JP2009052251A - Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building - Google Patents

Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building Download PDF

Info

Publication number
JP2009052251A
JP2009052251A JP2007218851A JP2007218851A JP2009052251A JP 2009052251 A JP2009052251 A JP 2009052251A JP 2007218851 A JP2007218851 A JP 2007218851A JP 2007218851 A JP2007218851 A JP 2007218851A JP 2009052251 A JP2009052251 A JP 2009052251A
Authority
JP
Japan
Prior art keywords
building
beam member
vibration
damping
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007218851A
Other languages
Japanese (ja)
Other versions
JP5338050B2 (en
Inventor
Katsuhisa Nishimura
勝尚 西村
Yoshiyuki Fukumoto
義之 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007218851A priority Critical patent/JP5338050B2/en
Publication of JP2009052251A publication Critical patent/JP2009052251A/en
Application granted granted Critical
Publication of JP5338050B2 publication Critical patent/JP5338050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration controlled building which is constructed by connecting an external building having a rigid-frame structure and an internal building together by vibration control members, wherein the vibration controlled building has imparted thereto long natural period without reducing the number of columns and beams of the external building. <P>SOLUTION: The vibration controlled building 10 is formed of the external building 20 constructed of the rigid-frame structure, the internal building 30, and the vibration control dampers 41 connecting between the buildings 20, 30. To connect between the beam members 23 and the column members 21 in the external building 20 constructed of the rigid-frame structure, at least one of the beam member is formed such that a member end or the vicinity of the member end of the beam member 23 has a flexural rigidity smaller than the flexural rigidity at a main portion of the beam member 23. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の構造体の間を制振部材により接続してなる制振建物及び建物の制振方法に関する。   The present invention relates to a vibration control building in which a plurality of structures are connected by a vibration control member, and a vibration control method for the building.

従来より、高層建物では、地震力や風荷重による大きな水平力が入力されると、それに応じて大きな変位が生じるため、柱や梁の本数を増やす、柱や梁の断面積を大きくする、又は柱梁架構内に耐震壁を設けるなどの方法により、耐震性を向上している。しかしながら、これらの方法では、建物の開口面積が減ってしまったり、建物の居室空間が削られてしまったりして、平面計画の障害となるという問題があった。   Conventionally, in a high-rise building, if a large horizontal force due to seismic force or wind load is input, a large displacement occurs accordingly, so increase the number of columns and beams, increase the cross-sectional area of the columns and beams, or Seismic resistance has been improved by installing a seismic wall in the column beam frame. However, these methods have a problem that the floor plan is obstructed because the opening area of the building is reduced or the room space of the building is cut.

そこで、本願出願人らは、建物を構成するラーメン架構を有する外部建物内に、剛性が高く振動特性の異なる耐震壁やラーメン架構などの独立部材要素を独立して設け、この外部建物と独立部材要素との間を制振ダンパーにより接続した制振構造を提案している。このような制振構造によれば、外部建物と独立部材要素とが変形モードが異なることを利用して、制振ダンパーにより効率よく振動エネルギーを吸収することができ、これにより外部建物の剛性を高くしなくても耐震性を向上できるので、上記のような問題を解消できる(例えば、特許文献1及び2参照)。
特開2006―241783号公報 特開2005―180089号公報
Therefore, the applicants of the present application independently provided independent member elements such as a seismic wall and a rigid frame having high rigidity and different vibration characteristics in an external building having a rigid frame constituting the building. We propose a damping structure that connects elements with damping dampers. According to such a vibration control structure, the vibration energy can be efficiently absorbed by the vibration damper by utilizing the fact that the deformation modes of the external building and the independent member element are different, thereby improving the rigidity of the external building. Since the earthquake resistance can be improved without increasing it, the above problems can be solved (see, for example, Patent Documents 1 and 2).
JP 2006-241783 A Japanese Patent Laid-Open No. 2005-180089

上記の構成の建物では、外部建物と、独立部材要素との固有周期の差が大きいほど、制振性能を向上することができる。このため、外部建物の固有周期を長周期化するために、外部建物の柱や梁の寸法を小さくしたり、柱や梁の数を減らすことが考えられる。しかしながら、外部建物に作用する長期荷重を支持しなければならず、柱や梁の数を減らすことには限度がある。   In the building having the above-described configuration, the vibration control performance can be improved as the difference in natural period between the external building and the independent member element is larger. For this reason, in order to lengthen the natural period of an external building, it is possible to reduce the dimension of the column and beam of an external building, or to reduce the number of columns and beams. However, long-term loads acting on external buildings must be supported, and there are limits to reducing the number of columns and beams.

本発明は、上記の問題に鑑みなされたものであり、ラーメン架構を有する外部建物と内部建物との間を制振部材で連結してなる制振建物において、外部建物に作用する長期荷重を支持した状態で固有周期をより長周期化することを目的とする。   The present invention has been made in view of the above-described problems, and supports a long-term load acting on an external building in a vibration-damped building in which an external building having a rigid frame and an internal building are connected by a vibration damping member. The purpose is to make the natural period longer in this state.

本発明の制振建物は、少なくとも一つはラーメン架構からなる複数の構造体と、これら複数の構造体の間を接続するように設けられた制振部材と、を備えた制振建物であって、 前記ラーメン架構からなる構造体における梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成されていることを特徴とする。
ここでいう梁部材の柱部材との材端部の近傍とは、例えば、梁部材の材端部から梁せいの1.5倍の距離の位置までの範囲をいう。また、梁部材の本体部分とは、材端部の近傍を除く中央部のことをいう。
上記の制振建物において、前記複数の構造体は、これらの低層部において、構造的に一体に構築されていてもよい。
A vibration-damping building of the present invention is a vibration-damping building including a plurality of structures, at least one of which is a ramen frame, and a vibration-damping member provided so as to connect the plurality of structures. In the joining of the beam member and the column member in the structure composed of the rigid frame, at least one of the bending rigidity at the material end of the beam member or in the vicinity thereof is more than the bending rigidity of the main body portion of the beam member. Is also configured to be smaller.
Here, the vicinity of the end of the beam member and the column member refers to, for example, a range from the end of the beam member to a position 1.5 times the distance of the beam. Further, the main body portion of the beam member refers to a central portion excluding the vicinity of the end portion of the material.
In the above-described vibration-damping building, the plurality of structures may be structurally integrated in these low-rise parts.

