JP3858432B2 - Vibration control method for linked structures - Google Patents

Vibration control method for linked structures Download PDF

Info

Publication number
JP3858432B2
JP3858432B2 JP07064698A JP7064698A JP3858432B2 JP 3858432 B2 JP3858432 B2 JP 3858432B2 JP 07064698 A JP07064698 A JP 07064698A JP 7064698 A JP7064698 A JP 7064698A JP 3858432 B2 JP3858432 B2 JP 3858432B2
Authority
JP
Japan
Prior art keywords
collision
vibration
mass
structures
receiving plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07064698A
Other languages
Japanese (ja)
Other versions
JPH11270175A (en
Inventor
満 蔭山
浩文 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP07064698A priority Critical patent/JP3858432B2/en
Publication of JPH11270175A publication Critical patent/JPH11270175A/en
Application granted granted Critical
Publication of JP3858432B2 publication Critical patent/JP3858432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構造特性の異なる2つの構造物を、双方の衝突現象を用いて制振するようにした連結構造物の制振方法に関する。
【0002】
【従来の技術】
一般に、建物等の構造物の制振装置として、質量体をアクティブまたはパッシブに移動させるようにしたTMDやAMDが知られており、これらは入力振動に対して構造物頂部に水平方向の制御モーメントを発生させるようになっている。しかし、これらの装置で大振動を制振しようとした場合、質量体の振幅を装置の許容ストローク以下に抑えるためには、過大な付加質量が必要となってその実現が困難になってしまうこともある。
【0003】
そこで、このよう場合には上記TMDやAMD等のように付加質量の慣性力で制振するのではなく、並立する構造系同士を連結して制振するようにした連結構造物の制振方法(特開平6−58017号公報参照)を採用することが考えられる。即ち、この連結構造物の制振方法は、並立する構造特性の異なる構造系どうしをばねおよびダンパーで連結させて連結構造物を構成し、2つの構造物の揺れの固有周期の相違を利用して制振するようになっている。
【0004】
ところで、耐震性に優れた古来の建築物に五重塔があるが、この五重塔等の多層塔は中心部に立設される芯柱を囲繞して塔家が構築され、地震発生時に芯柱と塔家との間に衝突を起こすことにより優れた制振機能が発揮されるものと考えられる。即ち、質量や剛性等の構造特性の異なる2つの構造物(芯柱と塔家)の揺れの相違を利用し、双方の構造物の衝突現象により制振するものである。
【0005】
【発明が解決しようとする課題】
しかしながら、かかる従来の連結構造物の制振方法にあっては、衝突が発生するように近接された2つの構造物では、衝突を与える側の構造物の変形は抑えられるが、衝突を受けた側の構造物は、衝突が発生しない場合に比較してその時刻の変形は大きくなる。しかし、固有周期の異なる構造物系の最大応答生起時刻は一般的に異なり、衝突を受けた構造物系の最大応答変位が大きくなることは確率的に少なくなる。衝突現象は、相互の構造物にパルス的な衝撃力を与え合う現象として捉えることができる。単純な衝突の場合、その衝突時の作用時間が短いために衝撃力が非常に大きくなり、衝突箇所の局部的な破損を引き起こす恐れがある。
【0006】
また、構造物の耐震性に対しては構造物の変形歪みを如何に抑制するかが問題となる。このとき、構造物の変形は一次モードで大部分が規定される。衝突作用による制振手法とは、一次モード振動数で揺動する運動エネルギーを、衝突という衝撃パルス力で広い振動数成分の力に分散することによって、他の高次モード振動エネルギーに変換していることになる。その結果、一次モード振幅成分は小さくなるが、他の高次モード成分は衝突前より大きくなり、構造物の変形は小さくなるが、応答加速度は大きくなってしまうという課題があった。
【0007】
