JP2006176986A - CONSTRUCTION METHOD OF PCaPC STRUCTURE - Google Patents

CONSTRUCTION METHOD OF PCaPC STRUCTURE Download PDF

Info

Publication number
JP2006176986A
JP2006176986A JP2004369639A JP2004369639A JP2006176986A JP 2006176986 A JP2006176986 A JP 2006176986A JP 2004369639 A JP2004369639 A JP 2004369639A JP 2004369639 A JP2004369639 A JP 2004369639A JP 2006176986 A JP2006176986 A JP 2006176986A
Authority
JP
Japan
Prior art keywords
column
span
members
girder
pcapc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004369639A
Other languages
Japanese (ja)
Inventor
Kiichi Oi
紀一 大井
Naoyuki Eguchi
尚之 江口
Atsushi Kibinaga
敦 吉備永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2004369639A priority Critical patent/JP2006176986A/en
Publication of JP2006176986A publication Critical patent/JP2006176986A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method of a PCaPC structure for solving the problem of generating large redundant stress in an outside column by shaft deformation of a beam member, when tensioning a large number of beam members, in the PCaPC structure having the beam members of continuous many spans. <P>SOLUTION: A girder beam 20 of the continuous many spans is respectively divided in the span center, and is formed into an RC girder beam member 20 having a pilaster 21 and an RC beam 22. A column member 30 is erected with respective stories, and a prestress is introduced by joining this member to the pilaster 21. The girder beam member 20 is formed into a joining part 40 in a span central part by a mechanical joint and post-placing concrete. A PC beam is joined to the pilaster 21 in the direction orthogonal to the ridge direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プレキャストプレストレストコンクリート(PCaPC)構造物の構築方法に関する。   The present invention relates to a method for constructing a precast prestressed concrete (PCaPC) structure.

従来、一般に、柱、梁から成るPCaPC構造物の構築方法は、柱部材をPC鋼棒を用いて立設し、立設した多数の柱部材間に桁梁部材(桁行方向梁部材)を配設し、桁梁部材に通しPCケーブルを挿通して桁梁部材に軸方向緊張力を加え、桁梁部材と柱部材とを一体に圧着接合して柱梁骨組を形成し、次いでプレキャスト(PCa)合成床版を桁梁部材上に載設し、その上面にトップコンクリートを打設して床剛性を確保すると共に桁梁部材を一体化して構造物のフレームを構築し、組上げていく工法である。この工法では、主要部材をプレキャスト製品とし、全て工場製作によって高品質の部材とすることによって、構造物の性能、耐久性においても現場打ち工法より優れた構造物を構築することができ、環境にも配慮された工法である。   Conventionally, generally, a method for constructing a PCaPC structure composed of columns and beams is that a column member is erected using a PC steel rod, and a girder beam member (girder beam member) is arranged between a plurality of erected column members. It is inserted and a PC cable is inserted through the beam member, axial tension is applied to the beam member, and the beam member and the column member are joined together by pressure bonding to form a column beam frame, and then precast (PCa ) A composite floor slab is placed on a girder member, top concrete is placed on the upper surface to ensure floor rigidity, and the girder member is integrated to construct a frame of the structure and assemble it. is there. In this construction method, the main members are precast products, and all are made of high quality by factory production, so that it is possible to build a structure that is superior to the on-site construction method in terms of the performance and durability of the structure. This is also a method that takes into account.

しかし、このようなPC構造物において、スパン数が多くなり、多数の桁梁部材を長手方向に連続的に緊張する場合には緊張距離が長大となる。このような多スパンの桁梁部材を緊張すると、桁梁部材の軸変形により緊張方向両端側に位置する柱部材に大きな不静定応力が発生する。図13はこのことを説明する図であって、多数の柱材100を立設し、これらをつなぐ桁梁101に緊張力を加えたとき、柱材100に生ずる応力102は両端側で大応力となる。その不静定応力は、緊張方向両端側において最大となり、その値は時には地震時の応力より大きくなる場合がある。   However, in such a PC structure, the number of spans increases, and the tension distance becomes long when a large number of beam members are continuously tensioned in the longitudinal direction. When such a multi-span girder member is tensioned, a large statically indefinite stress is generated in the column members located at both ends of the tension direction due to axial deformation of the girder member. FIG. 13 is a diagram for explaining this. When a large number of column members 100 are erected and tension is applied to the girder beam 101 connecting them, the stress 102 generated in the column member 100 is a large stress at both ends. It becomes. The statically indefinite stress becomes maximum at both ends of the tension direction, and the value sometimes becomes larger than the stress at the time of an earthquake.