また、本発明の建物の制振方法は、前記建物を、少なくとも一つはラーメン架構からなる複数の構造体と、これら複数の構造体の間を接続するように設けられた制振部材と、から構成し、前記複数の構造体の間を制振部材により接続し、前記ラーメン架構からなる構造体における梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成することを特徴とする。   Further, in the building vibration damping method of the present invention, a plurality of structures, at least one of which is a ramen frame, and a vibration damping member provided so as to connect the plurality of structures to the building, In the joining of the beam member and the column member in the structure composed of the rigid frame, at least one of the material ends of the beam member or The bending rigidity in the vicinity thereof is configured to be smaller than the bending rigidity of the main body portion of the beam member.

また、本発明の鉄筋コンクリート造の建物は、梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成されていることを特徴とする。   In the reinforced concrete building according to the present invention, at least one of the beam members and the column members has a bending rigidity at or near the end of the beam member, and the bending rigidity of the main body portion of the beam member. It is comprised so that it may become smaller than this.

また、本発明の鉄筋コンクリート造の建物を長周期化する方法は、前記建物における梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成することを特徴とする。   Further, in the method of lengthening a reinforced concrete building of the present invention, in the joining of the beam member and the column member in the building, at least one of the bending rigidity at the material end of the beam member or in the vicinity thereof, It is characterized by being configured to be smaller than the bending rigidity of the main body portion of the beam member.

本発明によれば、梁部材の材端部又はその近傍における曲げ剛性を小さくすることにより、長期荷重を支持可能なまま、外部建物の固有周期を長周期化することができる。   According to the present invention, by reducing the bending rigidity at the end of the beam member or in the vicinity thereof, the natural period of the external building can be lengthened while supporting a long-term load.

以下、本発明の制振建物の一実施形態を図面を参照しながら詳細に説明する。
図1は、本実施形態の制振建物10の構成を示す鉛直方向断面図である。また、図2は、制振建物10の制振ダンパー41が取り付けられた階の水平方向断面図である。図1に示すように、本実施形態の制振建物10は、内部に上下方向に伸びるボイド空間40を有する外部建物20と、外部建物20のボイド空間40内に構築された内部建物30と、外部建物20と内部建物30とを接続するようにボイド空間40内の所定の高さに設けられた複数の制振ダンパー41と、を備える。
Hereinafter, an embodiment of a vibration control building of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a vertical cross-sectional view showing the configuration of the vibration-damping building 10 of the present embodiment. FIG. 2 is a horizontal cross-sectional view of the floor to which the damping damper 41 of the damping building 10 is attached. As shown in FIG. 1, the damping building 10 of the present embodiment includes an external building 20 having a void space 40 extending in the vertical direction inside, an internal building 30 constructed in the void space 40 of the external building 20, A plurality of vibration dampers 41 provided at a predetermined height in the void space 40 so as to connect the external building 20 and the internal building 30 are provided.

外部建物20は、平面視矩形に形成され、内部に上下方向に延びるボイド空間40を有するラーメン構造からなる鉄筋コンクリート造の建物である。後述するように、外部建物20は、少なくとも一部の梁部材23の梁材端部における曲げ剛性が、梁部材23の中央付近の曲げ剛性よりも低くなっているため、低剛性となっている。   The external building 20 is a reinforced concrete building formed of a rigid frame structure having a void space 40 formed in a rectangular shape in plan view and extending in the vertical direction. As will be described later, the external building 20 has low rigidity because the bending rigidity at the end of the beam member of at least some of the beam members 23 is lower than the bending rigidity near the center of the beam member 23. .

内部建物30は、外部建物20のボイド空間40内に構築された鉄筋コンクリート造の建物であり、外周壁に耐震壁が用いられている。このように外周壁に耐震壁を用いることにより高い剛性とすることができる。   The internal building 30 is a reinforced concrete building constructed in the void space 40 of the external building 20, and a seismic wall is used for the outer peripheral wall. Thus, it can be made high rigidity by using a seismic wall for an outer peripheral wall.

また、制振ダンパー41は、地震動などの外力が作用した場合に、外部建物20と内部建物30の変形差が大きくなるような階層において、図2に示すように、内部建物30の四隅から水平に2方向に延びるように設けられ、外部建物20のボイド空間40に接続されている。これにより、外力が作用して内部建物30に対して外部建物20が、水平方向何れの方向に相対移動しても、制振ダンパー41により振動エネルギーを吸収することができる。このような制振ダンパー41としては、オイルダンパー、摩擦ダンパー、粘性ダンパー、粘弾性ダンパー、履歴型ダンパー、又はこれらを組み合わせたものを用いることができる。なお、本実施形態では、制振ダンパー41を平面的に配置するものとしたが、内部建物30と外部建物20の異なる高さの位置を結ぶように設置することもできる。   Further, as shown in FIG. 2, the vibration damper 41 is arranged horizontally from the four corners of the internal building 30 in a hierarchy where the deformation difference between the external building 20 and the internal building 30 becomes large when an external force such as earthquake motion is applied. Are provided to extend in two directions, and are connected to the void space 40 of the external building 20. Thereby, even if the external building 20 moves relative to the internal building 30 in any direction in the horizontal direction due to an external force, the vibration damping damper 41 can absorb the vibration energy. As such a vibration damper 41, an oil damper, a friction damper, a viscous damper, a viscoelastic damper, a hysteretic damper, or a combination thereof can be used. In the present embodiment, the damping damper 41 is arranged in a plane, but it can be installed so as to connect different positions of the internal building 30 and the external building 20.

制振建物10に外力が作用すると、外部建物20に比べて内部建物30の剛性が高いため、外部建物20及び内部建物30は、異なる振動モードで振動する。この際、上記のように、制振ダンパー41が外部建物20と内部建物30の変形差が大きくなるような位置を接続するように取り付けられているため、制振ダンパー41により振動エネルギーを吸収することができる。   When an external force is applied to the damping building 10, the rigidity of the internal building 30 is higher than that of the external building 20. Therefore, the external building 20 and the internal building 30 vibrate in different vibration modes. At this time, as described above, since the vibration damper 41 is attached so as to connect the position where the deformation difference between the external building 20 and the internal building 30 is large, the vibration damper 41 absorbs vibration energy. be able to.

