JP2004300912A - Vibration control damper coping with habitability - Google Patents

Vibration control damper coping with habitability Download PDF

Info

Publication number
JP2004300912A
JP2004300912A JP2003413141A JP2003413141A JP2004300912A JP 2004300912 A JP2004300912 A JP 2004300912A JP 2003413141 A JP2003413141 A JP 2003413141A JP 2003413141 A JP2003413141 A JP 2003413141A JP 2004300912 A JP2004300912 A JP 2004300912A
Authority
JP
Japan
Prior art keywords
damper
viscoelastic
viscoelastic damper
horizontal
livability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003413141A
Other languages
Japanese (ja)
Inventor
Yuji Isshiki
祐二 一色
Yuichi Kimura
雄一 木村
Hiroyuki Narihara
弘之 成原
Tatsuhiro Ranki
龍大 欄木
Hideshi Aono
英志 青野
Yasuhiro Nishikawa
泰弘 西川
Original Assignee
Taisei Corp
大成建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003072207 priority Critical
Application filed by Taisei Corp, 大成建設株式会社 filed Critical Taisei Corp
Priority to JP2003413141A priority patent/JP2004300912A/en
Publication of JP2004300912A publication Critical patent/JP2004300912A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain a function as a viscoelastic damper during a large earthquake and to improve habitability of a building during a strong wind in a vibration control damper coping with the habitability, in a vibration control damper incorporated in a building of reinforced concrete or the like. <P>SOLUTION: Studs 8A, 8B are vertically mounted from and on two upper and lower beams 3A, 3B, respectively. A viscoelastic damper 9 is connected to the studs 8A, 8B to be freely extendable and contractible in the horizontal direction. A T-steel 7 is hung from the lower side of the upper stud 8A by means of a bolted connection, and a sliding junction body 4 is fitted between the T-steel 7 and the viscoelastic damper 9 to be slidable in the horizontal direction. When an excessive external force is applied to the building and large vibrations occur, an excessive stress is not generated on the viscoelastic damper 9 since the viscoelastic damper 9 relatively slides prior to its expansion and contraction. Since the sliding junction body 4 is separated from the viscoelastic damper 9 as a structurally separated body, a compression force is not applied to the viscoelastic body of the viscoelastic damper 9 even when a bolt is screwed up to adjust a sliding characteristic of the sliding junction body 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、強風時における建物の居住性を高めることが可能な居住性対応制振ダンパーに関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping damper that can improve the livability of a building in strong winds.

近年、高強度コンクリートが実用化され、鉄骨造のみならず、超高層や塔状比の大きい鉄筋コンクリート造の建物の需要が伸びたことに伴い、これらの建物の居住性を改善するため、強風による微小な振幅の振動を低減することが急務となっている。こうした流れに対応すべく、所定の厚さ(通常5mm以上)の粘弾性体からなる粘弾性ダンパーを建物に組み込み、その粘弾性体が速度に比例した粘性抵抗力を発揮することを利用して建物の振動を低減することが従来から行われてきた。   In recent years, high-strength concrete has been put into practical use, and in addition to steel structures, demand for super-high-rise buildings and reinforced concrete buildings with a large tower-to-ratio ratio has increased. There is an urgent need to reduce minute amplitude vibrations. In order to cope with such a flow, a viscoelastic damper made of a viscoelastic body having a predetermined thickness (usually 5 mm or more) is incorporated into a building, and the viscoelastic body exerts a viscous resistance force proportional to the speed. It has been conventional to reduce the vibration of a building.

ところが、粘弾性ダンパーはその減衰力が振幅に比例して増大する特性を備えているため、この粘弾性ダンパーを単体で使うと、大地震などによって建物に過大な外力が作用した場合、建物に大振幅の振動が発生し、粘弾性ダンパーが損傷を受けて機能不全に陥る恐れがある。   However, since the viscoelastic damper has the property that its damping force increases in proportion to the amplitude, if this viscoelastic damper is used alone, the building will be damaged if an excessive external force acts on the building due to a large earthquake or the like. Large amplitude vibrations may occur, damaging the viscoelastic damper and causing malfunction.

そこで、特許文献1などに開示されているように、摩擦材と粘弾性材の積層体を一対の鋼板で挟着してボルト締めした耐震ダンパーユニットを用いることにより、大地震時には摩擦材を滑動させて粘弾性材のダンパー機能を維持せんとする技術(以下、公知技術1という。)が提案されている。   Therefore, as disclosed in Patent Document 1 or the like, by using a seismic damper unit in which a laminate of a friction material and a viscoelastic material is sandwiched between a pair of steel plates and bolted, the friction material slides during a large earthquake. A technique for maintaining the damper function of the viscoelastic material (hereinafter referred to as known technique 1) has been proposed.

また、特許文献2などに開示されているとおり、粘弾性ダンパーと先行降伏部材とを組み合わせたブレース部材を採用し、粘弾性ダンパーが破損する前に先行降伏部材を塑性変形させることで、粘弾性ダンパーの破損を防止しようとする技術(以下、公知技術2という。)も知られている。
特開昭64−1877号公報(特許請求の範囲、第1〜3図) 特開平10−37515号公報(段落〔0008〕〔0009〕の欄、図1)
Further, as disclosed in Patent Document 2, etc., a brace member in which a viscoelastic damper and a preceding yield member are combined is employed, and the viscoelastic damper is plastically deformed before the damper is broken, thereby providing viscoelasticity. There is also known a technique for preventing breakage of a damper (hereinafter, known technique 2).
JP-A-64-1877 (Claims, FIGS. 1-3) JP-A-10-37515 (paragraphs [0008] and [0009], FIG. 1)

しかし、公知技術1の耐震ダンパーユニットは、摩擦材を粘弾性材ごと鋼板で挟み込んでボルトで締め付けた構造となっており、必然的に粘弾性材にも圧縮力が加わってしまう。そのため、粘弾性材の剪断ばね性能を評価する際には、この粘弾性材の圧縮応力時の剪断挙動を把握することはもとより、ボルト軸力や粘弾性材の圧縮剛性の長期的な変化、つまりクリープ現象まで明らかにしなければならない。しかも、耐震ダンパーユニットの摩擦面を水平面で構成するために、面外に平面を構築する必要が生じ、摩擦面の構成が複雑化してしまう。したがって、耐震ダンパーユニットの使い方が複雑にならざるを得ず、まだまだ実用性に乏しいという難点があった。   However, the earthquake-resistant damper unit of the prior art 1 has a structure in which a friction material is sandwiched between steel plates together with a viscoelastic material and tightened with bolts, and compressive force is inevitably applied to the viscoelastic material. Therefore, when evaluating the shear spring performance of the viscoelastic material, in addition to grasping the shearing behavior of the viscoelastic material at the time of compressive stress, long-term changes in the bolt axial force and the compression rigidity of the viscoelastic material, In other words, it is necessary to clarify even the creep phenomenon. In addition, since the friction surface of the seismic damper unit is formed of a horizontal surface, it is necessary to construct a plane outside the surface, which complicates the configuration of the friction surface. Therefore, the use of the seismic damper unit had to be complicated, and the practicality was still poor.

また、公知技術2の粘弾性ダンパーは、フレームの対角線に沿って斜め方向に引張・圧縮応力が作用するブレース型であるため、その連結部に生じる応力が大きくなる。その結果、設計の自由度が低下するばかりか、鉄筋コンクリート造の建物には容易に取り付けられないという不具合があった。その上、斜め方向に取り付けられるブレース型の粘弾性ダンパーは、その取付角度が大きくなるほど(詳しくは、取付角度の余弦の二乗に比例する形で)水平方向の減衰性能が低減するという短所まで備えていた。   Further, since the viscoelastic damper of the prior art 2 is of a brace type in which tensile and compressive stresses act obliquely along the diagonal of the frame, the stress generated at the connecting portion increases. As a result, not only the degree of freedom of design is reduced, but also there is a problem that it cannot be easily attached to a reinforced concrete building. In addition, the brace-type visco-elastic damper mounted diagonally has the disadvantage that the larger the mounting angle (specifically, in proportion to the square of the cosine of the mounting angle), the lower the horizontal damping performance. I was

さらに、一般に粘弾性ダンパーの減衰性能は、その粘弾性体の貼付面積を粘弾性体の厚さで除した値に比例するところ、粘弾性体は小・中規模の地震にも対処しうるように通常5mm以上の厚さとなっているので、一定の減衰性能を得るためには粘弾性体の貼付面積を大きくしなければならず、いきおい粘弾性ダンパーの製作コストが高騰して経済性が低下してしまう欠点もあった。   Furthermore, in general, the damping performance of a viscoelastic damper is proportional to the value obtained by dividing the sticking area of the viscoelastic body by the thickness of the viscoelastic body, so that the viscoelastic body can cope with small and medium-scale earthquakes. In general, the thickness of the viscoelastic body must be increased to obtain a certain damping performance because the thickness is usually 5 mm or more. There was also a disadvantage.

