JP2002309797A - Method of constructing frame for multistory precast and pre-stressed concrete building - Google Patents

Method of constructing frame for multistory precast and pre-stressed concrete building

Info

Publication number
JP2002309797A
JP2002309797A JP2001118602A JP2001118602A JP2002309797A JP 2002309797 A JP2002309797 A JP 2002309797A JP 2001118602 A JP2001118602 A JP 2001118602A JP 2001118602 A JP2001118602 A JP 2001118602A JP 2002309797 A JP2002309797 A JP 2002309797A
Authority
JP
Japan
Prior art keywords
pcapc
frame
building
pca
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001118602A
Other languages
Japanese (ja)
Inventor
Kazuhiro Watanabe
一弘 渡辺
Satohiko Mukono
聡彦 向野
Mitsuo Hayashi
三雄 林
Ichiro Hamai
一郎 浜井
Kazufumi Horiuchi
一文 堀内
Yukimasa Ogiwara
行正 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Nikken Sekkei Ltd
PS Corp
Original Assignee
Kajima Corp
Nikken Sekkei Ltd
PS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Nikken Sekkei Ltd, PS Corp filed Critical Kajima Corp
Priority to JP2001118602A priority Critical patent/JP2002309797A/en
Publication of JP2002309797A publication Critical patent/JP2002309797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the construction of a multistory building with a PCaPC compression joint method impossible with a current PCaPC compression joint method because a means for earthquake response analyzing is not established. SOLUTION: PCa members having high strength are compression-joined to each other for connection or the PCa member having high strength and a PCaPC member are compression-joined to each other through a PC steel material for connection to assemble a frame, and a base isolation device and/or a vibration control deice for concentrically consuming the hysteresis energy are (is) assembled to construct the frame for the multistory building.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度のプレキャ
ストコンクリート(PCa)部材或いはプレキャストプ
レストレストコンクリート(PCaPC)部材と、免震
装置もしくは制振装置又は免震装置及び制振装置を併用
した構造形式の高層PCaPC建築物の架構の築造方法
に関するものである。本発明において、「高層」の建築
物とは、高さ31mを超える建築物をいい、高さ60m
を超える超高層建築物を含む。また、「PCa部材」と
は、プレキャストコンクリートの柱もしくは梁又は柱及
び梁をいい、「PCaPC部材」とは、プレキャストプ
レストレストコンクリート梁をいう。さらに、「PCa
PC圧着工法」とは、PCa部材又はPCaPC部材を
PC鋼材で圧着接合して架構を形成する工法のことをい
う。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural type using a high-strength precast concrete (PCa) member or a precast prestressed concrete (PCaPC) member together with a seismic isolation device or a vibration damping device or a seismic isolation device and a vibration damping device. And a method of building a frame of a high-rise PCaPC building. In the present invention, a “high-rise” building refers to a building having a height of more than 31 m and a height of 60 m.
Includes skyscrapers that exceed The “PCa member” refers to a precast concrete column or beam or a column and a beam, and the “PCaPC member” refers to a precast prestressed concrete beam. Furthermore, "PCa
The “PC crimping method” refers to a method of forming a frame by bonding a PCa member or a PCaPC member by a PC steel material.

【0002】[0002]