このような多スパンのPC構造物では、大きな断面又は大きな耐力の柱部材が必要となり、桁梁部材にプレストレスを導入することによって、逆に不経済な設計箇所が発生することがある。この場合に柱部材の緊張力を開放し、スライドさせて不静定応力を開放する技術もあるが、このような対策をとるには大掛りな装置を必要とし、施工管理が複雑となるという問題があり、実現には非常に困難性が伴う。   In such a multi-span PC structure, a pillar member having a large cross section or a large proof stress is required, and by introducing prestress to the girder beam member, an uneconomical design part may occur. In this case, there is also a technology to release the tension of the column member and slide it to release the statically indefinite stress, but it takes a large device to take such a measure, and construction management becomes complicated There are problems and realization is very difficult.

柱梁接合部を、梁部材と一体化したプレキャストコンクリート部材とし、その梁にプレストレスを導入する技術がある(例えば、特許文献1参照。)。   There is a technique in which a column beam joint is a precast concrete member integrated with a beam member, and prestress is introduced into the beam (see, for example, Patent Document 1).

この技術では、PC梁が多スパンに亘っていると緊張方向両端側に位置する柱部材に大きな不静定力が発生する問題がある。なお、柱部材はRC構造である。   In this technique, when the PC beam spans multiple spans, there is a problem that a large static destabilizing force is generated in the column members positioned on both ends of the tension direction. The pillar member has an RC structure.

また、施工信頼性と品質向上を目指した超高層RC集合住宅で柱梁接合部を梁と一体化したプレキャストRC部材を用いる工法がある(例えば、非特許文献1参照。)。   In addition, there is a construction method using a precast RC member in which a column beam joint is integrated with a beam in an ultra-high-rise RC apartment building aimed at improving construction reliability and quality (for example, see Non-Patent Document 1).

この技術ではすべての部材がRC構造である。
特開2004−316322号公報 『コンクリート工学』vol.42,No.9,2004,9 p.32〜39
In this technique, all members are RC structures.
JP 2004-316322 A “Concrete Engineering” vol. 42, no. 9, 2004, 9 p. 32-39

従来一般に採用されているPC構造物の構築方法において、スパン数が多くなり、多スパンの桁梁部材を緊張する場合、桁梁部材の軸変形により外側の柱部材(緊張方向両端側の柱部材)に大きな不静定応力が発生するという問題がある。   In the conventional construction method of a PC structure, when the number of spans increases and a multi-span girder member is tensioned, the outer column members (column members on both ends in the tension direction) are deformed by the axial deformation of the girder member. ) Has a problem that a large statically constant stress is generated.

本発明はこのような問題点を簡易な手段によって解決した合理的なPCaPC構造物の構築方法を提供することを目的とするものである。   An object of the present invention is to provide a rational method for constructing a PCaPC structure in which such problems are solved by simple means.

本発明のPCaPC構築方法は上記の問題点を解決するためになされたもので、連続多スパンの桁梁部材を備えたPCaPC構造物を構築するに当り、連続多スパンの桁梁部材として、機械式継ぎ手及び後打ちコンクリートにより隣接桁梁部材同士を接合する接合部をスパン中央部に備えると共に柱型を備えたRC部材を用い、各階ごとに柱部材を前記柱型上に立設し、該柱部材上に上階の桁梁部材を載置し、該柱部材に緊張力を付与し、桁行直交方向梁部材はスパンごとにPC梁の両端部を前記柱型の仕口部に緊結し、次いで当該階の床版コンクリートを打設すると共に、隣接する前記RC部材の接合部を接合することを特徴とするPCaPC構造物の構築方法である。   The PCaPC construction method of the present invention was made in order to solve the above-mentioned problems. In constructing a PCaPC structure having a continuous multi-span girder member, the machine is used as a continuous multi-span girder member. The RC member having a column shape and a joint portion for joining adjacent girder members to each other by a joint and post-cast concrete is used, and a column member is erected on the column shape for each floor. An upper beam beam member is placed on the column member, tension is applied to the column member, and the beam beam orthogonal direction beam member tightly connects both ends of the PC beam to the column-shaped joint portion for each span. Next, the PCaPC structure construction method is characterized in that the floor slab concrete of the floor is placed and the joint portions of the adjacent RC members are joined.