本発明は、こうした事情に鑑み、大地震時に建物に過大な外力が作用しても粘弾性ダンパーの機能を維持することにより、強風時における建物の居住性を高めることができるのは勿論のこと、使い方が簡単で実用性に優れ、設計の自由度が大きくて鉄筋コンクリート造の建物にも容易に取り付けられ、水平方向における減衰性能の低減を回避し、さらに、一定の減衰性能を維持しつつも製作コストを抑えて経済性を改善することが可能な居住性対応制振ダンパーを提供することを目的とする。   In view of these circumstances, the present invention can of course improve the livability of a building in strong winds by maintaining the function of the viscoelastic damper even when an excessive external force acts on the building during a large earthquake. It is easy to use and excellent in practicality, has a large degree of freedom in design and can be easily installed in reinforced concrete buildings, avoids a reduction in damping performance in the horizontal direction, and maintains a constant damping performance It is an object of the present invention to provide a damping damper corresponding to livability that can reduce the production cost and improve the economic efficiency.

上記課題を解決するために、まず、請求項1に記載の本発明は、上下2本の梁(3A、3B)にそれぞれ空間調整部材(6A、6B、8A、8B)を垂設し、これらの空間調整部材間に粘弾性ダンパー(9)を水平方向に伸縮自在に連結した居住性対応制振ダンパー(1)であって、前記粘弾性ダンパーが水平方向に滑動しうるように、摩擦材(4a)と接合部材(4b)とが積層されてボルト接合された滑り接合体(4)を当該粘弾性ダンパーの少なくとも片側の連結部に分離して設けたことを特徴とするものである。   In order to solve the above-mentioned problem, first, according to the present invention, the space adjusting members (6A, 6B, 8A, 8B) are vertically provided on the upper and lower two beams (3A, 3B), respectively. And a visco-elastic damper (9) connected between the space adjustment members so as to be extendable and contractible in the horizontal direction, wherein the friction material is arranged so that the visco-elastic damper can slide in the horizontal direction. (4a) and a joining member (4b) are laminated, and a sliding joint (4) which is bolted and joined is provided separately on at least one connecting portion of the viscoelastic damper.

また、請求項2に記載の本発明は、上下2本の梁(3A、3B)のいずれか一方に空間調整部材(6A、6B、8A、8B)を垂設し、前記2本の梁の他方と前記空間調整部材との間に粘弾性ダンパー(9)を水平方向に伸縮自在に連結した居住性対応制振ダンパー(1)であって、前記粘弾性ダンパーが水平方向に滑動しうるように、摩擦材(4a)と接合部材(4b)とが積層されてボルト接合された滑り接合体(4)を当該粘弾性ダンパーの少なくとも片側の連結部に分離して設けたことを特徴とするものである。   Further, according to the present invention, a space adjusting member (6A, 6B, 8A, 8B) is vertically provided on one of the upper and lower two beams (3A, 3B), and the two beams are provided. A livability-adaptive vibration damper (1) in which a visco-elastic damper (9) is connected to the other and the space adjusting member so as to be able to expand and contract in the horizontal direction, so that the visco-elastic damper can slide in the horizontal direction. In addition, a sliding joint body (4) in which a friction material (4a) and a joining member (4b) are laminated and bolted is provided separately on at least one connecting portion of the viscoelastic damper. Things.

ここで、粘弾性ダンパーの個数は特に限定されず、1個でも2個以上でも構わない。また、空間調整部材の代表例としては間柱(8A、8B)や壁状部材(6A、6B)を挙げることができる。   Here, the number of viscoelastic dampers is not particularly limited, and may be one or two or more. Further, as typical examples of the space adjusting member, studs (8A, 8B) and wall-shaped members (6A, 6B) can be given.

また、請求項3に記載の本発明は、上下2本の梁(3A、3B)のいずれか一方にトラス部材(24)の一方の端部を固定し、前記2本の梁の他方と前記トラス部材の他方の端部との間に粘弾性ダンパー(9)を水平方向に伸縮自在に連結した居住性対応制振ダンパー(1)であって、前記粘弾性ダンパーが水平方向に滑動しうるように、摩擦材(4a)と接合部材(4b)とが積層されてボルト接合された滑り接合体(4)を、当該粘弾性ダンパーと前記梁との間または前記粘弾性ダンパーと上記トラス部材との間に設けたことを特徴とするものである。   Further, according to the present invention, one end of the truss member (24) is fixed to one of the upper and lower two beams (3A, 3B), and the other of the two beams and the other beam are fixed to each other. A comfortable damping damper (1) in which a viscoelastic damper (9) is connected to the other end of the truss member so as to be able to expand and contract in the horizontal direction, wherein the viscoelastic damper can slide in the horizontal direction. As described above, the sliding joint body (4) in which the friction material (4a) and the joining member (4b) are laminated and bolted to each other is provided between the viscoelastic damper and the beam or between the viscoelastic damper and the truss member. And between them.

さらに、請求項4に記載の本発明は、請求項1〜3のいずれかに記載された前記滑り接合体(4)の摩擦面を鉛直面としたことを特徴とするものである。
また、請求項5に記載の本発明は、請求項1〜4のいずれかに記載の粘弾性ダンパー(9)として、厚さ2mm以下の粘弾性体が剪断変形することによってエネルギーを吸収するものを採用したことを特徴とするものである。
Further, the present invention described in claim 4 is characterized in that the friction surface of the sliding joint body (4) according to any one of claims 1 to 3 is a vertical surface.
According to a fifth aspect of the present invention, as the viscoelastic damper (9) according to any one of the first to fourth aspects, a viscoelastic body having a thickness of 2 mm or less absorbs energy by being sheared. Is adopted.

さらに、請求項6に記載の本発明は、請求項1〜5のいずれかに記載の粘弾性ダンパー(9)および前記滑り接合体(4)に、降伏部材(10、11)を並列接続したことを特徴とするものである。この降伏部材の代表例としては、鋼材ダンパー(10)や鉄筋(11)を挙げることができる。   Furthermore, in the present invention according to claim 6, a yield member (10, 11) is connected in parallel to the viscoelastic damper (9) according to any one of claims 1 to 5 and the sliding joint (4). It is characterized by the following. Representative examples of the yield member include a steel damper (10) and a reinforcing bar (11).

請求項1〜6のいずれかに記載の本発明によれば、建物に過大な外力が作用して大振動が生じた場合に、粘弾性ダンパーの伸縮に先立って滑り接合体の接合部材が相対的な滑りを起こすため、粘弾性ダンパーに過大な応力が発生しなくなることから、大地震時に建物に過大な外力が作用しても粘弾性ダンパーの機能を維持することにより、強風時における建物の居住性を高めることが可能な居住性対応制振ダンパーを提供することができる。   According to the present invention as set forth in any one of claims 1 to 6, when an excessive external force acts on the building and a large vibration occurs, the joining member of the sliding joint is relatively moved prior to the expansion and contraction of the viscoelastic damper. The visco-elastic damper does not generate excessive stress due to the slippage, and maintains the function of the visco-elastic damper even if an external force acts on the building during a large earthquake. It is possible to provide a livability-adaptive vibration damper capable of enhancing livability.