【従来の技術】従来の高層建築物は、鉄筋コンクリート
(RC)構造、鉄骨(S)構造、鉄骨鉄筋コンクリート
(SRC)構造、コンクリート充填鋼管(CFT)構造
またはそれらを組み合わせた複合構造である。これに対
して、従来のプレストレストコンクリート(PC)構造
は、高耐力を付与しやすい特徴を持つことから、主に比
較的大スパンの梁または大荷重を支える梁を持つ低層建
物に適用されてきた。また、PC構造の範疇であるPC
aPC圧着工法による構造は、履歴エネルギーの消費が
小さく地震動による応答変形が大きくなる特徴を持つこ
とから、耐震設計が支配的である我が国では、高層建築
には不適とされ未だに適用されていない。従来のRC構
造は、PCaPC圧着工法による構造に較べて、同一断
面では耐力が小さく、大スパン架構の構成は困難であ
り、高層型の共同住宅建築では、柱の数が多くなり、住
戸計画の自由度を阻害している。また、従来のRC部材
の復元力特性は、紡錘型の挙動を示し十分な履歴エネル
ギーを消費するが、地震動による損傷及び残留変形が大
きくなり修復することが難しい。
2. Description of the Related Art A conventional high-rise building has a reinforced concrete (RC) structure, a steel frame (S) structure, a steel reinforced concrete (SRC) structure, a concrete-filled steel pipe (CFT) structure, or a composite structure combining them. On the other hand, the conventional prestressed concrete (PC) structure is mainly applied to a low-rise building having a beam having a relatively large span or a beam supporting a large load, since it has a feature that a high strength is easily imparted. . In addition, PC which is a category of PC structure
Since the structure by the aPC crimping method has a feature that consumption of hysteretic energy is small and response deformation due to seismic motion is large, in Japan where seismic design is dominant, it is not suitable for high-rise buildings and has not been applied yet. The conventional RC structure has less strength in the same cross section than the structure using the PCaPC crimping method, and it is difficult to construct a large span frame. In a high-rise apartment building, the number of pillars increases, The degree of freedom is hindered. Further, the restoring force characteristic of the conventional RC member exhibits a spindle-type behavior and consumes sufficient hysteresis energy, but damage and residual deformation due to seismic motion increase, and it is difficult to repair.

【0003】[0003]

【発明が解決しようとする課題】PCaPC圧着工法に
よる構造は、履歴エネルギーの消費が小さく地震動によ
る応答変形が大きい傾向にあることが一般的に知られて
いる。また、その履歴特性モデルを含めて地震応答解析
の手法が確立されていなかったため、高層建築物の構築
は不可能であるいう問題点があった。
It is generally known that the structure by the PCaPC crimping method has a tendency to consume less hysteresis energy and to have a large response deformation due to seismic motion. In addition, there has been a problem that the construction of a high-rise building is impossible because a method of seismic response analysis including the hysteresis characteristic model has not been established.

【0004】本発明者らは、PCaPC圧着工法による
高層化を可能とするため、実験により検証されたPCa
PC部材の履歴特性モデル及び振動台実験による知見を
用い、PCaPC部材をPC鋼材で圧着接合された架構
に、地震エネルギーを集中的に消費させるための免震装
置もしくは制振装置又は免震装置及び制振装置を組み合
わせて設計することにより、従来不可能であったPCa
PC圧着工法による高層建築を可能にする技術を開発し
た。本発明は、このような新規な技術を提供することを
目的とする。
[0004] The inventors of the present invention attempted to increase the thickness of the PCa by the PCaPC crimping method, so that the PCa was verified by experiments.
Using a hysteresis characteristic model of PC members and knowledge obtained from a shaking table test, a seismic isolation device or a vibration damping device or a seismic isolation device for intensively consuming seismic energy in a frame in which PCaPC members are crimped and joined with PC steel materials. PCa, which was impossible in the past, was designed by combining vibration damping devices.
We have developed a technology that enables high-rise buildings using the PC crimping method. An object of the present invention is to provide such a novel technique.

【0005】[0005]