そこで、本発明はかかる従来の課題に鑑みて成されたもので、2つの構造物の衝突の作用時間を長くするとともに、2つの構造物間で常時振動エネルギーを吸収させることにより、連結構造物の衝突時の衝撃力を低減しつつ、衝突時に発生する高次モード成分のエネルギーを効果的に吸収することができる連結構造物の制振方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
かかる目的を達成するために本発明の請求項1に示す連結構造物の制振方法は、質量や剛性等の構造特性が相異なり、かつ、互いに近接して構築された第1構造物および第2構造物を備え、地震や風等を起因とする振動入力により揺動する双方の構造物の衝突現象を用いて制振する連結構造物の制振方法において、上記第1構造物および上記第2構造物の少なくとも一方に衝突緩衝手段を設け、第1,第2構造物の衝突時に該衝突緩衝手段が作用して衝撃力を徐々に吸収するとともに、上記第1構造物および上記第2構造物双方を振動エネルギー吸収手段で連結し、該振動エネルギー吸収手段によって第1,第2構造物間の振動を常時吸収するよう構成されており、上記衝突緩衝手段は、衝突受け板、並びに、該衝突受け板と、上記第1構造物および上記第2構造物の少なくとも一方とを接続するばね部材、を備えており、上記衝突受け板を質量体として所定の質量を与えておくことにより、該衝突受け板と上記ばね部材とで構成されるばね系をダイナミックダンパーとして構成した。
【0009】
また、本発明の請求項2に示す連結構造物の制振方にあっては、上記第1構造物および上記第2構造物のうち、低質量,高剛性となる一方の構造物の上端部に、高質量,低剛性となる他方の構造物の頂部を覆う剛体鍔部を設け、これら剛体鍔部と他方の構造物の頂部との間に水平方向の相対移動を許容する滑り部材を介在し、この滑り部材を介して剛体鍔部と他方の構造物との水平方向の相対移動を許容しつつ、該剛体鍔部に作用する下方への押し付け力を他方の構造物で支持する。
【0010】
更に、本発明の請求項3に示す連結構造物の制振方にあっては、上記衝突緩衝手段を、ばね部材単体、または、ばね部材とダンパー部材の併用体として構成する。
【0011】
更にまた、本発明の請求項4に示す連結構造物の制振方法にあっては、上記振動エネルギー吸収手段を、ダンパー部材を用いて構成する。
【0012】
以上の構成に係る本発明の連結構造物の制振方法の作用を以下述べると、請求項1では、第1構造物および上記第2構造物の少なくとも一方に、衝突時に作用して衝撃力を吸収する衝突緩衝手段を設けたので、この衝突緩衝手段によって第1構造物と第2構造物とが衝突した際の作用時間が長くなり、延いては衝撃力の大きさを小さくすることができる。また、上記第1構造物および上記第2構造物双方を連結して両者間の振動を常時吸収する振動エネルギー吸収手段を設けたので、衝突した際に発生する高次モード成分を吸収することができる。従って、構造特性の異なる構造物の揺れの相違を利用して互いに衝突させて、双方の第1,第2構造物からなる連結構造物を制振する場合に、衝突を受けた側の構造物は上記衝突緩衝手段により衝撃が緩和されるため、衝突箇所が局部的に破損されるのを防止できる。そして、衝突現象によって構造体変形の大部分を占める一次モードの振幅成分は、他の高次モードの振幅成分に分散しつつ低減されて構造物の変形を小さくするが、このとき分散された高次モード成分は、上記振動エネルギー吸収手段によって容易に吸収できるため、応答加速度を小さくすることができる。また、上記衝突緩衝手段は、衝突受け板、並びに、該衝突受け板と、上記第1構造物および上記第2構造物の少なくとも一方とを接続するばね部材、を備えており、上記衝突受け板を質量体として所定の質量を与えておくことにより、該衝突受け板と上記ばね部材とで構成されるばね系をダイナミックダンパーとして構成したから、衝突緩衝手段は、第1,第2構造物の衝突時の衝撃力を徐々に吸収するという機能に加えて、衝突受け板とばね部材とで構成されるばね系をダイナミックダンパーとして作用させるという機能を有することとなる。
【0013】
また、請求項2では、上記第1構造物および上記第2構造物のうち、低質量,高剛性となる一方の構造物の上端部に、高質量,低剛性となる他方の構造物の頂部を覆う剛体鍔部を設け、これら剛体鍔部と他方の構造物の頂部との間に水平方向の相対移動を許容する滑り部材を介在し、この滑り部材を介して剛体鍔部と他方の構造物との水平方向の相対移動を許容しつつ、該剛体鍔部に作用する下方への押し付け力を他方の構造物で支持するようにしたので、大地震等により大きな水平力が入力されて、一方の構造物に大きな曲げモーメントが作用して曲げ変形されようとしても、上記剛体鍔部は滑り部材を介して他方の構造物の頂部に沿って水平移動しつつ、剛体鍔部の押し下げ力を該他方の構造物によって支持することができる。このため、この支持部分によって押し下げ力に対する反力が他方の構造物に発生し、この反力により剛体鍔部には上記一方の構造物の曲げに対向するモーメントが発生する。このため、上記一方の構造物はこのときのモーメントにより、上端部を曲げ方向とは反対方向に押し戻し、延いては、この一方の構造物の曲げ変形を抑制することができる。従って、一方の構造物は他方の構造物に支持されることによって剛性(抵抗力)を十分に維持し、その剛性比を十分に確保することができるため、連結構造物の制振効果を更に向上することができる。