しかも、滑り接合体が粘弾性ダンパーから構造上独立して分離しているため、滑り接合体の滑動特性を調整すべくボルトを締め付けても粘弾性ダンパーの粘弾性体に圧縮力が作用することがなく、この粘弾性体の剪断ばね性能を公知の単純剪断挙動で簡便に評価しうるので、居住性対応制振ダンパーの使い方が簡単になり、その実用性が向上する。   Moreover, since the sliding joint is separated from the viscoelastic damper structurally independently, even if the bolt is tightened to adjust the sliding characteristics of the sliding joint, a compressive force acts on the viscoelastic body of the viscoelastic damper. Therefore, the shear spring performance of the viscoelastic body can be easily evaluated by a known simple shearing behavior, so that the use of the damping damper corresponding to the livability is simplified, and the practicability thereof is improved.

また、居住性対応制振ダンパーがブレース型ではなく柱型または壁型トラス型であるため、その連結部に生じる応力が小さくなり、設計の自由度も高くなると同時に、鉄筋コンクリート造の建物にも容易に取り付けることができる。しかも、粘弾性ダンパーが水平方向に取り付けられているため、その減衰性能は水平方向に100%発揮される。さらに、パッシブ型の居住性対応制振ダンパーであるため、動力が不要でメンテナンスも容易である。   In addition, since the damping damper for comfortability is not a brace type but a column type or wall type truss type, the stress generated at the joint is small, the design flexibility is high, and at the same time it is easy to use in reinforced concrete buildings. Can be attached to Moreover, since the viscoelastic damper is mounted in the horizontal direction, its damping performance is exhibited 100% in the horizontal direction. Furthermore, since it is a passive type vibration damper corresponding to livability, no power is required and maintenance is easy.

加えて、請求項3に記載の本発明によれば、粘弾性ダンパーおよび滑り接合体を天井内または床内に納めることが可能となるために、室内空間に露出する部分が小さくなり、設置スペースの制約が小さくなる。しかも、上下梁間にトラス部材が有るのみで、開口部を塞ぐことなく設置することができるために、所望の採光や眺望を得ることができ、快適な室内空間を構成することが可能となる。この際に、梁に固定されていないトラス部材の端部に振れ止めを設ければ、当該トラス部材の面外変形を拘束できるために、その他端部と梁との固定をピン接合することも可能となって好適である。   In addition, according to the third aspect of the present invention, since the viscoelastic damper and the sliding joint can be accommodated in the ceiling or the floor, a portion exposed to the indoor space is reduced, and the installation space is reduced. Becomes smaller. Moreover, since the truss member is only provided between the upper and lower beams and can be installed without closing the opening, desired lighting and a view can be obtained, and a comfortable indoor space can be configured. At this time, by providing a steady rest at the end of the truss member that is not fixed to the beam, the out-of-plane deformation of the truss member can be restrained. It is possible and preferable.

また、請求項4に記載の本発明によれば、滑り接合体の摩擦材と接合部材の構成が単純になるため、居住性対応制振ダンパーの使い方が一層簡単なものとなり、その実用性がますます向上する。 また、請求項5に記載の本発明によれば、粘弾性ダンパーがその減衰性能を低下させることなくコンパクトになるため、一定の減衰性能を維持しつつも製作コストを抑えて経済性を改善することができる。   Further, according to the present invention as set forth in claim 4, since the configuration of the friction material and the joining member of the sliding joined body is simplified, the use of the damping damper corresponding to the livability is further simplified, and its practicality is reduced. Improve more and more. According to the fifth aspect of the present invention, the viscoelastic damper is made compact without lowering its damping performance, so that the manufacturing cost is reduced and economical efficiency is improved while maintaining a constant damping performance. be able to.

さらに、請求項6に記載の本発明によれば、建物に過大な外力が作用して大振動が生じた場合に、粘弾性ダンパーの機能を維持することにより、強風時における建物の居住性を高めることができるとともに、降伏部材が降伏して履歴エネルギーを吸収することによって制振効果を発揮することが可能となる。   Furthermore, according to the present invention as set forth in claim 6, when a large external force acts on the building and a large vibration occurs, the viscoelastic damper function is maintained to improve the livability of the building in a strong wind. In addition to being able to increase, the yielding member yields and absorbs the hysteresis energy, so that it is possible to exhibit a vibration damping effect.

以下、本発明の実施形態を図面に基づいて説明する。
<第1の実施形態>
図1は本発明に係る居住性対応制振ダンパーの第1の実施形態を示す図であって、(a)はその使用状態の正面図、(b)はその使用状態の側面図、(c)は(b)のC部分の拡大詳細図、(d)はそのモデル図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First embodiment>
1A and 1B are diagrams showing a first embodiment of a livability damping damper according to the present invention, in which FIG. 1A is a front view of the use state, FIG. 1B is a side view of the use state, and FIG. () Is an enlarged detailed view of a portion C in (b), and (d) is a model diagram thereof.

この居住性対応制振ダンパー1は、図1に示すように、鉄骨造などの建物に組み込まれるものであって、上下2本の梁3A、3Bに1本ずつ垂設された間柱8A、8Bを有している。これらの間柱8A、8B間には、図1(c)に示すように、厚さ2mm以下の粘弾性体9aが剪断変形することによってエネルギーを吸収する粘弾性ダンパー9が水平方向に伸縮自在に連結されている。   As shown in FIG. 1, the livability damper 1 is incorporated in a steel-framed building or the like, and includes studs 8A, 8B suspended one by one on upper and lower two beams 3A, 3B. have. As shown in FIG. 1 (c), a viscoelastic damper 9 that absorbs energy by shearing deformation of a viscoelastic body 9a having a thickness of 2 mm or less is provided between these studs 8A and 8B so as to expand and contract in the horizontal direction. Are linked.

ここで、この粘弾性ダンパー9の連結部は、上側(間柱8A側)がボルト・ナットの締付力を利用した滑り接合となっているとともに、下側(間柱8B側)が剛接合となっている。すなわち、上位の間柱8Aの下側にはT形鋼7がボルト接合で吊設されており、下位の間柱8Bの上側には粘弾性ダンパー9が設置されている。そして、T形鋼7と粘弾性ダンパー9との間には滑り接合体4が水平方向に滑動自在に介装されており、この滑り接合体4は、図1(c)に示すように、モールド系の摩擦材4aと表面にステンレス板が溶着された接合部材4bとが積層されてボルト接合された構造を有している。これにより、滑り接合体4は、粘弾性ダンパー9から構造上独立して分離しており、滑り接合体4の摩擦面は鉛直面となっている。   Here, as for the connecting portion of the viscoelastic damper 9, the upper side (the stud 8A side) is a slip joint using the tightening force of the bolt and the nut, and the lower side (the stud 8B side) is a rigid joint. ing. That is, a T-shaped steel 7 is suspended by bolt bonding below the upper stud 8A, and a viscoelastic damper 9 is installed above the lower stud 8B. A sliding joint 4 is interposed between the T-shaped steel 7 and the viscoelastic damper 9 so as to be slidable in the horizontal direction. As shown in FIG. It has a structure in which a mold-type friction material 4a and a joining member 4b having a stainless steel plate welded to its surface are laminated and joined by bolts. Thereby, the sliding joint 4 is structurally separated from the viscoelastic damper 9 independently, and the friction surface of the sliding joint 4 is vertical.