【課題を解決するための手段】本発明は、上記問題点を
解決するためになされたもので、その技術手段は、高強
度のプレキャストコンクリート(PCa)部材と高強度
のプレキャストコンクリート部材(PCa)同士又はプ
レキャストプレストレストコンクリート(PCaPC)
部材とをPC鋼材で圧着接合して架構を組み立て、履歴
エネルギーを集中的に消費させる免震装置及び/又は制
振装置を組み込むことを特徴とする高層プレキャストプ
レストレストコンクリート(PCaPC)建築物の架構
の築造方法である。本発明方法により築造された建築物
は免震装置及び又は制振装置を備え、柱及び梁が高強度
のPCa部材或いはPCaPC部材から構成された高層
PCaPC建築物の架構である。免震装置は主に地震の
振動入力を軽減させるもので、ゴムと鋼板を積層した構
造の積層ゴムアイソレータが一般的に知られている。こ
れに、エネルギー吸収機能としてダンパー等を併用す
る。積層ゴムアイソレータにダンパー機能を組み込んだ
形式のもの及び積層ゴムアイソレータとダンパーは別々
に設置する形式のものがある。制振装置は主に地震によ
る建築物の揺れを低減させるもので、制振装置として
は、粘弾性型ダンパーや履歴型ダンパーを用いる制振
壁、ブレースや方杖などが一般的に知られている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its technical means includes a high-strength precast concrete (PCa) member and a high-strength precast concrete member (PCa). Or precast prestressed concrete (PCaPC)
A frame of a high-rise precast prestressed concrete (PCaPC) building characterized by incorporating a seismic isolation device and / or a vibration damping device for intensively consuming hysteretic energy by assembling a frame by pressure bonding a member and a PC steel material. It is a construction method. The building constructed by the method of the present invention is a frame of a high-rise PCaPC building provided with a seismic isolation device and / or a vibration damping device, in which columns and beams are made of high-strength PCa members or PCaPC members. The seismic isolation device mainly reduces the vibration input of an earthquake, and a laminated rubber isolator having a structure in which rubber and a steel plate are laminated is generally known. In addition, a damper or the like is used together as an energy absorbing function. There are a type in which a damper function is incorporated in the laminated rubber isolator and a type in which the laminated rubber isolator and the damper are separately installed. Vibration suppression devices are mainly used to reduce the shaking of buildings due to earthquakes. As the vibration suppression devices, viscoelastic dampers and damping walls using hysteretic dampers, braces and brace sticks are generally known. I have.

【0006】上記高層PCaPC建築物の架構は、免震
装置を備える場合は免震装置を組み込むと共に、管理の
行き届いた工場で製造した高強度のPCa部材或いはP
CaPC部材を建設現場に持ち込み、PC鋼材で圧着接
合して躯体を組み上げ、さらに制振装置を備える場合は
制振装置を躯体に組み込むことによって達成される。
[0006] When the frame of the high-rise PCaPC building is provided with a seismic isolation device, the seismic isolation device is incorporated, and a high-strength PCa member or P-member manufactured at a well-managed factory is installed.
This is achieved by bringing the CaPC member to the construction site, crimping and joining with a PC steel material to assemble the skeleton, and further incorporating a vibration damping device into the skeleton when a vibration damping device is provided.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態について
説明する。PC構造物は、高強度コンクリートを用い、
プレストレスを導入することによって、部材を小さく軽
量化することができるため、高層建築物としての適性に
富み、また、長尺の梁を用いて柱間隔を大きくすること
によって柱1本当たりの負担重量を大きくすることがで
きるため、免震建物に適用させやすいが、従来は、高層
建築物に対しての設計方法が整備されておらず、低層建
築にもっぱら用いられていた。
Embodiments of the present invention will be described below. PC structure uses high-strength concrete,
By introducing pre-stress, members can be made smaller and lighter, which makes them more suitable for high-rise buildings. In addition, the load per column is increased by using long beams to increase the column spacing. Because it can be made heavy, it can be easily applied to seismic isolation buildings. However, conventionally, no design method has been developed for high-rise buildings, and it has been used exclusively for low-rise buildings.

【0008】PC圧着工法による構造物は、地震時にお
いて、復元性に富み、残留変形が極めて小さく、変形後
殆ど元の位置に戻るが、応答変形量が大きく、エネルギ
ー消費が小さいという特徴を持っている。
[0008] The structure formed by the PC crimping method has a feature that it is highly resilient and has very little residual deformation during an earthquake, and almost returns to its original position after deformation, but has a large response deformation and a small energy consumption. ing.

