谷口994−2 (72)発明者 木村 康弘 神奈川県横浜市磯子区森1−15−1−411 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Etsuo Suzuki 441 Imai Minamicho, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Masanori Yoshimura 3-26 Nishishinjuku, Shinjuku-ku, Tokyo Tajimi Engineering Service Co., Ltd. (72) Inventor Masami Miyazawa 3-2-26-Nishi-Shinjuku, Shinjuku-ku, Tokyo Within Tajimi Engineering Service Co., Ltd. (72) Koji Yanagisawa 1-1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei (72) Inventor Seiji Kiyota 994-2 Otaniguchi, Urawa-shi, Saitama (72) Inventor Yasuhiro Kimura 1-15-1-411 Mori, Isogo-ku, Yokohama-shi, Kanagawa

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】構造物は複数の構造体を並設してなり、 各構造体の間にダンパ−を介装して連結したことを特徴
とする、 耐震制振構造物。
An anti-vibration structure comprising: a plurality of structures arranged side by side; and a damper interposed between the structures and connected to each other.
【請求項2】構造物は、中央に位置する内部構造体と、
その外側の外部構造体との二重構造体からなり、 同構造体の間にダンパ−を介装して連結したことを特徴
とする、 耐震制振構造物。
2. The structure comprises: a centrally located internal structure;
An anti-seismic structure comprising a double structure with an outer structure on the outside thereof, wherein a damper is interposed between the structures and connected.
【請求項3】請求項1又は2に記載の耐震制振構造物に
おいて、 構造物の各構造体は固有周期が異なる構造体で構成した
ことを特徴とする、 耐震制振構造物。
3. An anti-seismic vibration damping structure according to claim 1 or 2, wherein each of the structural members of the structural member has a different natural period.
【請求項4】請求項1乃至3のいずれかに記載の耐震制
振構造物において、 構造物の各構造体は平面形状が円形又は多角形であるこ
とを特徴とする、 耐震制振構造物。
4. The vibration-damping structure according to claim 1, wherein each of the structures has a circular or polygonal planar shape. .
【請求項5】請求項2乃至4のいずれかに記載の耐震制
振構造物において、 構造物の各構造体は平面が同心形状であることを特徴と
する、 耐震制振構造物。
5. An anti-vibration structure according to claim 2, wherein each of the structures has a concentric flat surface.
【請求項6】請求項2乃至5のいずれかに記載の耐震制
振構造物において、 外部構造体は複数の構造体に分割して構成したことを特
徴とする、 耐震制振構造物。
6. An anti-seismic structure according to claim 2, wherein the outer structure is divided into a plurality of structures.
【請求項7】請求項2乃至5のいずれかに記載の耐震制
振構造物において、 内部構造体及び外部構造体は側断面の形状が山形状であ
ることを特徴とする、 耐震制振構造物。
7. The anti-seismic vibration damping structure according to claim 2, wherein the inner structure and the outer structure have a mountain-shaped cross section in a side section. Stuff.
【請求項8】請求項2乃至5のいずれかに記載の耐震制
振構造物において、 内部構造体又は外部構造体は側断面の形状が山形状であ
ることを特徴とする、 耐震制振構造物。
8. The anti-seismic vibration damping structure according to claim 2, wherein the inner structure or the outer structure has a mountain-shaped side cross section. Stuff.
JP9225764A 1997-08-07 1997-08-07 Earthquake resistive damping construction Pending JPH1162316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9225764A JPH1162316A (en) 1997-08-07 1997-08-07 Earthquake resistive damping construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9225764A JPH1162316A (en) 1997-08-07 1997-08-07 Earthquake resistive damping construction

Publications (1)

Publication Number Publication Date
JPH1162316A true JPH1162316A (en) 1999-03-05

Family

ID=16834449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9225764A Pending JPH1162316A (en) 1997-08-07 1997-08-07 Earthquake resistive damping construction

Country Status (1)