居住性対応制振ダンパー1が組み込まれた建物は以上のような構成を有するので、強風によってこの建物に微小な振幅の振動が発生すると、その振動エネルギーを居住性対応制振ダンパー1の粘弾性ダンパー9が吸収して低減するため、強風時における建物の居住性を高めることができる。また、この粘弾性ダンパー9の上側の連結部には滑り接合体4が設けられているので、大地震などによってこの建物に過大な外力が作用して大振動が生じた場合、粘弾性ダンパー9の伸縮に先立って、T形鋼7と滑り接合体4の接合部材4bとが相対的な滑りを起こすため、粘弾性ダンパー9に過大な応力が発生しなくなる。その結果、粘弾性ダンパー9に使用される粘弾性体9aが厚さ2mm以下と薄いものであっても、この粘弾性体9aが追従しうる変形範囲内で滑りを起こすように滑り接合体4を調整しておけば、大地震時に建物に過大な外力が作用した場合に粘弾性ダンパー9が損傷を受けて機能不全に陥る心配はない。   Since the building in which the livability damping damper 1 is incorporated has the above-described configuration, when a strong amplitude generates a small amplitude vibration in the building, the vibration energy is converted into the viscoelasticity of the livability damping damper 1. Since the damper 9 absorbs and reduces it, it is possible to enhance the livability of the building in a strong wind. Further, since the sliding joint 4 is provided on the upper connecting portion of the viscoelastic damper 9, when an excessive external force acts on the building due to a large earthquake or the like and large vibration occurs, the viscoelastic damper 9 is used. Prior to the expansion and contraction, the T-section steel 7 and the joining member 4b of the sliding joint 4 cause relative slip, so that excessive stress is not generated in the viscoelastic damper 9. As a result, even if the viscoelastic body 9a used for the viscoelastic damper 9 is as thin as 2 mm or less, the sliding joint 4 is so formed as to slide within a deformation range that the viscoelastic body 9a can follow. Is adjusted, there is no risk that the viscoelastic damper 9 will be damaged and malfunction if an excessive external force acts on the building during a large earthquake.

ここで、居住性対応制振ダンパー1は、粘弾性ダンパーに鋼材ダンパーを直列に接続した公知技術1と異なり、滑り接合体4が粘弾性ダンパー9から構造上独立したものとして分離しているため、滑り接合体4の滑動特性(摩擦係数など)を調整すべくボルトを締め付けても粘弾性ダンパー9の粘弾性体9aに圧縮力が作用することがなく、この粘弾性体9aの剪断ばね性能を公知の単純剪断挙動で簡便に評価しうるようになる。しかも、滑り接合体4の摩擦面は鉛直面となっているので、公知技術1と比べて滑り接合体4の構成が単純になる。したがって、居住性対応制振ダンパー1の使い方が簡単なものとなり、その実用性が向上する。   Here, unlike the known technology 1 in which the steel damper is connected in series to the viscoelastic damper, the slippery joint 4 is separated from the viscoelastic damper 9 as being structurally independent from the viscoelastic damper 9. Even if the bolts are tightened to adjust the sliding characteristics (such as the coefficient of friction) of the sliding joint 4, no compressive force acts on the viscoelastic body 9a of the viscoelastic damper 9, and the shear spring performance of the viscoelastic body 9a Can be easily evaluated by a known simple shearing behavior. Moreover, since the friction surface of the sliding joint 4 is a vertical surface, the configuration of the sliding joint 4 is simpler than that of the prior art 1. Therefore, it is easy to use the damping damper 1 corresponding to livability, and its practicality is improved.

また、居住性対応制振ダンパー1は間柱8A、8Bを介して梁3A、3Bに接合された柱型であるので、ブレース型の公知技術2と違って、その連結部に生じる応力が小さいため、設計の自由度も高くなると同時に、鉄筋コンクリート造の建物にも容易に取り付けることができる。しかも、居住性対応制振ダンパー1では粘弾性ダンパー9が水平方向に取り付けられているため、水平方向の減衰性能が低減するブレース型の公知技術2と異なり、粘弾性ダンパー9の減衰性能は水平方向に100%発揮される。さらに、居住性対応制振ダンパー1はパッシブ型であるため、動力が不要でメンテナンスも容易である。その上、粘弾性ダンパー9の粘弾性体9aは、その厚さが2mm以下と薄く、貼付面積を大きくしなくても一定の減衰性能を得ることができるので、粘弾性ダンパー9ひいては居住性対応制振ダンパー1の製作コストを抑えて経済性を改善することが可能となる。   Further, since the dampness damper 1 corresponding to the livability is a pillar type joined to the beams 3A, 3B via the studs 8A, 8B, unlike the known technique 2 of the brace type, the stress generated at the joint thereof is small. In addition, the degree of freedom in design is increased, and it can be easily attached to a reinforced concrete building. Moreover, since the viscoelastic damper 9 is mounted in the horizontal direction in the dampness damper 1 corresponding to the livability, unlike the known technique 2 of the brace type in which the damping performance in the horizontal direction is reduced, the damping performance of the viscoelastic damper 9 is horizontal. 100% in the direction. Furthermore, since the dampness damper 1 corresponding to livability is of a passive type, no power is required and maintenance is easy. In addition, the viscoelastic body 9a of the viscoelastic damper 9 has a thickness as small as 2 mm or less, and can provide a constant damping performance without increasing the affixing area. It is possible to reduce the manufacturing cost of the vibration damper 1 and improve the economic efficiency.

なお、上述の実施形態においては、空間調整部材に間柱8A、8Bを使った場合について説明したが、間柱8A、8B以外の空間調整部材を採用することもできる。以下、第2の実施形態として、空間調整部材に壁状部材6A、6Bを用いた場合について説明する。   In the above-described embodiment, a case has been described in which the studs 8A and 8B are used as the space adjusting members. However, a space adjusting member other than the studs 8A and 8B may be employed. Hereinafter, as a second embodiment, a case where the wall-shaped members 6A and 6B are used as the space adjustment member will be described.

<第2の実施形態>
図2は本発明に係る居住性対応制振ダンパーの第2の実施形態を示す図であって、(a)はその使用状態図、(b)はそのモデル図である。
<Second embodiment>
FIGS. 2A and 2B are diagrams showing a second embodiment of the comfort-adaptive vibration damper according to the present invention, wherein FIG. 2A is a use state diagram and FIG. 2B is a model diagram thereof.

この居住性対応制振ダンパー1は、図2に示すように、柱2と梁3からなる構造躯体5を持つ鉄筋コンクリート造などの建物に組み込まれるものであって、上下2本の梁3A、3Bに1枚ずつ垂設された壁状部材6A、6Bを有している。これらの壁状部材6A、6B間には、厚さ2mm以下の粘弾性体が剪断変形することによってエネルギーを吸収する2個の粘弾性ダンパー9が水平方向に伸縮自在に連結されている。   As shown in FIG. 2, the damper 1 for living comfort is incorporated in a building such as a reinforced concrete structure having a structural frame 5 composed of columns 2 and beams 3, and includes two upper and lower beams 3A, 3B. The wall-shaped members 6A and 6B are provided vertically one by one. Two viscoelastic dampers 9 that absorb energy by shearing deformation of a viscoelastic body having a thickness of 2 mm or less are connected between these wall-shaped members 6A and 6B so as to be able to expand and contract in the horizontal direction.

ここで、各粘弾性ダンパー9の連結部はそれぞれ、上側(壁状部材6A側)がボルト・ナットの締付力を利用した滑り接合となっているとともに、下側(壁状部材6B側)が剛接合となっている。すなわち、上位の壁状部材6Aの下側にはT形鋼7がボルト接合で吊設されており、下位の壁状部材6Bの上側には2個の粘弾性ダンパー9が設置されている。そして、T形鋼7と各粘弾性ダンパー9との間にはそれぞれ滑り接合体4が水平方向に滑動自在に介装されており、この滑り接合体4は、モールド系の摩擦材と表面にステンレス板が溶着された接合部材とが積層されてボルト接合された構造を有している。なお、各滑り接合体4はそれぞれの粘弾性ダンパー9から分離しており、各滑り接合体4の摩擦面はいずれも鉛直面となっている。   Here, the connecting portions of the viscoelastic dampers 9 are respectively formed on the upper side (on the wall-shaped member 6A side) by sliding connection using the tightening force of bolts and nuts, and on the lower side (on the wall-shaped member 6B side). Is a rigid joint. That is, a T-section steel 7 is suspended by bolting below the upper wall-like member 6A, and two viscoelastic dampers 9 are installed above the lower wall-like member 6B. A sliding joint 4 is interposed between the T-shaped steel 7 and each viscoelastic damper 9 so as to be slidable in the horizontal direction. It has a structure in which a joining member to which a stainless steel plate is welded is laminated and bolted. Each sliding joint 4 is separated from each viscoelastic damper 9, and the friction surface of each sliding joint 4 is vertical.