本発明で用いる桁梁部材は連続多スパンの桁梁部材をそれぞれスパン中央部で分割し、かつ、柱型を備えたRC部材(鉄筋コンクリート部材)とする。場合によりSRC部材(鉄骨鉄筋コンクリート部材)やS部材としてもよい。桁行直交方向(梁間方向)の梁部材はプレストレスによって各仕口部に圧着接合するので、梁部材及び柱部材の断面において、経済的な設計が可能となる。   The girder member used in the present invention is a RC member (reinforced concrete member) having a columnar shape obtained by dividing a continuous multi-span girder member at the center of each span. In some cases, an SRC member (steel reinforced concrete member) or an S member may be used. Since the beam members in the direction orthogonal to the columns (direction between the beams) are pressure-bonded to the joints by prestress, economical design is possible in the cross section of the beam member and the column member.

本発明の連続多スパンの桁梁部材はスパン中央部で接合するため、桁梁部材は応力の小さい箇所に継ぎ手を備えた構造となる。   Since the continuous multi-span girder member of the present invention is joined at the center of the span, the girder member has a structure having a joint at a location where stress is small.

上記PCaPC構造物の構築方法において、桁行直交方向梁部材はスパンごとに梁部材の両端部を柱仕口部に緊結することができ、好適である。   In the construction method of the PCaPC structure, the beam-orthogonal beam member is preferable because both ends of the beam member can be fastened to the column joint for each span.

本発明では、PC鋼材が桁行方向と直交する一方向となるので、柱型内のPCケーブル定着具の収まりも簡便になる。従って、コーナー柱型又は柱部材の工場製作時の煩雑さも解消され、より高品質な部材製作が可能となる。また、現場でのPC緊張、グラウト作業も柱部材の立設と桁行直交方向のみに軽減されるので、PC工事コストの低減にもつながる。   In the present invention, since the PC steel material is in one direction orthogonal to the beam direction, it is easy to fit the PC cable fixing tool in the column shape. Therefore, the complexity at the time of factory manufacture of the corner column type or column member is eliminated, and higher quality member manufacturing becomes possible. In addition, PC tension and grouting work on site can be reduced only in the vertical direction of the column members and in the direction orthogonal to the columns, leading to a reduction in PC construction costs.

本発明によれば、連続多スパンの桁梁部材を、スパン中央で分割した柱型付きのRC部材とし、スパン中央部を鉄筋の機械式継ぎ手と後打ちコンクリートにより接合して構築する。従って、連続多スパンの桁梁部材に緊張力を付与することによって、軸変形による緊張方向両端部近傍の柱部材に不静定応力が生ずる問題は解消された。   According to the present invention, a continuous multi-span girder member is an RC member with a columnar shape divided at the center of the span, and the center of the span is constructed by joining a mechanical joint of reinforcing steel and post-cast concrete. Therefore, the problem that the statically indefinite stress is generated in the column members in the vicinity of both ends in the tension direction due to the axial deformation is solved by applying the tension force to the continuous multi-span girder member.

連続多スパンの梁部材は、それぞれスパン中央部分で接合するため、継ぎ手は応力の小さい箇所であり、接合する鉄筋は少なくてよい。   Since the continuous multi-span beam members are joined at the center portion of the span, the joint is a portion where the stress is small, and the number of reinforcing bars to be joined may be small.