【0009】本発明は、これらの点をカバーするため
に、免震装置もしくは制振装置又は免震装置及び制振装
置を組み込んで、地震による基礎からの入力エネルギー
を減少させ、さらに架構に入力したエネルギーを消費さ
せ、応答せん断力及び応答変形を減少させることによっ
て、はじめて、PCaPC建築物を高層建築物に適用す
ることを可能にしたものである。
In order to cover these points, the present invention incorporates a seismic isolation device or a vibration damping device or a seismic isolation device and a vibration damping device to reduce the input energy from the foundation due to the earthquake, and further to input the energy to the frame. For the first time, it is possible to apply a PCaPC building to a high-rise building by consuming energy and reducing response shearing force and response deformation.

【0010】[0010]

【実施例】図1〜図5は、本発明の超高層PCaPC建
築物の架構の実施例を示すものである。図1は鳥瞰図、
図2は基準階梁伏図、図3は免震装置を備えた場合の軸
組図、図4は制振装置を備えた場合の軸組図、図5は免
震装置及び制振装置を備えた場合の軸組図である。
1 to 5 show an embodiment of a frame of a super high-rise PCaPC building according to the present invention. Figure 1 is a bird's eye view,
2 is a base floor plan, FIG. 3 is a frame diagram when a seismic isolation device is provided, FIG. 4 is a frame diagram when a vibration damping device is provided, and FIG. 5 is a diagram illustrating a seismic isolation device and a vibration damping device. It is a shaft assembly figure in the case of having.

【0011】図2において、PCa又はPCaPC梁7
はPCa柱6にPC鋼材で圧着接合され床8を形成して
いる。
In FIG. 2, PCa or PCaPC beam 7
Are press-bonded to PCa columns 6 with a PC steel material to form a floor 8.

【0012】図3は免震装置を備えた建築物の軸組図で
ある。この建築物は杭1、基礎フーチング2、基礎梁
3、免震装置4、柱脚ブロック5、PCa柱6、PCa
又はPCaPC梁7、PC鋼材9から構成されている。
まず、杭1と基礎フーチング2及び基礎梁3を施工し、
基礎フーチング2の上に免震装置4を設置し、その上に
柱脚ブロック5を設置する。次に、柱脚ブロック5とP
Ca柱6をPC鋼材9で圧着接合し、PCa柱6とPC
a又はPCaPC梁7をPC鋼材9で圧着接合する。さ
らに、下層のPCa柱6と該当層のPCa柱6をPC鋼
材9で圧着接合し、PCa柱6とPCa又はPCaPC
梁7をPC鋼材9で圧着接合して、順次上層へと架構を
形成する。
FIG. 3 is a frame diagram of a building provided with a seismic isolation device. This building consists of a pile 1, foundation footing 2, foundation beam 3, seismic isolation device 4, column base block 5, PCa column 6, PCa
Alternatively, it is composed of a PCaPC beam 7 and a PC steel material 9.
First, pile 1 and foundation footing 2 and foundation beam 3 are constructed,
The seismic isolation device 4 is installed on the foundation footing 2, and the column base block 5 is installed thereon. Next, column base block 5 and P
The Ca column 6 is press-bonded with the PC steel material 9, and the PCa column 6 and the PC
a or PCaPC beam 7 is press-bonded with a PC steel material 9. Further, the lower PCa column 6 and the PCa column 6 of the corresponding layer are press-bonded with a PC steel material 9, and the PCa column 6 and PCa or PCaPC are joined.
The beam 7 is press-bonded with a PC steel material 9 to form a frame sequentially in an upper layer.