居住性対応制振ダンパー1が組み込まれた建物は以上のような構成を有するので、強風によってこの建物に微小な振幅の振動が発生すると、その振動エネルギーを居住性対応制振ダンパー1の各粘弾性ダンパー9が吸収して低減するため、強風時における建物の居住性を高めることができる。また、各粘弾性ダンパー9の上側の連結部にはそれぞれ滑り接合体4が設けられているので、大地震などによってこの建物に過大な外力が作用して大振動が生じた場合、各粘弾性ダンパー9の伸縮に先立って、T形鋼7と滑り接合体4の接合部材とが相対的な滑りを起こすため、各粘弾性ダンパー9に過大な応力が発生しなくなる。その結果、各粘弾性ダンパー9に使用される粘弾性体が厚さ2mm以下と薄いものであっても、この粘弾性体が追従しうる変形範囲内で滑りを起こすように各滑り接合体4を調整しておけば、大地震時に建物に過大な外力が作用した場合に粘弾性ダンパー9が損傷を受けて機能不全に陥る心配はない。   Since the building in which the livability-adaptive vibration damper 1 is incorporated has the above-described configuration, when a strong amplitude generates a vibration with a small amplitude in the building, the vibration energy is transmitted to each viscous damper 1 of the livability-adaptive vibration damper 1. Since the elastic damper 9 absorbs and reduces, the livability of the building at the time of strong wind can be improved. Further, since the sliding joints 4 are provided at the upper connecting portions of the viscoelastic dampers 9, respectively, when an excessive external force acts on the building due to a large earthquake or the like and a large vibration is generated, the respective viscoelasticity is increased. Prior to the expansion and contraction of the damper 9, the T-shaped steel 7 and the joining member of the sliding joint 4 cause relative sliding, so that no excessive stress is generated in each viscoelastic damper 9. As a result, even if the viscoelastic body used for each viscoelastic damper 9 is as thin as 2 mm or less, each of the sliding joints 4 is caused to slip within a deformation range that the viscoelastic body can follow. Is adjusted, there is no risk that the viscoelastic damper 9 will be damaged and malfunction if an excessive external force acts on the building during a large earthquake.

ここで、居住性対応制振ダンパー1は、粘弾性ダンパーに鋼材ダンパーを直列に接続した公知技術1と異なり、滑り接合体4が粘弾性ダンパー9から分離しているため、滑り接合体4の滑動特性(摩擦係数など)を調整すべくボルトを締め付けても粘弾性ダンパー9の粘弾性体9に圧縮力が作用することがなく、この粘弾性体9の剪断ばね性能を公知の単純剪断挙動で簡便に評価しうるようになる。しかも、滑り接合体4の摩擦面は鉛直面となっているので、公知技術1と比べて滑り接合体4の構成が単純になる。したがって、居住性対応制振ダンパー1の使い方が簡単なものとなり、その実用性が向上する。   Here, unlike the prior art 1 in which the steel damper is connected in series with the viscoelastic damper, the slippery joint 4 is separated from the viscoelastic damper 9, and thus the Even if the bolts are tightened to adjust the sliding characteristics (such as the coefficient of friction), no compressive force acts on the viscoelastic body 9 of the viscoelastic damper 9, and the shear spring performance of the viscoelastic body 9 is determined by a known simple shearing behavior. Can be easily evaluated. Moreover, since the friction surface of the sliding joint 4 is a vertical surface, the configuration of the sliding joint 4 is simpler than that of the prior art 1. Accordingly, the usage of the damping damper 1 corresponding to the livability is simplified, and its practicality is improved.

また、居住性対応制振ダンパー1は壁状部材6A、6Bを介して梁3A、3Bに接合された壁型であるので、ブレース型の公知技術2と違って、その連結部に生じる応力が小さいため、設計の自由度も高くなると同時に、鉄筋コンクリート造の建物にも容易に取り付けることができる。しかも、居住性対応制振ダンパー1では粘弾性ダンパー9が水平方向に取り付けられているため、水平方向の減衰性能が低減するブレース型の公知技術2と異なり、粘弾性ダンパー9の減衰性能は水平方向に100%発揮される。さらに、居住性対応制振ダンパー1はパッシブ型であるため、動力が不要でメンテナンスも容易である。その上、粘弾性ダンパー9の粘弾性体は、その厚さが2mm以下と薄く、貼付面積を大きくしなくても一定の減衰性能を得ることができるので、粘弾性ダンパー9ひいては居住性対
応制振ダンパー1の製作コストを抑えて経済性を改善することが可能となる。
Moreover, since the dampness damper 1 for comfortability is a wall type joined to the beams 3A, 3B via the wall-shaped members 6A, 6B, unlike the known technique 2 of the brace type, the stress generated at the joint thereof is reduced. Because of its small size, it has a high degree of design freedom and can be easily mounted on reinforced concrete buildings. Moreover, since the viscoelastic damper 9 is mounted in the horizontal direction in the dampness damper 1 corresponding to the livability, unlike the known technique 2 of the brace type in which the damping performance in the horizontal direction is reduced, the damping performance of the viscoelastic damper 9 is horizontal. 100% in the direction. Furthermore, since the dampness damper 1 corresponding to livability is of a passive type, no power is required and maintenance is easy. In addition, the viscoelastic body of the viscoelastic damper 9 has a thickness as small as 2 mm or less, and can provide a constant damping performance without increasing the affixing area. It is possible to reduce the manufacturing cost of the vibration damper 1 and improve the economic efficiency.

なお、上述の実施形態では、図1(d)、図2(b)に示すように、T形鋼7の下側に滑り接合体4および粘弾性ダンパー9を連結しただけの居住性対応制振ダンパー1について説明したが、この滑り接合体4および粘弾性ダンパー9に鋼材ダンパーや鉄筋などの降伏部材を並列接続することも可能である。以下、第3の実施形態として、鋼材ダンパーを並列接続した場合について説明し、第4の実施形態として、鉄筋を並列接続した場合について説明する。   In the above-described embodiment, as shown in FIGS. 1 (d) and 2 (b), the habitability control system in which the sliding joint 4 and the viscoelastic damper 9 are merely connected to the lower side of the T-shaped steel 7 is shown. Although the vibration damper 1 has been described, a yield member such as a steel damper or a reinforcing bar may be connected in parallel to the sliding joint 4 and the viscoelastic damper 9. Hereinafter, a case where steel dampers are connected in parallel will be described as a third embodiment, and a case where reinforcing bars are connected in parallel will be described as a fourth embodiment.

<第3の実施形態>
図3は本発明に係る居住性対応制振ダンパーの第3の実施形態を示す図であって、(a)はその使用状態図、(b)はそのモデル図である。
<Third embodiment>
FIGS. 3A and 3B are diagrams showing a third embodiment of the damping damper corresponding to the habitability according to the present invention, wherein FIG. 3A is a use state diagram, and FIG. 3B is a model diagram thereof.

この居住性対応制振ダンパー1は、図3に示すように、柱2と梁3からなる構造躯体5を持つ鉄筋コンクリート造などの建物に組み込まれるものであって、T形鋼7の下側に降伏部材として鋼材ダンパー10が滑り接合体4および粘弾性ダンパー9と並列に剛接合で接続されていること以外は、上述した第2の実施形態と同様である。   As shown in FIG. 3, the livability damper 1 is incorporated in a building such as a reinforced concrete structure having a structural skeleton 5 composed of columns 2 and beams 3, and is provided under a T-shaped steel 7 as shown in FIG. The second embodiment is the same as the above-described second embodiment except that a steel damper 10 as a yielding member is rigidly connected in parallel with the sliding joint 4 and the viscoelastic damper 9.