ここで、図3は、上記のような制振建物10における外部建物20の固有周期T1と内部建物30の固有周期T2とを複数通りに設定し、各場合の最大応答変形の低減効果を示すグラフである。なお、グラフの縦軸は、最大応答変形比を、外部建物20及び内部建物30の固有周期T1,T2をともに4[s]とした(すなわち、制振ダンパー41において振動エネルギーを吸収しない)場合に対する比率で示し、横軸は制振ダンパーの減衰係数を示す。   Here, FIG. 3 shows the reduction effect of the maximum response deformation in each case by setting the natural period T1 of the external building 20 and the natural period T2 of the internal building 30 in the vibration-damping building 10 as described above. It is a graph. The vertical axis of the graph represents the case where the maximum response deformation ratio is 4 [s] for both the natural periods T1 and T2 of the external building 20 and the internal building 30 (that is, the vibration damper 41 does not absorb vibration energy). The horizontal axis indicates the damping coefficient of the damping damper.

同図に示すように、減衰係数によらず、固有周期の差を大きくするほど最大応答変形の低減効果は大きくなることがわかる。すなわち、内部建物30の固有周期を短くし、外部建物20の固有周期を長くするほど、制振建物10の制振効果が向上することとなる。   As shown in the figure, it can be seen that the effect of reducing the maximum response deformation increases as the difference in natural period increases, regardless of the attenuation coefficient. That is, the damping effect of the damping building 10 is improved as the natural period of the internal building 30 is shortened and the natural period of the external building 20 is increased.

そこで、本実施形態の制振建物10では、以下に説明する方法により、外部建物20の梁の柱との接合における梁部材23の材端部の曲げ剛性及び曲げ耐力を、梁本体の曲げ剛性及び曲げ耐力に比べて小さくすることにより外部建物20の固有周期を長くするものとした。   Therefore, in the vibration-damping building 10 of the present embodiment, the bending rigidity and bending strength of the material end portion of the beam member 23 in the joint with the beam column of the external building 20 are determined by the method described below, and the bending rigidity of the beam body is determined. In addition, the natural period of the external building 20 is lengthened by making it smaller than the bending strength.

図4は、外部建物20の柱梁の接合部を示す図であり、(A)は鉛直断面図であり、(B)は(A)におけるI−I´断面図であり、(C)は(A)におけるII−II´断面図である。同図に示すように、柱部材21の梁部材23が接続される部分には水平方向に延びるようにコンクリートコッター102が形成されている。また、梁部材23の端面にはこのコンクリートコッター102に対応する形状の水平方向に延びる凹部104が設けられている。梁部材23は、柱部材21に形成されたコンクリートコッター102に凹部104を嵌合させることにより接合されている。梁部材23に作用する鉛直方向荷重はコンクリートコッター102を介して柱部材21に伝達される。   4A and 4B are diagrams showing the joints of the column beams of the external building 20, wherein FIG. 4A is a vertical cross-sectional view, FIG. 4B is a cross-sectional view taken along line II ′ in FIG. It is II-II 'sectional drawing in (A). As shown in the figure, a concrete cotter 102 is formed at a portion of the column member 21 to which the beam member 23 is connected so as to extend in the horizontal direction. Further, a concave portion 104 extending in the horizontal direction having a shape corresponding to the concrete cotter 102 is provided on the end surface of the beam member 23. The beam member 23 is joined by fitting the concave portion 104 to the concrete cotter 102 formed on the column member 21. A vertical load acting on the beam member 23 is transmitted to the column member 21 via the concrete cotter 102.

また、通常は、梁主筋が柱部材21内に定着されているが、本実施形態では、梁主筋27を柱部材21に定着せず、梁部材23の中央において柱部材21と梁部材23とに亘ってダボ鉄筋101が埋設されている。通常は、梁部材外周部に埋設された梁主筋が柱部材に定着されることにより、曲げ剛性及び曲げ耐力が向上しているが、本実施形態では、ダボ鉄筋101を梁部材23の中央に埋設する構成としたため、梁部材23の材端部における曲げ剛性が梁部材23の本体の曲げ剛性及び曲げ耐力に比べて低くなる。   Normally, the beam main reinforcement is fixed in the column member 21, but in this embodiment, the beam main reinforcement 27 is not fixed to the column member 21, and the column member 21 and the beam member 23 are arranged at the center of the beam member 23. A dowel reinforcing bar 101 is embedded over the entire area. Normally, the bending strength and the bending strength are improved by fixing the main beam embedded in the outer periphery of the beam member to the column member. However, in this embodiment, the dowel reinforcing bar 101 is placed at the center of the beam member 23. Since the structure is embedded, the bending rigidity at the end portion of the beam member 23 is lower than the bending rigidity and bending strength of the main body of the beam member 23.

また、柱部材21のコンクリートコッター102の周囲にはゴムや発泡スチロールからなる緩衝材103が取り付けられている。これにより、梁部材23の端面の凹部104以外の部分と、柱部材21との間には緩衝材103が介在するため、柱梁接合部における梁部材23の曲げ変形に対する拘束を緩和することができる。   Further, around the concrete cotter 102 of the column member 21, a cushioning material 103 made of rubber or styrene foam is attached. Thereby, since the buffer material 103 is interposed between the column member 21 and the portion other than the concave portion 104 on the end face of the beam member 23, it is possible to relax the constraint on the bending deformation of the beam member 23 at the column beam joint portion. it can.

以上説明したように、本実施形態によれば、外部建物20の梁部材23の材端部における曲げ剛性及び曲げ耐力を低下させ、梁部材23と柱部材21との接合をピン接合に近づけることができるため、外部建物20の剛性を低下させて、固有周期を長周期化することができる。これにより、図3を参照して説明したように、制振建物10の制振性能を向上することができる。   As described above, according to the present embodiment, the bending rigidity and the bending strength at the material end portion of the beam member 23 of the external building 20 are reduced, and the joining of the beam member 23 and the column member 21 is brought close to the pin joining. Therefore, the rigidity of the external building 20 can be reduced and the natural period can be lengthened. Thereby, as demonstrated with reference to FIG. 3, the damping performance of the damping building 10 can be improved.