PC鋼材による緊張は桁行方向と直交する一方向となるので、コーナー柱型又は柱部材内のPCケーブル定着具の収まりも簡便になり、高品質な部材製作が可能となる。   Since the tension caused by the PC steel is in one direction orthogonal to the direction of the beam, it is easy to fit the corner column type or the PC cable fixing tool in the column member, and it is possible to manufacture a high quality member.

本発明では、柱部材は、当該階の桁梁部材の柱型上に調整モルタルを施し、その上に柱部材を同軸に架設し上下柱部材をPC鋼棒で圧着する。従って、パネルゾーン内で桁梁部材の鉄筋を接合したり、アンカーを設けたり、又は後打ちコンクリートを施工することは不要となる。また桁梁を支持する支保工を必要としない。   In the present invention, the column member is subjected to adjustment mortar on the column shape of the beam member on the floor, the column member is installed coaxially thereon, and the upper and lower column members are pressure-bonded with a PC steel rod. Therefore, it is not necessary to join the reinforcing bars of the beam members in the panel zone, to provide anchors, or to apply post-cast concrete. Also, no support work is required to support the beam.

連続多スパンの桁梁部材の柱部材との接合部の鉄筋はスパン中央部より多くなるが、PCケーブルが桁行方向と直交する方向のみとなるので、PCケーブルの柱型内の納まりもよく、桁梁部材の工場製作時の煩雑さも解消される。   The rebar of the joint part with the column member of the continuous multi-span girder member is larger than the center part of the span, but since the PC cable is only in the direction perpendicular to the direction of the girder, it fits well in the column shape of the PC cable, This eliminates the complexity of manufacturing girders in the factory.

本発明による構造物は不必要な不静定応力を発生させないので、柱部材及び梁部材の断面を小さくすることが出来る。   Since the structure according to the present invention does not generate unnecessary statically indefinite stress, the cross section of the column member and the beam member can be reduced.

また、PCケーブルの緊張、PCケーブルシース内のグラウト作業を軽減できるため、PC工事工程が簡易となり、PC工事コストを軽減することが出来る。   Further, since the tension of the PC cable and the grout work in the PC cable sheath can be reduced, the PC construction process is simplified, and the PC construction cost can be reduced.

合成床版を連続多スパンと直交するスパン桁梁部材上に架設するので、長期荷重のほとんどをスパン梁部材が負担する。桁行方向に直交する梁部材は桁梁部材の柱型部分に梁部材をプレストレスにより圧着接合する。その際発生する不静定応力は長期荷重に対し有効に働くため、桁梁部材及びこれに直交する方向の梁部材にプレストレスを導入する従来のPC構造物と同様な経済的な設計が可能である。   Since the composite floor slab is installed on the span girder beam member orthogonal to the continuous multi-span, the span beam member bears most of the long-term load. The beam member orthogonal to the beam direction is pressure bonded to the columnar portion of the beam member by prestress. The static instability generated at that time works effectively for long-term loads, so it is possible to design economically the same as conventional PC structures that introduce prestress to beam members and beam members in the direction perpendicular to them. It is.

以下図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例のPCaPC構造物10の構築方法を示す図である。   FIG. 1 is a diagram showing a construction method of a PCaPC structure 10 according to an embodiment of the present invention.

本発明のPCaPC構造物10の構築方法では、連続多スパンの桁梁をそれぞれスパン中央部で分割し、かつ、柱型21を備えた桁梁部材20を用いる。そしてこの桁梁部材20は隣接桁梁部材とスパン中央の接合部40で機械式継ぎ手と後打ちコンクリートにより接合する。桁梁中央部は元々長期応力が小さいため、接合する鉄筋は少なくてよい。   In the construction method of the PCaPC structure 10 of the present invention, a continuous multi-span girder beam is divided at the center of each span, and a girder member 20 having a column shape 21 is used. The girder member 20 is joined to the adjacent girder member by a mechanical joint and post-cast concrete at a joint 40 at the center of the span. The central part of the girder beam originally has a small long-term stress, so that fewer reinforcing bars are to be joined.

また、桁行直交方向はPCスパン梁を柱型の仕口部に接合する。   In the direction orthogonal to the column, the PC span beam is joined to the column-shaped joint.