したがって、強風によってこの建物に微小な振幅の振動が発生すると、その振動エネルギーを居住性対応制振ダンパー1の各粘弾性ダンパー9が吸収して低減するため、強風時における建物の居住性を高めることができる。また、各粘弾性ダンパー9の上側の連結部にはそれぞれ滑り接合体4が設けられているので、大地震などによってこの建物に過大な外力が作用して大振動が生じた場合、各粘弾性ダンパー9がその伸縮に先立って相対的な滑りを起こすので、粘弾性ダンパー9に過大な応力が発生しなくなり、そのため大地震時に建物に過大な外力が作用しても粘弾性ダンパー9が損傷を受けて機能不全に陥る心配はない。また、これと同時に、鋼材ダンパー10が降伏して履歴エネルギーを吸収する形で制振効果を発揮する。   Therefore, when a vibration having a small amplitude is generated in the building due to the strong wind, the vibration energy is absorbed and reduced by the viscoelastic dampers 9 of the damping damper 1 corresponding to the livability, so that the livability of the building in a strong wind is enhanced. be able to. Further, since the sliding joints 4 are provided at the upper connecting portions of the viscoelastic dampers 9, respectively, when an excessive external force acts on the building due to a large earthquake or the like and a large vibration is generated, the respective viscoelasticity is increased. Since the damper 9 causes a relative slip prior to its expansion and contraction, no excessive stress is generated on the viscoelastic damper 9, and therefore even if an excessive external force acts on the building during a large earthquake, the viscoelastic damper 9 may be damaged. There is no worry that it will malfunction. At the same time, the steel material damper 10 yields and exhibits a vibration damping effect in a form absorbing the hysteretic energy.

<第4の実施形態>
図4は本発明に係る居住性対応制振ダンパーの第4の実施形態を示す図であって、(a)はその使用状態図、(b)はそのモデル図である。
<Fourth embodiment>
FIGS. 4A and 4B are diagrams showing a fourth embodiment of the comfort-adaptive vibration damper according to the present invention, wherein FIG. 4A is a use state diagram and FIG. 4B is a model diagram thereof.

この居住性対応制振ダンパー1は、図4に示すように、柱2と梁3からなる構造躯体5を持つ鉄筋コンクリート造などの建物に組み込まれるものであって、滑り接合体4および粘弾性ダンパー9が1個ずつに減少したことと、T形鋼7の下側に降伏部材として複数本(図4では16本)の鉄筋11が、その両端を壁状部材6A、6Bに埋没させて滑り接合体4および粘弾性ダンパー9と並列に剛接合で接続されていること以外は、上述した第2の実施形態と同様である。   As shown in FIG. 4, the damping damper 1 for habitability is incorporated in a building such as a reinforced concrete structure having a structural frame 5 composed of columns 2 and beams 3, and includes a sliding joint 4 and a viscoelastic damper. 9 are reduced one by one, and a plurality of (16 in FIG. 4) rebars 11 as a yielding member are buried under the T-shaped steel 7 at both ends and sunk by being buried in the wall-shaped members 6A and 6B. It is the same as the above-described second embodiment except that the joint body 4 and the viscoelastic damper 9 are connected in parallel by a rigid joint.

したがって、強風によってこの建物に微小な振幅の振動が発生すると、その振動エネルギーを居住性対応制振ダンパー1の粘弾性ダンパー9が吸収して低減するため、強風時における建物の居住性を高めることができる。また、粘弾性ダンパー9の上側の連結部には滑り接合体4が設けられているので、大地震などによってこの建物に過大な外力が作用して大振動が生じた場合、粘弾性ダンパー9がその伸縮に先立って相対的な滑りを起こすため、粘弾性ダンパー9に過大な応力が発生しなくなり、そのため大地震時に建物に過大な外力が作用しても粘弾性ダンパー9が損傷を受けて機能不全に陥る心配はない。また、これと同時に、鉄筋11が降伏して履歴エネルギーを吸収する形で制振効果を発揮する。   Therefore, when a small amplitude vibration is generated in the building due to the strong wind, the vibration energy is absorbed and reduced by the viscoelastic damper 9 of the dampness damper 1 corresponding to the livability. Can be. In addition, since the sliding joint 4 is provided at the upper connecting portion of the viscoelastic damper 9, when an excessive external force acts on this building due to a large earthquake or the like and a large vibration occurs, the viscoelastic damper 9 is moved. Since relative slip occurs prior to the expansion and contraction, excessive stress is not generated in the viscoelastic damper 9, and the viscoelastic damper 9 is damaged even when an excessive external force acts on the building during a large earthquake. There is no worry about failure. At the same time, the reinforcing bar 11 yields and absorbs the hysteretic energy, thereby exhibiting a vibration damping effect.

なお、上述した第1〜第3の実施形態においては、粘弾性ダンパー9の上側の連結部に滑り接合体4を設けた居住性対応制振ダンパー1について説明したが、粘弾性ダンパー9の下側の連結部に滑り接合体4を設けてもよく、粘弾性ダンパー9の上下両側の連結部に滑り接合体4を設けても構わない。   In the above-described first to third embodiments, the livability-adaptive vibration damper 1 in which the sliding joint body 4 is provided at the upper connection portion of the viscoelastic damper 9 has been described. The sliding joint 4 may be provided at the connecting part on the side, or the sliding joint 4 may be provided at the connecting part on both the upper and lower sides of the viscoelastic damper 9.

また、上述の実施形態では各梁3A、3Bにそれぞれ空間調整部材(間柱8A、8Bまたは壁状部材6A、6B)を設けた場合について説明したが、いずれか一方の空間調整部材を省き、T形鋼7や粘弾性ダンパー9、降伏部材(鋼材ダンパー10または鉄筋11)を直接的に梁3A、3Bに接合することも可能である。   Further, in the above-described embodiment, the case where the space adjusting members (the studs 8A and 8B or the wall-shaped members 6A and 6B) are provided on the beams 3A and 3B, respectively, but one of the space adjusting members is omitted, and It is also possible to directly join the shape steel 7, the viscoelastic damper 9, and the yield member (steel damper 10 or reinforcing bar 11) to the beams 3A, 3B.

<第5の実施形態>
図5および図6は、本発明に係る居住性対応制振ダンパーの第5の実施形態を示す図である。
この居住性対応制振ダンパー20は、これらの図に示すように、鉄骨造の建物に組み込まれるものであって、上側の梁3Aの下面に、粘弾性ダンパー9の外枠9bが固定されている。そして、この外枠9b内に、2mm以下の厚さ寸法を有する粘弾性体9aを間に介して、複数枚(図では3枚)の可動板9cが組み込まれている。この結果、可動板9cは、粘弾性体9aの剪断変形により水平方向に変位自在に設けられている。
<Fifth embodiment>
FIG. 5 and FIG. 6 are views showing a fifth embodiment of the livability damper according to the present invention.
As shown in these figures, the livability damper 20 is incorporated in a steel-framed building. The outer frame 9b of the viscoelastic damper 9 is fixed to the lower surface of the upper beam 3A. I have. A plurality of (three in the figure) movable plates 9c are incorporated in the outer frame 9b via a viscoelastic body 9a having a thickness of 2 mm or less. As a result, the movable plate 9c is provided to be displaceable in the horizontal direction due to the shear deformation of the viscoelastic body 9a.

そして、この可動板9cの一端部に、滑り接合体4が連結されている。この滑り接合体4は、図6(a)、(c)に示すように、上記粘弾性ダンパー9の3枚の可動板9cの両側に配設されて高力ボルト21等により一体的に連結された2枚の接合部材4bと、これら接合部材4b間に配置されるとともに、上記接合部材4bとの対向面にステンレス板が溶着された基板4cと、この基板4cのステンレス板と上記接合部材4bとに貼り付けられたモールド系の摩擦材4aとを備えたもので、基板4cは、摩擦材4aにより接合部材4bに対して摺動可能に設けられている。そして、これら基板4c、摩擦材4aおよび接合部材4bは、2組の押圧板4dによって挟まれるとともに、ボルト22によって連結されている。   The sliding joint 4 is connected to one end of the movable plate 9c. As shown in FIGS. 6A and 6C, the sliding joints 4 are disposed on both sides of the three movable plates 9c of the viscoelastic damper 9 and are integrally connected by high-strength bolts 21 or the like. Two joining members 4b, a substrate 4c disposed between the joining members 4b and having a stainless steel plate welded to a surface facing the joining member 4b, a stainless steel plate of the substrate 4c and the joining member 4b and a mold-based friction material 4a attached to the substrate 4c, and the substrate 4c is slidably provided on the joining member 4b by the friction material 4a. The board 4c, the friction material 4a, and the joining member 4b are sandwiched by two sets of pressing plates 4d and are connected by bolts 22.