なお、本実施形態では、柱部材21のコンクリートコッター102と梁部材23の凹部104とを嵌合させるとともに、柱部材21と梁部材23とに亘ってダボ鉄筋101を埋設することにより柱部材21と梁部材23とを接合しているが、何れか一方により柱部材21と梁部材23とを接合することとしてもよい。   In this embodiment, the concrete cotter 102 of the column member 21 and the recess 104 of the beam member 23 are fitted together, and the dowel reinforcing bar 101 is embedded between the column member 21 and the beam member 23 to thereby embed the column member 21. However, the column member 21 and the beam member 23 may be bonded together by either one of them.

<第2実施形態>
以下、本発明の制振建物の第2実施形態を説明する。本実施形態の制振建物は、第1実施形態と、外部建物の柱梁接合部の構成が異なり、その他の部位は同様の構成であるため、柱梁接合部の構成について説明する。本実施形態では、梁部材の断面中央に、鉄筋コンクリート部材に比べて剛性の低いH型鋼を端部より突出するように埋設し、このH型鋼を柱部材に一体に接合することにより、梁材端部の曲げ剛性及び曲げ耐力を小さくしている。
<Second Embodiment>
Hereinafter, a second embodiment of the vibration-damping building of the present invention will be described. Since the vibration-damping building of this embodiment is different from the first embodiment in the configuration of the column beam joints of the external building and the other parts have the same configuration, the configuration of the column beam joints will be described. In this embodiment, an H-shaped steel having a lower rigidity than that of a reinforced concrete member is embedded in the center of the cross section of the beam member so as to protrude from the end portion, and this H-shaped steel is integrally joined to the column member, thereby The bending rigidity and bending strength of the part are reduced.

図5は、本実施形態の外部建物20の柱梁接合部の構成を示す鉛直断面図である。同図に示すように、本実施形態では、梁部材23の断面中央にH型鋼111を端面から突出するように埋設し、このH型鋼111の突出した部分を柱部材21内に埋設することにより柱部材21と梁部材23とを接合している。また、梁部材23の柱梁接合部における曲げ変形を拘束しないように、柱部材21と梁部材23との間には緩衝材112を介在させている。なお、緩衝材112としては、上記の実施形態と同様にゴムや発泡スチロールなどの弾性を有し、コンクリートの成分により腐食を受けないような材料を用いることができる。   FIG. 5 is a vertical cross-sectional view showing the configuration of the column beam joint of the external building 20 of the present embodiment. As shown in the figure, in the present embodiment, the H-shaped steel 111 is embedded in the center of the cross section of the beam member 23 so as to protrude from the end surface, and the protruding portion of the H-shaped steel 111 is embedded in the column member 21. The column member 21 and the beam member 23 are joined. Further, a buffer material 112 is interposed between the column member 21 and the beam member 23 so as not to restrain bending deformation at the beam-column joint portion of the beam member 23. As the buffer material 112, a material having elasticity such as rubber and polystyrene foam and not corroded by the components of the concrete can be used as in the above embodiment.

また、上記のように梁部材23より突出するH型鋼111の端部を柱部材21に埋設せず、図6に示すように、ガセットプレートにより柱部材21に取り付けてもよい。なお、図中、(A)は鉛直断面図であり、(B)は、水平断面図である。ガセットプレート122はH型鋼23の表裏面にボルト122により取り付けられており、このガセットプレート122が柱部材21に長ボルト125により固定されることにより、柱部材21と梁部材とが接合されている。また、H型鋼23の周囲には梁部材23の曲げ変形を拘束しないように、ゴムや発泡スチロールなどからなる緩衝材123が取り付けられている。   Further, the end portion of the H-shaped steel 111 protruding from the beam member 23 as described above may be attached to the column member 21 with a gusset plate as shown in FIG. 6 without being embedded in the column member 21. In the figure, (A) is a vertical sectional view, and (B) is a horizontal sectional view. The gusset plate 122 is attached to the front and back surfaces of the H-shaped steel 23 with bolts 122, and the column member 21 and the beam member are joined by fixing the gusset plate 122 to the column member 21 with the long bolt 125. . Further, around the H-shaped steel 23, a cushioning material 123 made of rubber, styrene foam or the like is attached so as not to restrain the bending deformation of the beam member 23.

本実施形態によっても、梁部材23に作用する長期荷重はH型鋼111を介して柱部材21に伝達される。また、H型鋼121は、鉄筋コンクリート造の梁部材23に比べて曲げ剛性が低く、さらに、柱梁接合部の上部及び下部に緩衝材112、123を介在させ、梁部材23の曲げ変形を拘束しないようにしたため、梁部材23の接合端部における曲げ剛性及び曲げ耐力が梁部材23の本体の曲げ剛性及び曲げ耐力に比べて低くなる。これにより、上記実施形態と同様に、外部建物20の固有周期が長周期化され、制振建物10の制振性能を向上することができる。   Also in this embodiment, the long-term load acting on the beam member 23 is transmitted to the column member 21 via the H-shaped steel 111. Further, the H-shaped steel 121 has lower bending rigidity than the reinforced concrete beam member 23, and further, buffer materials 112 and 123 are interposed at the upper and lower portions of the column beam joint portion, so that bending deformation of the beam member 23 is not constrained. As a result, the bending rigidity and bending strength at the joint end of the beam member 23 are lower than the bending rigidity and bending strength of the main body of the beam member 23. Thereby, the natural period of the external building 20 is lengthened similarly to the said embodiment, and the damping performance of the damping building 10 can be improved.

<第3実施形態>
以下、本発明の制振建物の第3実施形態を説明する。本実施形態の制振建物も、第1実施形態と外部建物20の柱梁接合部の構成が異なるものの、その他の部位は同様の構成であるため、柱梁接合部の構成について説明する。本実施形態では、梁端部の梁せいを小さくすることにより梁端部の曲げ剛性及び曲げ耐力を小さくしている。
<Third embodiment>
Hereinafter, a third embodiment of the vibration-damping building of the present invention will be described. Although the vibration-damping building of the present embodiment is different in the configuration of the column beam joints of the first embodiment and the external building 20, the other parts have the same configuration, so the configuration of the column beam joints will be described. In the present embodiment, the bending rigidity and the bending strength of the beam end are reduced by reducing the beam at the beam end.