本発明に用いる桁梁部材20は図2に側面図を示すように、柱型21と梁部22とから成るRC部材である。この桁梁部材20は、各階でPCa柱部材30上に柱型21を載せ、桁梁部材20の柱型21の上面に調整モルタル31bを施し、その上に当該階の柱部材30bを架設しPC鋼棒32で圧着する。パネルゾーン内での桁梁部材20の鉄筋の接合や、アンカー、後打ちコンクリートが不要であり、桁梁部材20の支保工を設ける必要がない。なお、図2の向って左側の柱部材はコーナー柱部材を示している。   The girder member 20 used in the present invention is an RC member comprising a column mold 21 and a beam portion 22, as shown in a side view in FIG. This beam member 20 has a column 21 placed on a PCa column member 30 on each floor, an adjustment mortar 31b is provided on the upper surface of the column 21 of the beam member 20, and a column member 30b on the floor is erected thereon. Crimp with PC steel rod 32. There is no need to join the reinforcing bars of the beam members 20 in the panel zone, anchors or post-cast concrete, and there is no need to provide support for the beam members 20. The column member on the left side in FIG. 2 indicates a corner column member.

桁梁部材20の柱型21の部分の鉄筋はスパン中央部より多くなるが、PCケーブルが桁行直交方向のみとなるので、柱型21内の鉄筋やシースの納まりもよく、工場製作時の煩雑さも解消される。   The rebar of the column 21 of the beam beam member 20 is larger than the center of the span. However, since the PC cable is only in the direction orthogonal to the beam, the rebar and sheath in the column 21 are well accommodated, and complicated at the time of factory production. This is also resolved.

また、多スパン方向に緊張しないので構造物端部の柱部材に不必要な不静定応力を発生させず、柱、梁の断面を小さくすることができる。また、多スパン方向のPC緊張、グラウト作業を軽減できるため、PC工事工程、PC工事コストも軽減できる。   In addition, since there is no tension in the multi-span direction, unnecessary statically indefinite stress is not generated in the column member at the end of the structure, and the cross section of the column and beam can be reduced. Moreover, since the PC tension and grout work in the multi-span direction can be reduced, the PC construction process and the PC construction cost can be reduced.

桁梁部材20の梁部22の隣接梁部との接合は、スパン中央部において、相互の鉄筋23を連結具41等によって接合し、後打ちコンクリート42を打設して行う。   Joining of the beam portion 22 of the beam portion 20 to the adjacent beam portion is performed by joining the reinforcing bars 23 to each other at the center portion of the span by the connecting tool 41 or the like, and placing the post-cast concrete 42.

また本発明では、一方向合成床版を桁行直交方向PC梁50上に架設するので長期荷重のほとんどを桁行直交方向PC梁50が負担する。桁行直交方向PC梁は桁梁部材20の柱型21の部分にプレストレスにより圧着接合する。その際発生する不静定応力は長期荷重に対し有効に働くため、従来のPC造と同様な経済的な設計が可能である。   In the present invention, since the unidirectional composite floor slab is installed on the PC beam 50 in the row orthogonal direction, the PC beam 50 bears most of the long-term load. The cross beam PC direction beam is pressure bonded to the column 21 of the beam member 20 by prestress. The static instability generated at that time works effectively for a long-term load, so an economical design similar to that of a conventional PC structure is possible.

図3は図2の平面図であって、隣接桁梁部材20のスパン中央部の接合部40を示すと共に、柱型21に桁行方向直交方向のPC梁50の接合部を示している。PC梁50は目地51を介して柱型21の側面に取付けられシース52内にPC鋼材を挿通し緊張力を加える。シース52内のPC鋼材は柱型21内で定着されている。   FIG. 3 is a plan view of FIG. 2, showing the joint 40 at the center of the span of the adjacent beam member 20 and also showing the joint of the PC beam 50 in the direction orthogonal to the column direction in the column 21. The PC beam 50 is attached to the side surface of the column 21 via the joint 51, and a PC steel material is inserted into the sheath 52 to apply tension. The PC steel material in the sheath 52 is fixed in the column mold 21.