なお、図中符号23は、基板4cに穿設されてボルト22が挿通されることにより、接合部材4bの水平方向への摺動を許容する長穴である。これにより、ボルト22の締め付け力を調整することにより、接合部材4bの摺動開始時の力、すなわち滑り接合体4の滑動特性を任意に設定することができるようになっている。以上の構成により、滑り接合体4は粘弾性ダンパー9に対して独立した構成となっており、また滑り接合体4の摩擦面は鉛直面となっている。
そして、この滑り接合体4の基板4cに、下側の梁3Bに立設されたトラス部材24の上端部が一体的に接合されている。
Reference numeral 23 in the drawing denotes a long hole that allows the joining member 4b to slide in the horizontal direction when the bolt 22 is inserted through the substrate 4c. Thus, by adjusting the tightening force of the bolt 22, the force at the start of sliding of the joining member 4b, that is, the sliding characteristics of the sliding joint 4 can be arbitrarily set. With the above configuration, the sliding joint 4 is independent of the viscoelastic damper 9, and the friction surface of the sliding joint 4 is vertical.
The upper end of the truss member 24 erected on the lower beam 3B is integrally joined to the substrate 4c of the sliding joint body 4.

このトラス部材24は、梁3Bに立設された支柱25と、柱2および梁3Bの交差部と支柱25の上端部との間に架設されたブレース26とから構成されたもので、上記支柱25の上端部分に基板4cが固定されている。なお、支柱25の上端部と上側の梁3Aとの間には、両者の相対変位を許容する間隙が形成されている。
そしてさらに、支柱25の上端部の両側には、梁3Bの下部フランジに取り付けられた振れ止め27が配設されている。
The truss member 24 is composed of a column 25 erected on the beam 3B and a brace 26 erected between the intersection of the column 2 and the beam 3B and the upper end of the column 25. The substrate 4c is fixed to the upper end of the substrate 25. Note that a gap is formed between the upper end of the support 25 and the upper beam 3A to allow relative displacement between the two.
Further, on both sides of the upper end of the column 25, a steady rest 27 attached to the lower flange of the beam 3B is provided.

以上の構成からなる居住性対応制振ダンパー20によれば、上記第1および第2の実施形態に示したものと同様の作用効果が得られる。
加えて、粘弾性ダンパー9および滑り接合体4を図中L1で示す天井高さよりも上方の天井内に納めることができるために、室内空間に露出する部分が小さくなり、設置スペースの制約が小さくなる。
According to the damping damper 20 having the above-described configuration, it is possible to obtain the same operation and effects as those described in the first and second embodiments.
In addition, since the viscoelastic damper 9 and the sliding joint 4 can be accommodated in the ceiling above the ceiling height indicated by L1 in the figure, the portion exposed to the indoor space is reduced, and the restriction on the installation space is reduced. Become.

しかも、上下の梁3A、3B間にトラス部材24が有るのみで、開口部を塞ぐことなく設置することができるために、所望の採光や眺望を得ることができ、よって快適な室内空間を構成することが可能となる。
また、上側の梁3Aにトラス部材24の支柱25の振れ止め27を設けているので、トラス部材24の面外変形を確実に拘束することができる。このため、支柱25やブレース26の下端部と梁3Bとの固定をピン接合することも可能になる。
Moreover, since only the truss member 24 is provided between the upper and lower beams 3A and 3B, the truss member 24 can be installed without closing the opening, so that it is possible to obtain a desired lighting and a view, thereby forming a comfortable indoor space. It is possible to do.
Further, since the steady rest 27 of the column 25 of the truss member 24 is provided on the upper beam 3A, out-of-plane deformation of the truss member 24 can be reliably restrained. For this reason, it is also possible to fix the lower end of the column 25 or the brace 26 to the beam 3B by pin bonding.

なお、上記第5の実施形態においては、上側の梁3Aの下面側に粘弾性ダンパー9と滑り接合体4とを設けた場合についてのみ説明したが、これに限定されるものではなく、下側の梁3Bの上面側にこれら粘弾性ダンパー9と滑り接合体4とを設け、上側の梁3Aから下方にトラス部材を垂設してその下端部と滑り接合体4とを連結することも可能である。この場合には、粘弾性ダンパー9および滑り接合体4を、図中L2で示す床天端レベルよりも下方の床内に納めることが可能となる。さらに、粘弾性ダンパー9と滑り接合体4との位置関係を逆にしても同様の作用効果を得ることができる。   In the fifth embodiment, only the case where the viscoelastic damper 9 and the sliding joint body 4 are provided on the lower surface side of the upper beam 3A has been described. However, the present invention is not limited to this case. The viscoelastic damper 9 and the sliding joint 4 are provided on the upper surface side of the beam 3B, and a truss member is vertically provided downward from the upper beam 3A to connect the lower end thereof to the sliding joint 4. It is. In this case, the viscoelastic damper 9 and the sliding joint 4 can be stored in the floor below the floor top level indicated by L2 in the figure. Further, even when the positional relationship between the viscoelastic damper 9 and the sliding joint 4 is reversed, the same operation and effect can be obtained.

本発明に係る居住性対応制振ダンパーの第1の実施形態を示す図であって、(a)はその使用状態の正面図、(b)はその使用状態の側面図、(c)は(b)のC部分の拡大詳細図、(d)はそのモデル図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the damping damper corresponding to habitability which concerns on this invention, (a) is the front view of the use state, (b) is the side view of the use state, (c) is ( FIG. 2B is an enlarged detailed view of a portion C, and FIG. 本発明に係る居住性対応制振ダンパーの第2の実施形態を示す図であって、(a)はその使用状態図、(b)はそのモデル図である。It is a figure which shows 2nd Embodiment of the damper corresponding to the habitability which concerns on this invention, (a) is the use state figure, (b) is the model figure. 本発明に係る居住性対応制振ダンパーの第3の実施形態を示す図であって、(a)はその使用状態図、(b)はそのモデル図である。It is a figure which shows 3rd Embodiment of the damper corresponding to the habitability which concerns on this invention, (a) is the use state figure, (b) is the model figure. 本発明に係る居住性対応制振ダンパーの第4の実施形態を示す図であって、(a)はその使用状態図、(b)はそのモデル図である。It is a figure which shows 4th Embodiment of the damper corresponding to habitability which concerns on this invention, (a) is the use state figure, (b) is the model figure. 本発明に係る居住性対応制振ダンパーの第1の実施形態を示す正面図である。It is a front view showing a 1st embodiment of a livability damper according to the present invention. (a)は、図5の粘弾性ダンパー、滑り接合体4およびトラス部材の上端部分を示す拡大詳細図、(b)はそのb−b線視断面図、(c)はc−c線視断面図、(d)はd−d線視断面図である。(A) is an enlarged detailed view showing the viscoelastic damper, the sliding joint 4 and the upper end portion of the truss member of FIG. 5, (b) is a sectional view taken along the line bb, and (c) is a view taken along the line cc. Sectional drawing, (d) is a sectional view taken along line dd.