【0013】図4は制振装置10を備えた場合の軸組図
で、制振装置10は治具11によって取付けられてい
る。符号1〜3、符号6〜9及び架構の形成方法は図3
と同様であるが、免震装置4及び柱脚ブロック5は設置
されていない。架構の形成後、制振装置10及び制振装
置を取り付けるための治具11を設置する。図5は免震
装置4及び制振装置10を備えた場合の軸組図で、図中
の符号は図3及び図4と同様である。
FIG. 4 is a frame diagram in the case where the vibration damping device 10 is provided. The vibration damping device 10 is attached by a jig 11. Reference numerals 1 to 3, reference numerals 6 to 9 and a method of forming the frame are shown in FIG.
Same as above, but the seismic isolation device 4 and the column base block 5 are not installed. After the frame is formed, the vibration damping device 10 and the jig 11 for attaching the vibration damping device are installed. FIG. 5 is a frame diagram in the case where the seismic isolation device 4 and the vibration damping device 10 are provided, and the reference numerals in the drawings are the same as those in FIGS. 3 and 4.

【0014】図6は、地震応答解析による応答変位から
求めた架構の層間変形角と層数の関係図で、免震装置4
を備えた場合、制振装置10を備えた場合、免震装置4
及び制振装置10を備えた場合を示し、さらに比較のた
めに免震装置も制振装置も備えていない場合についても
示した。図7は、地震応答解析による応答せん断力と層
数の関係図で、図6と同様に、免震装置4を備えた場
合、制振装置10を備えた場合、免震装置4及び制振装
置10を備えた場合を示し、さらに比較のために免震装
置も制振装置も備えていない場合についても示した。図
6、図7から、本発明方法により適切な設計を行うこと
によって層間変形角や層せん断力が小さくすることがで
き、高層のPCaPC建築物の築造が可能となったこと
が明らかである。
FIG. 6 is a diagram showing the relationship between the story deformation angle of the frame and the number of stories obtained from the response displacement by the seismic response analysis.
In the case where the vibration damping device 10 is provided, the seismic isolation device 4 is provided.
And a case where the vibration damping device 10 is provided, and for comparison, a case where neither the seismic isolation device nor the vibration damping device is provided is shown. FIG. 7 is a diagram showing the relationship between the response shear force and the number of layers based on the seismic response analysis. As shown in FIG. 6, when the seismic isolation device 4 is provided, when the vibration damping device 10 is provided, The case where the device 10 is provided is shown, and for comparison, the case where neither the seismic isolation device nor the vibration damping device is provided is shown. It is clear from FIGS. 6 and 7 that by appropriately designing according to the method of the present invention, the interlayer deformation angle and the layer shearing force can be reduced, and a high-rise PCaPC building can be constructed.

【0015】[0015]

【発明の効果】本発明によれば、高強度のPCa部材同
士又はこれとPCaPC部材とをPC鋼材で圧着接合す
ることにより組み立てられた架構に、免震装置もしくは
制振装置又は免震装置及び制振装置を組み合わせること
により、地震動による応答せん断力を小さくすることが
でき、さらに、架構における履歴エネルギーの消費能力
を高めて応答変形を小さくすることができ、PCaPC
圧着工法による建築物の高層化が可能となった。PCa
PC圧着工法による構造は耐力が高く、大スパン架構が
可能であり、特に共同住宅ではフリープランを可能に
し、さらに事務所ビル等でも無柱の大空間を実現するこ
とが可能になった。
According to the present invention, a high-strength PCa member or a frame assembled by bonding the high-strength PCa member or the PCaPC member to the PCaPC member by using a PC steel material is provided. By combining the vibration damping device, it is possible to reduce the response shear force due to the seismic motion, and also to increase the hysteretic energy consumption capacity of the frame to reduce the response deformation.
The building can be made higher by the crimping method. PCa
The structure by the PC crimping method has high strength and enables a large span frame structure. In particular, it is possible to make a free plan in an apartment house, and it is also possible to realize a large pillar-free space in an office building or the like.