図7は、本実施形態の外部建物の柱梁接合部の構成の例を示す図である。同図に示すように、梁部材23の接合端部付近には、端部に向かって梁せいが小さくなるような傾斜が設けられている。また、梁部材23には、梁端部より突出するように梁主筋131、132が埋設されており、これら梁主筋131、132の突出した部分は柱部材21内に埋設されている。なお、梁部材23の柱梁接合部における断面は、鉛直荷重を支持するのに必要となる最小限の断面となっている。   FIG. 7 is a diagram illustrating an example of the configuration of the column beam joint portion of the external building according to the present embodiment. As shown in the figure, in the vicinity of the joint end portion of the beam member 23, an inclination is provided so that the beam is reduced toward the end portion. Further, beam main bars 131 and 132 are embedded in the beam member 23 so as to protrude from the end of the beam, and the protruding portions of these beam main bars 131 and 132 are embedded in the column member 21. Note that the cross section of the beam member 23 at the beam-column joint is the minimum cross section required to support the vertical load.

また、必ずしも、柱部材21と梁部材23とに亘って梁主筋131、132を配置する必要はなく、例えば、図8に示すように柱部材21と梁部材23とに亘ってダボ筋142を埋設する構成とすることもできる。同図の構成では、梁部材23の端部に切り欠き部143を形成することで、梁材端部の剛性を更に小さくしている。   Further, it is not always necessary to arrange the beam main bars 131 and 132 across the column member 21 and the beam member 23. For example, as shown in FIG. 8, dowel bars 142 are arranged across the column member 21 and the beam member 23. It can also be set as the structure buried. In the configuration shown in the figure, the notch 143 is formed at the end of the beam member 23 to further reduce the rigidity of the end of the beam member.

本実施形態によっても、梁材端部の梁せいを小さくしたため、梁部材23の接合端部における曲げ剛性及び曲げ耐力が梁部材23の本体の曲げ剛性及び曲げ耐力に比べて低くなる。これにより、外部建物20の固有周期が長周期化され、制振建物10の制振性能を向上することができる。   Also according to the present embodiment, since the beam length at the end of the beam member is reduced, the bending rigidity and bending strength at the joint end of the beam member 23 are lower than the bending rigidity and bending strength of the main body of the beam member 23. Thereby, the natural period of the external building 20 is lengthened, and the damping performance of the damping building 10 can be improved.

<第4実施形態>
以下、本発明の制振建物の第4実施形態を説明する。本実施形態も、第1実施形態と外部建物の柱梁接合部の構成が異なるものの、その他の部位は同様の構成であるため、柱梁接合部の構成を説明する。本実施形態では、柱部材に突出部を設け、この突出部の上部に梁部材を載置している。
<Fourth embodiment>
Hereinafter, 4th Embodiment of the vibration-damping building of this invention is described. Although this embodiment also differs from the first embodiment in the configuration of the column beam joints of the external building, the other parts have the same configuration, so the configuration of the column beam joints will be described. In this embodiment, the column member is provided with a protrusion, and the beam member is placed on the protrusion.

図9は、本実施形態の外部建物20の柱梁接合部の構成を示す図である。同図に示すように、本実施形態では、柱部材21の側面に梁部材23を受けるための突出部151を設けるとともに、梁部材23の端部の下部に切り欠き部155を設け、梁部材23を、柱部材21の突出部151の上面と梁部材23の切り欠き部155の内面とが当接するように載置することにより、梁部材23を支持している。これにより、梁部材23に作用する長期荷重は、柱部材21に伝達される。また、梁部材23の上部と柱部材21との間には、スリット154が設けられており、柱部材21の突出部151と梁部材23の切り欠き部155の対抗する面の間には、梁部材23の曲げを拘束しないように緩衝材152が介在されている。また、梁部材23と柱部材21とを跨ぐようにダボ筋153が埋設されており、梁部材23が水平方向に移動してしまうのを防止している。   FIG. 9 is a diagram illustrating a configuration of a column beam joint portion of the external building 20 according to the present embodiment. As shown in the figure, in the present embodiment, a protrusion 151 for receiving the beam member 23 is provided on the side surface of the column member 21, and a notch 155 is provided below the end portion of the beam member 23. 23 is supported such that the upper surface of the protruding portion 151 of the column member 21 and the inner surface of the notched portion 155 of the beam member 23 are in contact with each other. Thereby, a long-term load acting on the beam member 23 is transmitted to the column member 21. In addition, a slit 154 is provided between the upper portion of the beam member 23 and the column member 21, and between the opposing surface of the protruding portion 151 of the column member 21 and the notch portion 155 of the beam member 23, A buffer material 152 is interposed so as not to restrain the bending of the beam member 23. Further, dowel bars 153 are embedded so as to straddle the beam member 23 and the column member 21, and the beam member 23 is prevented from moving in the horizontal direction.

本実施形態によれば、梁部材23に作用する長期荷重は突出部を介して柱部材21に伝達されるため、この荷重を支持することができる。また、梁部材23と柱部材21の接合部の上部にはスリット154を設けるとともに、下部には緩衝材152を介在する構成としたため、梁材端部の曲げ剛性が低下し、梁部材23本体の曲げ剛性に比べて低くなる。これにより、外部建物20の固有周期が長周期化され、制振建物10の制振性能を向上することができる。   According to the present embodiment, since the long-term load acting on the beam member 23 is transmitted to the column member 21 via the protruding portion, this load can be supported. In addition, since the slit 154 is provided at the upper part of the joint between the beam member 23 and the column member 21 and the buffer material 152 is interposed at the lower part, the bending rigidity at the end of the beam material is reduced, and the beam member 23 main body is reduced. Lower than the bending rigidity. Thereby, the natural period of the external building 20 is lengthened, and the damping performance of the damping building 10 can be improved.