図4は桁行直交方向の側面図で、桁行直交方向のPC梁50の構築方法を示している。当該階の柱部材30を下階の桁梁部材20の柱型21上に載せ、その上に当該階の桁梁部材20の柱型21を載せ、シース内にPC鋼材を挿通し、柱部材30を緊結する。次いで、当該階の桁梁部材20aの側面に桁行直交方向PC梁50を、目地を介して取付け、PC鋼材を挿通し緊結する。   FIG. 4 is a side view in the direction orthogonal to the columns and shows a construction method of the PC beam 50 in the direction orthogonal to the columns. The column member 30 of the floor is mounted on the column mold 21 of the lower beam beam member 20, the column mold 21 of the beam beam member 20 of the floor is mounted thereon, the PC steel material is inserted into the sheath, and the column member Tighten 30. Next, the cross beam orthogonal direction PC beam 50 is attached to the side surface of the beam member 20a on the floor through the joint, and the PC steel material is inserted and tightened.

図5〜図12に、以上の実施例の施工工程の詳細を示した。   5 to 12 show the details of the construction process of the above embodiment.

図5は柱部材30を下階の桁梁部材の上に立設する工程を示している。   FIG. 5 shows a process of erecting the column member 30 on the girder member on the lower floor.

次いで図6に示すように柱部材30上に当該階の桁梁部材20を載設する。このとき、桁梁部材20の柱型21を柱部材30と合致させる。   Next, as shown in FIG. 6, the girder member 20 on the floor is placed on the column member 30. At this time, the column shape 21 of the beam member 20 is matched with the column member 30.

図7は隣接する桁梁部材20同士が桁梁部材20のスパン中央部で機械式継ぎ手によって結合されるように対向して結合部40を形成した工程を示すものである。   FIG. 7 shows a process in which the connecting portions 40 are formed facing each other so that adjacent beam members 20 are connected to each other by a mechanical joint at the center of the span of the beam members 20.

次いで図8に示すように柱部材30と柱型21とを圧着接合35する。   Next, as shown in FIG. 8, the column member 30 and the column mold 21 are bonded by pressure bonding 35.

図9は、桁行直交方向PC梁50を柱型21の側面に取付ける工程を示している。   FIG. 9 shows a process of attaching the column beam orthogonal direction PC beam 50 to the side surface of the column 21.

次いで、図10に示すように梁50に応力導入53を行う。   Next, as shown in FIG. 10, stress introduction 53 is performed on the beam 50.

図11に示すようにPC床版70をPC梁50上に架設し、次いで図12に示すように場所打ち床版コンクリート71を施工してこの階の施工を完了する。このとき、RC桁梁部材20の接合部40の閉合も同時にコンクリート施工を行う。   As shown in FIG. 11, a PC floor slab 70 is installed on the PC beam 50, and then cast-in-place slab concrete 71 is constructed as shown in FIG. At this time, the concrete construction is performed at the same time as the closing of the joint 40 of the RC girder member 20.

図14〜図17は桁行直交方向PC梁50に生ずる応力の説明図である。   14-17 is explanatory drawing of the stress which arises in the beam beam orthogonal direction PC beam 50. FIG.

図14はPC梁50を架設する時におけるPC梁50の自重と床版の重量による応力55を示す。   FIG. 14 shows the stress 55 due to the weight of the PC beam 50 and the weight of the floor slab when the PC beam 50 is installed.

図15はPC梁50にプレストレスを導入したときの梁部材に生ずる応力56及び両端の柱部材に生ずる不静定応力57の分布を示すものである。   FIG. 15 shows the distribution of the stress 56 generated in the beam member when prestress is introduced into the PC beam 50 and the statically indefinite stress 57 generated in the column members at both ends.

図16はトップコンクリート打設し積載荷重(設計荷重)が加わったときのPC梁50及び柱部材に生ずる応力58、59を示す図である。   FIG. 16 is a diagram showing stresses 58 and 59 generated in the PC beam 50 and the column member when the top concrete is placed and a load (design load) is applied.

そして、地震荷重(設計)による応力は図17に示す61、62のようになる。   And the stress by an earthquake load (design) becomes like 61 and 62 shown in FIG.