符号の説明Explanation of reference numerals

1、20……居住性対応制振ダンパー
2……柱
3A、3B……梁
4……滑り接合体
4a……摩擦材
4b……接合部材
5……構造躯体
6A、6B……壁状部材(空間調整部材)
8A、8B……間柱(空間調整部材)
9……粘弾性ダンパー
10……鋼材ダンパー(降伏部材)
11……鉄筋(降伏部材)
24……トラス部材
25……支柱
26……ブレース
1, 20: Vibration damper corresponding to habitability 2: Column 3A, 3B: Beam 4: Sliding joint 4a: Friction material 4b: Joining member 5: Structural body 6A, 6B: Wall member (Space adjustment member)
8A, 8B ... Stud (space adjustment member)
9 viscoelastic damper 10 steel damper (yield member)
11 Reinforcing bar (yield member)
24 ... truss member 25 ... post 26 ... brace

Claims (6)

上下2本の梁(3A、3B)にそれぞれ空間調整部材(6A、6B、8A、8B)を垂設し、
これらの空間調整部材間に粘弾性ダンパー(9)を水平方向に伸縮自在に連結した居住性対応制振ダンパー(1)であって、
前記粘弾性ダンパーが水平方向に滑動しうるように、摩擦材(4a)と接合部材(4b)とが積層されてボルト接合された滑り接合体(4)を当該粘弾性ダンパーの少なくとも片側の連結部に分離して設けたことを特徴とする居住性対応制振ダンパー。
Space adjusting members (6A, 6B, 8A, 8B) are respectively suspended from the upper and lower two beams (3A, 3B),
It is a livability-adaptive vibration damper (1) in which a viscoelastic damper (9) is connected between these space adjusting members so as to be extendable and contractible in the horizontal direction,
A friction joint (4a) and a joining member (4b) are laminated and bolt-joined to each other so that the sliding joint (4) is connected to at least one side of the viscoelastic damper so that the viscoelastic damper can slide in the horizontal direction. A vibration damper that is compatible with livability, which is provided separately in the section.
上下2本の梁(3A、3B)のいずれか一方に空間調整部材(6A、6B、8A、8B)を垂設し、
前記2本の梁の他方と前記空間調整部材との間に粘弾性ダンパー(9)を水平方向に伸縮自在に連結した居住性対応制振ダンパー(1)であって、
前記粘弾性ダンパーが水平方向に滑動しうるように、摩擦材(4a)と接合部材(4b)とが積層されてボルト接合された滑り接合体(4)を当該粘弾性ダンパーの少なくとも片側の連結部に分離して設けたことを特徴とする居住性対応制振ダンパー。
Space adjusting members (6A, 6B, 8A, 8B) are vertically installed on one of the upper and lower two beams (3A, 3B),
A livability-adaptive vibration damper (1) in which a viscoelastic damper (9) is connected between the other of the two beams and the space adjustment member so as to be extendable and contractible in a horizontal direction,
A friction joint (4a) and a joining member (4b) are laminated and bolt-joined to each other so that the sliding joint (4) is connected to at least one side of the viscoelastic damper so that the viscoelastic damper can slide in the horizontal direction. A vibration damper that is compatible with livability, which is provided separately in the section.
上下2本の梁(3A、3B)のいずれか一方に、トラス部材(24)の一方の端部を固定し、
前記2本の梁の他方と前記トラス部材の他方の端部との間に粘弾性ダンパー(9)を水平方向に伸縮自在に連結した居住性対応制振ダンパー(1)であって、
前記粘弾性ダンパーが水平方向に滑動しうるように、摩擦材(4a)と接合部材(4b)とが積層されてボルト接合された滑り接合体(4)を、当該粘弾性ダンパーと前記梁との間または前記粘弾性ダンパーと上記トラス部材との間に設けたことを特徴とする居住性対応制振ダンパー。
One end of the truss member (24) is fixed to one of the upper and lower two beams (3A, 3B),
A livability damping damper (1), comprising a viscoelastic damper (9) connected to the other of the two beams and the other end of the truss member so as to be able to expand and contract in a horizontal direction,
The sliding member (4) in which the friction material (4a) and the joining member (4b) are laminated and bolted so that the viscoelastic damper can slide in the horizontal direction is combined with the viscoelastic damper and the beam. And a damper for comfortability provided between the viscoelastic damper and the truss member.
前記滑り接合体(4)の摩擦面を鉛直面としたことを特徴とする請求項1ないし3のいずれかに記載の居住性対応制振ダンパー。   The damper according to any one of claims 1 to 3, wherein a friction surface of the sliding joint (4) is a vertical surface. 前記粘弾性ダンパー(9)として、厚さ2mm以下の粘弾性体が剪断変形することによってエネルギーを吸収するものを採用したことを特徴とする請求項1ないし4のいずれかに記載の居住性対応制振ダンパー。   5. A livable device according to claim 1, wherein the viscoelastic damper (9) employs a viscoelastic body having a thickness of 2 mm or less that absorbs energy by shearing deformation. 6. Damping damper. 前記粘弾性ダンパー(9)および前記滑り接合体(4)に降伏部材(10、11)を並列接続したことを特徴とする請求項1ないし5のいずれかに記載の居住性対応制振ダンパー。   The damper according to any one of claims 1 to 5, wherein a yield member (10, 11) is connected in parallel to the viscoelastic damper (9) and the sliding joint (4).
JP2003413141A 2003-03-17 2003-12-11 Vibration control damper coping with habitability Pending JP2004300912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003072207 2003-03-17
JP2003413141A JP2004300912A (en) 2003-03-17 2003-12-11 Vibration control damper coping with habitability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413141A JP2004300912A (en) 2003-03-17 2003-12-11 Vibration control damper coping with habitability

Publications (1)

Publication Number Publication Date
JP2004300912A true JP2004300912A (en) 2004-10-28

Family

ID=33421753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413141A Pending JP2004300912A (en) 2003-03-17 2003-12-11 Vibration control damper coping with habitability

Country Status (1)

Country Link
JP (1) JP2004300912A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202349A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Vibration control device for building, building unit, method of installing vibration control device for building, and method of installing building unit
JP2009228834A (en) * 2008-03-24 2009-10-08 Ohbayashi Corp Damping device
JP2017071989A (en) * 2015-10-09 2017-04-13 Jfeスチール株式会社 Vibration damping device
JP2017155585A (en) * 2017-04-13 2017-09-07 旭化成ホームズ株式会社 Vibration control device and building
WO2019097933A1 (en) * 2017-11-14 2019-05-23 オイレス工業株式会社 Vibration control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202349A (en) * 2007-02-21 2008-09-04 Toyota Motor Corp Vibration control device for building, building unit, method of installing vibration control device for building, and method of installing building unit
JP2009228834A (en) * 2008-03-24 2009-10-08 Ohbayashi Corp Damping device
JP2017071989A (en) * 2015-10-09 2017-04-13 Jfeスチール株式会社 Vibration damping device
JP2017155585A (en) * 2017-04-13 2017-09-07 旭化成ホームズ株式会社 Vibration control device and building
WO2019097933A1 (en) * 2017-11-14 2019-05-23 オイレス工業株式会社 Vibration control device
JP2019090217A (en) * 2017-11-14 2019-06-13 オイレス工業株式会社 Vibration control device

Similar Documents

Publication Publication Date Title
JP4631280B2 (en) Seismic control pier
JP4070117B2 (en) Vibration control device
JP2004300912A (en) Vibration control damper coping with habitability
JP3931944B2 (en) Damping damper and its installation structure
JP2011256577A (en) Seismic control structure including viscoelastic damper
JP2004232324A (en) Vibration control system
JP4913660B2 (en) Steel stairs
JP2008111331A (en) Building with joint metal
JP5059687B2 (en) Building seismic control structure
JP5596338B2 (en) Reinforcing brackets for wooden buildings and methods for reinforcing wooden buildings
JP5251933B2 (en) Buildings with joint hardware
JP5283774B1 (en) Seismic damper for temporary building
JP5558071B2 (en) Reinforcement structure of frame
JP4931490B2 (en) Structure reinforcement structure and method of reinforcement
CN108374490A (en) A kind of steel frame structural system
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP2003328585A (en) Vibration control structure for building having piloti
JP2012233374A (en) Seismic reinforcement structure
JPH11324392A (en) Earthquake vibration control structure
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
CN210767443U (en) Energy dissipation connection structure of steel roof and anti-wind column and roof truss structure
JP3897648B2 (en) Seismic control structure of reinforced concrete building
JP5369626B2 (en) Composite vibration control frame
JP2009035949A5 (en)
JP2541076B2 (en) Building

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060308

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090605

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201