なお、本実施形態では、梁部材23の端部に切り欠き部155を設け、この切り欠き部155において柱部材21の突出部152と係合させることとしたが、これに限らず、切り欠き部155を設けずに、梁部材23の下面を突出部152により支持する構成としてもよい。   In the present embodiment, the notch 155 is provided at the end of the beam member 23, and the notch 155 is engaged with the protrusion 152 of the column member 21, but the present invention is not limited thereto. It is good also as a structure which supports the lower surface of the beam member 23 with the protrusion part 152, without providing the part 155. FIG.

また、上記各実施形態では、梁部材の材端部の曲げ剛性を低下させているが、これに限らず、梁部材の材端部の近傍の曲げ剛性を低下させてもよい。図10は、第4実施形態の梁材端部に設けていたのと同様の構成を梁材端部の近傍に設けた場合を示す図である。同図に示す構成によれば、梁材端部の近傍の曲げ剛性及び曲げ耐力が低下することとなり、柱梁接合部の梁材端部の曲げ剛性及び曲げ耐力を低下させた場合と同様に、外部建物の剛性が低下し、固有周期を長周期化することができる。
また、上記各実施形態において説明した柱部材と梁部材の接合構造は、鉄筋コンクリート造の柱梁構造の建物の固有周期を長周期化する場合にも用いることができる。
Moreover, in each said embodiment, although the bending rigidity of the material end part of a beam member is reduced, you may reduce not only this but the bending rigidity of the vicinity of the material end part of a beam member. FIG. 10 is a diagram illustrating a case where the same configuration as that provided at the end portion of the beam member according to the fourth embodiment is provided in the vicinity of the end portion of the beam member. According to the configuration shown in the figure, the bending rigidity and bending strength in the vicinity of the end of the beam material are reduced, and the bending rigidity and bending strength of the beam material end of the column beam joint are reduced. The rigidity of the external building is lowered, and the natural period can be lengthened.
Moreover, the joint structure of the column member and the beam member described in each of the above embodiments can also be used when the natural period of a reinforced concrete column beam structure building is lengthened.

なお、上記の各実施形態では、外部建物30が鉄筋コンクリート造の場合について説明したが、これに限らず、外部建物30が鉄骨造の場合であっても、本発明を適用することができる。外部建物30が鉄骨造の場合には、梁部材23を構成するH型鋼と柱部材とをボルト接合する際に、梁部材23のウエブだけをボルト接合すればよい。このような構成によっても、梁部材23の中央部の曲げ剛性よりも、梁材端部の曲げ剛性が小さくなる。   In each of the above embodiments, the case where the external building 30 is a reinforced concrete structure has been described. However, the present invention is not limited thereto, and the present invention can be applied even when the external building 30 is a steel frame structure. When the external building 30 is a steel structure, when the H-shaped steel constituting the beam member 23 and the column member are bolted, only the web of the beam member 23 may be bolted. Even with such a configuration, the bending rigidity of the end portion of the beam member is smaller than the bending rigidity of the central portion of the beam member 23.

また、外部建物20が鉄骨造の場合には、上記の方法に限らず、第3実施形態と同様に、鉄骨梁の端部の梁せいを小さくし、柱とボルト接合又は溶接接合する構成とすることもできるし、第4実施形態と同様に、柱部材に突部を設け、この突部に梁部材を載置する構成とすることもできる。   When the external building 20 is a steel structure, not only the method described above, but also the structure in which the beam at the end of the steel beam is reduced and the column is bolted or welded, as in the third embodiment. Alternatively, as in the fourth embodiment, a protrusion may be provided on the column member, and a beam member may be placed on the protrusion.

また、上記各実施形態では、内部建物30及び外部建物20を夫々独立して構築するものとしたが、これに限らず、これらの建物20、30の低層階において、構造的に接続した建物に本発明を適用することも可能である。図11は、内部建物30及び外部建物20を低層階において、構造的に接続した制振建物110を示す図である。同図に示すように、本実施形態の制振建物110では、外部建物120の低層階の梁123と、内部建物130の低層階の梁133とが一体に構築されており、低層階の梁143は内部建物130及び外部建物120を貫通するように設けられている。これにより、外部建物120及び内部建物130の低層階が構造的に接続された一体の構造として機能する。かかる構成の制振建物110の外部建物120の柱梁接合部に対しても、上記の各実施形態で説明した構成を適用することにより同様の効果が得られる。   Moreover, in each said embodiment, although the internal building 30 and the external building 20 were each constructed | assembled independently, it is not restricted to this, In the low-rise floor of these buildings 20 and 30, it is a building connected structurally. It is also possible to apply the present invention. FIG. 11 is a diagram showing a vibration control building 110 in which the internal building 30 and the external building 20 are structurally connected on the lower floors. As shown in the figure, in the vibration-damping building 110 of this embodiment, the beam 123 on the lower floor of the outer building 120 and the beam 133 on the lower floor of the inner building 130 are constructed integrally, and the beam on the lower floor is built. 143 is provided so as to penetrate the internal building 130 and the external building 120. Thereby, it functions as an integral structure in which the lower floors of the external building 120 and the internal building 130 are structurally connected. The same effect can be obtained by applying the configurations described in the above embodiments to the column beam joints of the external building 120 of the vibration-damping building 110 having such a configuration.

また、上記各実施形態では、外部建物20に形成されたボイド空間40内に内部建物30を構築し、これら建物を制振ダンパー41により接続してなる制振建物10について説明したが、これに限らず、2つ以上の並設された構造物の間を制振ダンパーにより連結した制振建物にも本発明を適用することができる。   Further, in each of the embodiments described above, the damping building 10 in which the inner building 30 is constructed in the void space 40 formed in the outer building 20 and these buildings are connected by the damping damper 41 has been described. Not limited to this, the present invention can also be applied to a vibration control building in which two or more parallel structures are connected by a vibration damper.