Country Link
JP (1) JPH1162316A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building
JP2002357011A (en) * 2001-06-04 2002-12-13 Shimizu Corp Vibration-control structure
JP2008202215A (en) * 2007-02-16 2008-09-04 Hiroshi Odajima Apparatus giving earthquake resistance to existing house
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP2009512796A (en) * 2005-10-21 2009-03-26 オーヴ・アラップ・アンド・パートナーズ・インターナショナル・リミテッド Damping of tall structures
JP2010248835A (en) * 2009-04-17 2010-11-04 Ohbayashi Corp Vibration control structure and method of vibration control
JP2011058175A (en) * 2009-09-07 2011-03-24 Shimizu Corp Seismic control structure
JP2012211506A (en) * 2007-06-12 2012-11-01 Ohbayashi Corp Vibration control building, vibration control method
JP2013124476A (en) * 2011-12-14 2013-06-24 Taisei Corp Base-isolation structure
JP2013181366A (en) * 2012-03-05 2013-09-12 Aseismic Devices Co Ltd Vibration control device
JP2016020573A (en) * 2014-07-14 2016-02-04 株式会社大林組 Vibration control structure of structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152758U (en) * 1984-03-21 1985-10-11 鹿島建設株式会社 double-tube chimney
JPS6128857U (en) * 1984-07-27 1986-02-21 日立造船エンジニアリング株式会社 Multiple tubes with shock absorbers
JPS63293284A (en) * 1987-05-22 1988-11-30 株式会社竹中工務店 Vibration damping building
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152758U (en) * 1984-03-21 1985-10-11 鹿島建設株式会社 double-tube chimney
JPS6128857U (en) * 1984-07-27 1986-02-21 日立造船エンジニアリング株式会社 Multiple tubes with shock absorbers
JPS63293284A (en) * 1987-05-22 1988-11-30 株式会社竹中工務店 Vibration damping building
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building
JP4700816B2 (en) * 2001-01-17 2011-06-15 株式会社竹中工務店 Building construction method and seismic control building with excellent seismic safety
JP2002357011A (en) * 2001-06-04 2002-12-13 Shimizu Corp Vibration-control structure
JP2009512796A (en) * 2005-10-21 2009-03-26 オーヴ・アラップ・アンド・パートナーズ・インターナショナル・リミテッド Damping of tall structures
JP2008202215A (en) * 2007-02-16 2008-09-04 Hiroshi Odajima Apparatus giving earthquake resistance to existing house
JP2012211506A (en) * 2007-06-12 2012-11-01 Ohbayashi Corp Vibration control building, vibration control method
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP2010248835A (en) * 2009-04-17 2010-11-04 Ohbayashi Corp Vibration control structure and method of vibration control
JP2011058175A (en) * 2009-09-07 2011-03-24 Shimizu Corp Seismic control structure
JP2013124476A (en) * 2011-12-14 2013-06-24 Taisei Corp Base-isolation structure
JP2013181366A (en) * 2012-03-05 2013-09-12 Aseismic Devices Co Ltd Vibration control device
JP2016020573A (en) * 2014-07-14 2016-02-04 株式会社大林組 Vibration control structure of structure

Similar Documents

Publication Publication Date Title
JPH1162316A (en) Earthquake resistive damping construction
JPH09235890A (en) Vibration damping reinforcing structure for existing building
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JP2004211288A (en) Structure of building
JP3811320B2 (en) Bearing wall
JP2009052251A (en) Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP4423640B2 (en) Building structure
JP2001140343A (en) Theree-storied dwelling house
JP2006249756A (en) Frame structure of building
JPH0874317A (en) Skeleton structure of building
JP2000328810A (en) Vibration control frame
JPH10280725A (en) Damping skeleton construction
JPH11350776A (en) Vibration-damping building
JPH11172953A (en) Flexible and rigid combination structure
JP7286904B2 (en) building
JP2810927B2 (en) Damping beam
JP4402852B2 (en) Vibration control structure
JP2002309797A (en) Method of constructing frame for multistory precast and pre-stressed concrete building
JP3049800U (en) Passive vibration damping structure
WO1998030771A1 (en) Passive damping system
JP3134025B2 (en) Deformation control vibration control structure of building
JP3218520B2 (en) Building frame structure
JP2002295050A (en) Multistory building
JP3116824B2 (en) Beam damper structure
JPH11141176A (en) Overdamping structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530