【0016】本発明による高層建築物は、高強度のプレ
キャストコンクリート部材を用いることにより、従来工
法に較べて、高い施工性から工期の短縮が可能であり、
高い品質から耐久性能が向上し建物の長寿命化が可能に
なるという効果を得ることができる。さらに、免震技術
及び制振技術を組み合わせることにより、地震動による
建物の揺れを吸収して居住性を高めるというすぐれた効
果を奏する。
According to the high-rise building of the present invention, the use of a high-strength precast concrete member makes it possible to shorten the construction period from high workability compared to the conventional construction method.
The effect that the durability performance is improved from the high quality and the life of the building can be extended can be obtained. Further, by combining the seismic isolation technology and the vibration control technology, an excellent effect of absorbing the shaking of the building due to the seismic motion and improving the livability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超高層PCaPC建築物の鳥瞰図である。FIG. 1 is a bird's-eye view of a super high-rise PCaPC building.

【図2】超高層PCaPC建築物の基準階平面図であ
る。
FIG. 2 is a reference floor plan view of a super high-rise PCaPC building.

【図3】免震装置を備えた超高層PCaPC建築物の軸
組図である。
FIG. 3 is a frame diagram of a high-rise PCaPC building provided with a seismic isolation device.

【図4】制振装置を備えた超高層PCaPC建築物の軸
組図である。
FIG. 4 is a frame diagram of a super high-rise PCaPC building provided with a vibration damping device.

【図5】免震装置及び制振装置を備えた超高層PCaP
C建築物の軸組図である。
FIG. 5: High-rise PCaP with seismic isolation device and vibration damping device
It is a frame diagram of C building.

【図6】免震装置、制振装置の有無による層間変形角の
比較である。
FIG. 6 is a comparison of interlayer deformation angles with and without a seismic isolation device and a vibration damping device.

【図7】免震装置、制振装置の有無による応答せん断力
の比較である。
FIG. 7 is a comparison of response shear force with and without a seismic isolation device and a vibration damping device.

【符号の説明】[Explanation of symbols]

1 杭 2 基礎フーチング 3 基礎梁 4 免震装置 5 柱脚ブロック 6 PCa柱 7 PCa或いはPCaPC梁 8 床 9 PC鋼材 10 制振装置 11 治具 Reference Signs List 1 pile 2 foundation footing 3 foundation beam 4 seismic isolation device 5 column base block 6 PCa column 7 PCa or PCaPC beam 8 floor 9 PC steel 10 vibration damper 11 jig

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000001373 鹿島建設株式会社 東京都港区元赤坂一丁目2番7号 (72)発明者 渡辺 一弘 東京都品川区西五反田4丁目8番3号 (72)発明者 向野 聡彦 東京都文京区後楽2丁目1番3号 株式会 社日建設計東京内 (72)発明者 林 三雄 東京都千代田区丸の内3丁目4番1号 株 式会社ピー・エス内 (72)発明者 浜井 一郎 東京都千代田区丸の内3丁目4番1号 株 式会社ピー・エス内 (72)発明者 堀内 一文 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 (72)発明者 荻原 行正 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 000001373 Kashima Construction Co., Ltd. 1-2-7 Moto-Akasaka, Minato-ku, Tokyo (72) Inventor Kazuhiro Watanabe 4-83, Nishi-Gotanda, Shinagawa-ku, Tokyo (72 ) Inventor Toshihiko Mukai 2-3-3 Koraku, Bunkyo-ku, Tokyo Inside Nikken Sekkei Tokyo (72) Inventor Mitsuo Hayashi 3-4-1 Marunouchi, Chiyoda-ku, Tokyo P.S. 72) Inventor Ichiro Hamai 3-4-1 Marunouchi, Chiyoda-ku, Tokyo PS Incorporated (72) Inventor Kazufumi Horiuchi 1-2-7 Moto-Akasaka, Minato-ku, Tokyo 72) Inventor Yukimasa Ogihara Kashima Construction Co., Ltd. 1-2-7 Moto-Akasaka, Minato-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高強度のプレキャストコンクリート部材
と高強度のプレキャストコンクリート部材同士又はプレ
キャストプレストレストコンクリート部材とをPC鋼材
で圧着接合して架構を組み立て、履歴エネルギーを集中
的に消費させる免震装置及び/又は制振装置を組み込む
ことを特徴とする高層プレキャストプレストレストコン
クリート建築物の架構の築造方法。
1. A high-strength precast concrete member and a high-strength precast concrete member or a precast prestressed concrete member are press-bonded to each other with a PC steel material to assemble a frame, and a seismic isolation device for intensively consuming hysteretic energy is provided. Alternatively, a method for constructing a frame of a high-rise precast prestressed concrete building characterized by incorporating a vibration damping device.
JP2001118602A 2001-04-17 2001-04-17 Method of constructing frame for multistory precast and pre-stressed concrete building Pending JP2002309797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118602A JP2002309797A (en) 2001-04-17 2001-04-17 Method of constructing frame for multistory precast and pre-stressed concrete building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118602A JP2002309797A (en) 2001-04-17 2001-04-17 Method of constructing frame for multistory precast and pre-stressed concrete building