本実施形態の制振建物の構成を示す鉛直方向断面図である。It is a vertical direction sectional view showing the composition of the damping building of this embodiment. 制振建物の制振ダンパーが取り付けられた階の水平方向断面図である。It is a horizontal direction sectional view of the floor where the damping damper of the damping building was attached. 制振建物における外部建物の固有周期T1と内部建物の固有周期T2とを複数通りに設定し、各場合の最大応答変形の低減効果を示すグラフである。It is a graph which shows the reduction effect of the maximum response deformation | transformation in each case, setting the natural period T1 of the external building in a damping building, and the natural period T2 of an internal building in multiple ways. 第1実施形態の外部建物の柱梁接合部を示す図であり、(A)は鉛直断面図であり、(B)は(A)におけるI−I´断面図であり、(C)は(A)におけるII−II´断面図である。It is a figure which shows the column beam junction part of the external building of 1st Embodiment, (A) is a vertical sectional view, (B) is II 'sectional drawing in (A), (C) is ( It is II-II 'sectional drawing in A). 第2施形態の外部建物の柱梁接合部の構成を示す鉛直断面図である。It is a vertical sectional view showing the configuration of the column beam joint of the external building of the second embodiment. 第2実施形態の外部建物の柱梁接合部の構成の別の例を示す図であり、(A)は鉛直断面図であり、(B)は、水平断面図である。It is a figure which shows another example of a structure of the column beam junction part of the external building of 2nd Embodiment, (A) is a vertical sectional view, (B) is a horizontal sectional view. 第3実施形態の外部建物の柱梁接合部の構成を示す鉛直断面図である。It is a vertical sectional view showing the configuration of the column beam joint of the external building of the third embodiment. 柱部材と梁部材と跨ぐようにダボ筋を埋設した場合の第3実施形態の外部建物の柱梁接合部の構成を示す鉛直断面図である。It is a vertical sectional view showing the configuration of the column beam joint portion of the external building of the third embodiment when dowel bars are embedded so as to straddle the column member and the beam member. 第4施形態の外部建物の柱梁接合部の構成を示す鉛直断面図である。It is a vertical cross section which shows the structure of the column beam junction part of the external building of 4th embodiment. 第4実施形態の梁材端部に設けていたのと同様の構成を梁材端部の近傍に設けた場合を示す図である。It is a figure which shows the case where the structure similar to having been provided in the beam material edge part of 4th Embodiment is provided in the vicinity of the beam material edge part. 内部建物及び外部建物を低層階において、構造的に接続した制振建物を示す図である。It is a figure which shows the damping building which connected the internal building and the external building structurally in the low-rise floor.

符号の説明Explanation of symbols

10、110 制振建物 20、120 外部建物
21 柱部材 22 住戸ユニット
23 梁部材 24 廊下
25 屋根 26 エレベータシャフト
27 梁主筋 30、130 内部建物
31 立体駐車機 40 ボイド空間
41 制振ダンパー 101,142、153 ダボ筋
102 コンクリートコッター 103、112、123,152 緩衝材
104 凹部 111、121 H型鋼
122 ガセットプレート 124 ボルト
125 長ボルト 131、132、141 梁主筋
133 傾斜 143、155 切り欠き部
151 突部 154 スリット
10, 110 Damping building 20, 120 External building 21 Column member 22 Dwelling unit 23 Beam member 24 Corridor 25 Roof 26 Elevator shaft 27 Beam bar 30, 130 Internal building 31 Multi-story parking machine 40 Void space 41 Damping damper 101, 142, 153 Dowel reinforcement 102 Concrete cotter 103, 112, 123, 152 Shock absorber 104 Recess 111, 121 H-shaped steel 122 Gusset plate 124 Bolt 125 Long bolt 131, 132, 141 Beam main reinforcement 133 Inclination 143, 155 Notch 151 Projection 154 Slit

Claims (5)

少なくとも一つはラーメン架構からなる複数の構造体と、これら複数の構造体の間を接続するように設けられた制振部材と、を備えた制振建物であって、
前記ラーメン架構からなる構造体における梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成されていることを特徴とする制振建物。
At least one is a vibration-damping building comprising a plurality of structures made of ramen frames, and a vibration-damping member provided to connect the plurality of structures,
In the joining of the beam member and the column member in the structure having the rigid frame structure, at least one of the bending rigidity at the end of the beam member or in the vicinity thereof is smaller than the bending rigidity of the main body portion of the beam member. A vibration-damping building characterized by being configured to be
前記複数の構造体は、これらの低層部において、構造的に一体に構築されていることを特徴とする請求項1記載の制振建物。   2. The vibration-damping building according to claim 1, wherein the plurality of structures are structurally integrated in these low-rise parts. 建物の制振方法であって、
前記建物を、少なくとも一つはラーメン架構からなる複数の構造体と、これら複数の構造体の間を接続するように設けられた制振部材と、から構成し、
前記複数の構造体の間を制振部材により接続し、
前記ラーメン架構からなる構造体における梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成することを特徴とする建物の制振方法。
A method of damping a building,
The building comprises a plurality of structures, at least one of which is a ramen frame, and a damping member provided so as to connect the plurality of structures,
Connecting the plurality of structures by a damping member;
In the joining of the beam member and the column member in the structure having the rigid frame structure, at least one of the bending rigidity at the end of the beam member or in the vicinity thereof is smaller than the bending rigidity of the main body portion of the beam member. A vibration control method for a building, characterized by comprising:
梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成されていることを特徴とする鉄筋コンクリート造の建物。   In the joining of the beam member and the column member, at least one is configured such that the bending rigidity at the end of the beam member or in the vicinity thereof is smaller than the bending rigidity of the main body portion of the beam member. A reinforced concrete building characterized by 鉄筋コンクリート造の建物を長周期化する方法であって、
前記建物における梁部材と柱部材との接合において、少なくとも一つは、当該梁部材の材端部又はその近傍における曲げ剛性が、当該梁部材の本体部分の曲げ剛性よりも小さくなるように構成することを特徴とする鉄筋コンクリート造の建物の長周期化方法。
A method of making a reinforced concrete building with a long period of time,
In the joining of the beam member and the column member in the building, at least one is configured such that the bending stiffness at or near the end of the beam member is smaller than the bending stiffness of the main body portion of the beam member. A method for lengthening a reinforced concrete building.
JP2007218851A 2007-08-24 2007-08-24 Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method Active JP5338050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218851A JP5338050B2 (en) 2007-08-24 2007-08-24 Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218851A JP5338050B2 (en) 2007-08-24 2007-08-24 Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method

Publications (2)