本発明によれば、一方向合成床版を桁行直交方向PC梁50に架設するので、長期荷重はほとんど桁行直交方向PC梁50が負担する。桁梁部材20の柱型21に桁行直交方向PC梁50をプレストレスにより圧着接合する。このとき発生する不静定応力は長期荷重に対して有効に働くため、従来のPC構造物と同様に経済的な設計が可能となる。   According to the present invention, since the one-way composite floor slab is installed on the cross beam orthogonal direction PC beam 50, the long-term load is almost borne by the cross beam orthogonal direction PC beam 50. The beam beam orthogonal direction PC beam 50 is pressure-bonded to the column 21 of the beam member 20 by prestress. Since the indefinite stress generated at this time works effectively against a long-term load, it is possible to design economically as in the case of a conventional PC structure.

実施例の構造物の側面図である。It is a side view of the structure of an Example. 実施例の構造物の部分拡大図である。It is the elements on larger scale of the structure of an Example. 図2の平面図である。FIG. 3 is a plan view of FIG. 2. 実施例の構造物の桁行直交方向(妻側)側面図である。It is a column orthogonal direction (wife side) side view of the structure of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 実施例の施工工程の説明図である。It is explanatory drawing of the construction process of an Example. 多スパンの不静定応力の説明図である。It is explanatory drawing of a multi-span statically constant stress. 桁行直交方向の応力分布の説明図である。It is explanatory drawing of the stress distribution of a digit orthogonal direction. 桁行直交方向の応力分布の説明図である。It is explanatory drawing of the stress distribution of a digit orthogonal direction. 桁行直交方向の応力分布の説明図である。It is explanatory drawing of the stress distribution of a digit orthogonal direction. 桁行直交方向の応力分布の説明図である。It is explanatory drawing of the stress distribution of a digit orthogonal direction.

符号の説明Explanation of symbols

10 PCaPC構造物
20、20a 桁梁部材
21 柱型
22 梁部
23 鉄筋
30、30a、30b 柱部材
31b 調整モルタル
32 PC鋼棒
35 圧着接合
40 接合部
41 連結具
42 後打ちコンクリート
50 PC梁
51 目地
52 シース
53 応力導入
55〜62 応力
70 PC床版
71 床版コンクリート
DESCRIPTION OF SYMBOLS 10 PCaPC structure 20, 20a Girder member 21 Column type 22 Beam part 23 Reinforcing bar 30, 30a, 30b Column member 31b Adjustment mortar 32 PC steel bar 35 Crimp joint 40 Joint part 41 Connector 42 Post-cast concrete 50 PC beam 51 Joint 52 Sheath 53 Stress introduction 55-62 Stress 70 PC slab 71 Floor slab concrete

Claims (1)

連続多スパンの桁梁部材を備えたPCaPC構造物を構築するに当り、連続多スパンの桁梁部材として、機械式継ぎ手及び後打ちコンクリートにより隣接桁梁部材同士を接合する接合部をスパン中央部に備えると共に柱型を備えたRC部材を用い、各階ごとに柱部材を前記柱型上に立設し、該柱部材上に上階の桁梁部材を載置し、該柱部材に緊張力を付与し、桁行直交方向梁部材はスパンごとにPC梁の両端部を前記柱型の仕口部に緊結し、次いで当該階の床版コンクリートを打設すると共に、隣接する前記RC部材の接合部を接合することを特徴とするPCaPC構造物の構築方法。   When constructing a PCaPC structure with continuous multi-span girder members, as a continuous multi-span girder member, a joint that joins adjacent girder members with mechanical joints and post-cast concrete is the center of the span. In addition to using RC members with column types, column members are erected on the column types for each floor, and upper beam beams are placed on the column members, and tension is applied to the column members. In the cross beam direction beam member, both ends of the PC beam are fastened to the column-shaped joint for each span, and then the floor slab concrete of the floor is placed, and the adjacent RC members are joined. A method for constructing a PCaPC structure, characterized by joining parts.
JP2004369639A 2004-12-21 2004-12-21 CONSTRUCTION METHOD OF PCaPC STRUCTURE Pending JP2006176986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369639A JP2006176986A (en) 2004-12-21 2004-12-21 CONSTRUCTION METHOD OF PCaPC STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369639A JP2006176986A (en) 2004-12-21 2004-12-21 CONSTRUCTION METHOD OF PCaPC STRUCTURE