Publications (1)

Publication Number Publication Date
JP2002309797A true JP2002309797A (en) 2002-10-23

Family

ID=18968971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118602A Pending JP2002309797A (en) 2001-04-17 2001-04-17 Method of constructing frame for multistory precast and pre-stressed concrete building

Country Status (1)

Country Link
JP (1) JP2002309797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176986A (en) * 2004-12-21 2006-07-06 Ps Mitsubishi Construction Co Ltd CONSTRUCTION METHOD OF PCaPC STRUCTURE
JP2009068278A (en) * 2007-09-14 2009-04-02 Okumura Corp Base-isolated building
JP2011012416A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and wall pile together
JP2011012415A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and cast-in-place round pile together
CZ309028B6 (en) * 2013-11-05 2021-12-08 České vysoké učení technické v Praze Multi-purpose demountable reinforced concrete prefabricated column building system with articulated joints and controlled dynamic properties

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176986A (en) * 2004-12-21 2006-07-06 Ps Mitsubishi Construction Co Ltd CONSTRUCTION METHOD OF PCaPC STRUCTURE
JP2009068278A (en) * 2007-09-14 2009-04-02 Okumura Corp Base-isolated building
JP2011012416A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and wall pile together
JP2011012415A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and cast-in-place round pile together
CZ309028B6 (en) * 2013-11-05 2021-12-08 České vysoké učení technické v Praze Multi-purpose demountable reinforced concrete prefabricated column building system with articulated joints and controlled dynamic properties

Similar Documents

Publication Publication Date Title
Chen et al. Exploration of the multidirectional stability and response of prefabricated volumetric modular steel structures
CN100547187C (en) A kind of storied-building board energy-eliminating shock-insulating structure
CN101024987A (en) Storied-building energ-eliminating shock-damping structure
JP4762406B2 (en) High-rise building
JP5234432B2 (en) Vibration control structure
JP4913660B2 (en) Steel stairs
JP2002309797A (en) Method of constructing frame for multistory precast and pre-stressed concrete building
JPH1096329A (en) Earthquake resistance reinforcing method for existing building
JP2002317498A (en) Framework structure of multistory building
Asiz et al. Demands placed on steel frameworks of tall buildings having reinforced concrete or massive wood horizontal slabs
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP3677703B2 (en) Damping building
JP2002285656A (en) Architectural design wall
JP2011038294A (en) Additional mass seismic response control building
Xiong et al. Research on seismic behavior of wood-concrete hybrid structure
JP2004300912A (en) Vibration control damper coping with habitability
JPH10266620A (en) Vibration damping frame structure and construction method therefor
JP7409969B2 (en) Lifting mechanism and reinforced concrete columns and reinforced concrete structures equipped with the same
JP3128455U (en) Seismic isolation structure that joins columns, beams and hardware
JPH10306616A (en) Seismic isolator making use of laminated rubber
Gedyma et al. Review and suggestions on timber buildings with hybrid lateral force resisting systems
JP3728646B2 (en) Vibration control structure
JP2000064654A (en) Structure of building
JP2002295050A (en) Multistory building
Venkatesh et al. Seismic Analysis of 3D Framed Building

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615