Publication Number Publication Date
JP2009052251A true JP2009052251A (en) 2009-03-12
JP5338050B2 JP5338050B2 (en) 2013-11-13

Family

ID=40503557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218851A Active JP5338050B2 (en) 2007-08-24 2007-08-24 Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method

Country Status (1)

Country Link
JP (1) JP5338050B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040733A (en) * 2012-08-22 2014-03-06 Takenaka Komuten Co Ltd Building structure
JP2014122487A (en) * 2012-12-20 2014-07-03 Takenaka Komuten Co Ltd Pin connection structure for beam
JP5886996B1 (en) * 2015-04-07 2016-03-16 黒沢建設株式会社 Concrete lampway building with friction connection structure
JP2017115475A (en) * 2015-12-25 2017-06-29 前田建設工業株式会社 Expansion frame type reinforcing structure
JP2017150179A (en) * 2016-02-23 2017-08-31 平石 久廣 Column beam structure having vibration damping structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353149A (en) * 1991-05-31 1992-12-08 Shimizu Corp Precast reinforced concrete beam and its jointment
JPH0514061B2 (en) * 1987-02-13 1993-02-24 Fujita Corp
JPH0762733A (en) * 1993-08-26 1995-03-07 Taisei Corp Joint construction of pillar and beam made of pca concrete
JPH07292783A (en) * 1994-04-27 1995-11-07 Ohbayashi Corp Connective structure of prestressed concrete members
JPH0953276A (en) * 1995-08-15 1997-02-25 Kurosawa Kensetsu Kk Beam-column joint construction
JPH09235891A (en) * 1996-03-04 1997-09-09 Shimizu Corp Aseismatic reinforcing structure for existing building
JPH1162316A (en) * 1997-08-07 1999-03-05 Etsuro Suzuki Earthquake resistive damping construction
JP2001032368A (en) * 1999-07-16 2001-02-06 Kume Sekkei:Kk Energy absorption construction for column to beam jointing portion
JP2002004418A (en) * 2000-06-27 2002-01-09 Takenaka Komuten Co Ltd Construction method and structure for self-base- isolation of rc type structure
JP2002004417A (en) * 2000-06-19 2002-01-09 Takenaka Komuten Co Ltd Pc compression joint structure for precast concrete beam and column
JP2002357011A (en) * 2001-06-04 2002-12-13 Shimizu Corp Vibration-control structure
JP2004044339A (en) * 2002-07-11 2004-02-12 Takenaka Komuten Co Ltd Spc structure frame
JP2005048543A (en) * 2003-07-31 2005-02-24 Toda Constr Co Ltd Column-beam joining structure

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514061B2 (en) * 1987-02-13 1993-02-24 Fujita Corp
JPH04353149A (en) * 1991-05-31 1992-12-08 Shimizu Corp Precast reinforced concrete beam and its jointment
JPH0762733A (en) * 1993-08-26 1995-03-07 Taisei Corp Joint construction of pillar and beam made of pca concrete
JPH07292783A (en) * 1994-04-27 1995-11-07 Ohbayashi Corp Connective structure of prestressed concrete members
JPH0953276A (en) * 1995-08-15 1997-02-25 Kurosawa Kensetsu Kk Beam-column joint construction
JPH09235891A (en) * 1996-03-04 1997-09-09 Shimizu Corp Aseismatic reinforcing structure for existing building
JPH1162316A (en) * 1997-08-07 1999-03-05 Etsuro Suzuki Earthquake resistive damping construction
JP2001032368A (en) * 1999-07-16 2001-02-06 Kume Sekkei:Kk Energy absorption construction for column to beam jointing portion
JP2002004417A (en) * 2000-06-19 2002-01-09 Takenaka Komuten Co Ltd Pc compression joint structure for precast concrete beam and column
JP2002004418A (en) * 2000-06-27 2002-01-09 Takenaka Komuten Co Ltd Construction method and structure for self-base- isolation of rc type structure
JP2002357011A (en) * 2001-06-04 2002-12-13 Shimizu Corp Vibration-control structure
JP2004044339A (en) * 2002-07-11 2004-02-12 Takenaka Komuten Co Ltd Spc structure frame
JP2005048543A (en) * 2003-07-31 2005-02-24 Toda Constr Co Ltd Column-beam joining structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040733A (en) * 2012-08-22 2014-03-06 Takenaka Komuten Co Ltd Building structure
JP2014122487A (en) * 2012-12-20 2014-07-03 Takenaka Komuten Co Ltd Pin connection structure for beam
JP5886996B1 (en) * 2015-04-07 2016-03-16 黒沢建設株式会社 Concrete lampway building with friction connection structure
JP2016199856A (en) * 2015-04-07 2016-12-01 黒沢建設株式会社 Concrete rampway building with frictional connection structure
JP2017115475A (en) * 2015-12-25 2017-06-29 前田建設工業株式会社 Expansion frame type reinforcing structure
JP2017150179A (en) * 2016-02-23 2017-08-31 平石 久廣 Column beam structure having vibration damping structure

Also Published As

Publication number Publication date
JP5338050B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
CA2524547A1 (en) Fork configuration dampers and method of using same
JP5338050B2 (en) Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP4070117B2 (en) Vibration control device
JP2004353351A (en) Upper extension method for existing building
JP2008057121A (en) Vibration isolation structure of building
JP6412684B2 (en) Vibration control structure
JP4664997B2 (en) Buildings with joint hardware
JP5132503B2 (en) Seismic structure and building
JP5059687B2 (en) Building seismic control structure
JP4187230B2 (en) Pillar type vibration control device
JP5503200B2 (en) Unit building
JP4884914B2 (en) Vibration control device installation structure of unit building
JP5429538B2 (en) Boundary beam viscoelastic damper
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP5028999B2 (en) Double floor structure
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same
JP4402852B2 (en) Vibration control structure
JP3209800U (en) Damping structure and damping panel
JP3134025B2 (en) Deformation control vibration control structure of building
JP3209800U7 (en)
JP4802516B2 (en) Building seismic control structure
JP4706281B2 (en) Building seismic control structure
JP2010018985A (en) Portal frame with damper of brace structure
JP2005146574A (en) Reinforcing structure of unit building
JP6651774B2 (en) Damping unit and damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5338050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150