Publications (1)

Publication Number Publication Date
JP2006176986A true JP2006176986A (en) 2006-07-06

Family

ID=36731340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369639A Pending JP2006176986A (en) 2004-12-21 2004-12-21 CONSTRUCTION METHOD OF PCaPC STRUCTURE

Country Status (1)

Country Link
JP (1) JP2006176986A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050461A (en) * 2014-09-02 2016-04-11 三井住友建設株式会社 Rigid-framed structure
CN109914816A (en) * 2019-04-03 2019-06-21 重庆恩倍克科技有限公司 A kind of board-like assembling structure for exempting to shake house
JP7430343B2 (en) 2020-08-29 2024-02-13 大成建設株式会社 Structures and their construction methods
JP7438065B2 (en) 2020-08-29 2024-02-26 大成建設株式会社 pillar structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145843Y1 (en) * 1974-10-14 1976-11-06
JP2000319985A (en) * 1999-05-11 2000-11-21 Kajima Corp Rigid-frame prefabrication construction method
JP2002309797A (en) * 2001-04-17 2002-10-23 Kazuhiro Watanabe Method of constructing frame for multistory precast and pre-stressed concrete building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145843Y1 (en) * 1974-10-14 1976-11-06
JP2000319985A (en) * 1999-05-11 2000-11-21 Kajima Corp Rigid-frame prefabrication construction method
JP2002309797A (en) * 2001-04-17 2002-10-23 Kazuhiro Watanabe Method of constructing frame for multistory precast and pre-stressed concrete building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050461A (en) * 2014-09-02 2016-04-11 三井住友建設株式会社 Rigid-framed structure
CN109914816A (en) * 2019-04-03 2019-06-21 重庆恩倍克科技有限公司 A kind of board-like assembling structure for exempting to shake house
JP7430343B2 (en) 2020-08-29 2024-02-13 大成建設株式会社 Structures and their construction methods
JP7438065B2 (en) 2020-08-29 2024-02-26 大成建設株式会社 pillar structure

Similar Documents

Publication Publication Date Title
JP6312459B2 (en) Truss beam construction method
JP6647721B1 (en) Tensionless PC steel bar concrete beam-column structure
JP4888915B2 (en) Building structure using composite structural beams with beam ends made of PC
JP2006037648A (en) Structure for joining column and beam together
JP2006132303A (en) Fixing structure of steel frame stud to reinforced concrete beam
JP2008266910A (en) Projection structure of anchorage or deviator of tendon, and construction method therefor
JP2011149265A (en) Beam member and building structure
KR100506572B1 (en) Steel beam constructed prestressing segmental component and construction method thereof
JP2007191865A (en) Structure for jointing prestressed precast concrete member and member to be jointed, and prestressed precast concrete member
JP2006176986A (en) CONSTRUCTION METHOD OF PCaPC STRUCTURE
JP2005200928A (en) Reinforcing structure of columnar construction
JP2018150722A (en) Column and beam joint structure and forming method of column and beam joint structure
JP2010248746A (en) Embedded form
JP4439938B2 (en) Wall type reinforced concrete structure and its construction method
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
JPH01235743A (en) Prestressed rpc construction work and pc column with prestressed beam
JPH06158716A (en) Construction method of building with precast concrete member
JP4045502B2 (en) Structure
JP7438065B2 (en) pillar structure
JP7285202B2 (en) Frame structures and buildings equipped with them
JPH06248722A (en) Joining method for precast reinforcement concrete earthquake resisting wall and steel frame beam
JP2005042491A (en) Prestressed concrete structure
JP7137978B2 (en) Plate-shaped member for pillar
JP6340467B1 (en) Ramen structure using sleeve wall and joining method thereof
JP2023081481A (en) Pca joined body and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100709

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116