【0014】
また、請求項3では、上記衝突緩衝手段を、ばね部材単体、または、ばね部材とダンパー部材の併用体として構成したので、ばね部材ではこれの弾発力により衝撃エネルギーを吸収する一方、ダンパー部材ではこれの減衰力により衝撃エネルギーを吸収する。このため、いずれにあっても衝撃エネルギーは徐々に吸収されることになり、その作用時間を長くすることができる。
【0015】
更に、請求項4では、上記振動エネルギー吸収手段を、ダンパー部材を用いて構成したので、第1構造物と第2構造物との相対変位を減衰力により吸収し、簡単な構成にして第1,第2構造物間の振動エネルギーを効果的に吸収することができる。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。図1から図3は本発明の連結構造物の制振方法の一実施形態を示し、図1は連結構造物の全体構成を示す断面正面図、図2は図1中のA−A線断面図、図3は連結構造物の要部を拡大した断面平面図である。
【0017】
即ち、本実施形態の連結構造物10は1棟終結型として構成され、図1,図2に示すように中心部に立設される第1構造物としてのセンターコア12と、その周囲に所定の近接した間隔Sをもって囲繞するように立設される第2構造物としての外周建物14とを備え、これらセンターコア12と外周建物14とは剛性特性が異なっている。上記センターコア12は連層耐震壁を用いて低質量,高剛性として形成される一方、上記外周建物14は多層の床スラブ16,16…を設けて高質量,低剛性の高層ビルとして構築され、これらセンターコア12および外周建物14は同一高さに形成される。
【0018】
上記センターコア12および上記外周建物14は、それぞれの剛性特性が異なり、かつ、互いに近接されていることから、大地震や強風等を原因とする振動入力によりそれぞれが大きく揺動されると、それぞれの揺れの相違により一方が他方に衝突することにより制振する方法が採られる。
【0019】
ここで、本実施形態では図3に示すように上記センターコア12の四方を囲む外壁18のそれぞれの両側部に衝突緩衝手段20を設け、センターコア12と外周建物14との衝突時に該衝突緩衝手段20が作用して衝撃力を徐々に吸収させる一方、上記センターコア12および上記外周建物14双方を振動エネルギー吸収手段30で連結し、該振動エネルギー吸収手段30によってセンターコア12と外周建物14間の振動を常時吸収するようになっている。
【0020】
上記衝突緩衝手段20は、上記センターコア12の外壁18から所定間隔をもって配置される衝突受け板22と、この衝突受け板22の周囲に水平方向を指向して配置され、該衝突受け板22を外壁18に結合する複数本のスプリング24と、上記衝突受け板22の中央部と外壁18とを連結するダンパー26とにより構成される。
【0021】
また、振動エネルギー吸収手段30は、オイル等の粘性流体を作動流体とする常接ダンパー32で構成され、この常接ダンパー32のシリンダー32aがセンターコア12側に取り付けられるとともに、ピストンロッド32bが外周建物14側に取り付けられる。そして、センターコア12と外周建物14との揺れの相違により発生する間隔S変化により、常接ダンパー32に減衰力が発生されるようになっている。また、上記シリンダー32aと上記ピストンロッド32bとは、センターコア12および外周建物14に対して互いに逆に取付けることもできる。
【0022】
ところで、上記衝突緩衝手段20および上記振動エネルギー吸収手段30は、外周建物14の各階毎にそれぞれ設けられ、センターコア12と外周建物14とのいかなる変形を伴う揺れにも対応できるようになっている。
【0023】
従って、本実施形態の連結構造物の制振方法にあっては、センターコア12の外壁18に衝突緩衝手段20を設けてあるので、センターコア12と外周建物14とが衝突しようとする際に、該衝突緩衝手段20の衝突受け板22が外周建物14の内壁28に衝接される。すると、該衝突受け板22はスプリング24の圧縮変形を伴ってセンターコア12方向に移動し、この移動に伴ってダンパー26が押し込まれる。このため、上記衝突緩衝手段20にはスプリング24の弾発力とダンパー26の減衰力が作用して、衝突時の衝突エネルギーを徐々に吸収しつつ衝突荷重を受け止める。従って、センターコア12と外周建物14とが衝突した際の荷重作用時間を長くすることができる。
【0024】
即ち、上記衝突現象は相互の建物にパルス的な衝撃力を与え合う現象として捉えることができ、このときの衝撃力をP,作用時間をΔtとし、かつ、センターコア12の質量m1 と外周建物14の質量m2 の衝突前と衝突後の双方の系の速度応答の変化をΔx1 とΔx2 とすると、
P=(m1 ・Δx1 +m2 ・Δx2 )/Δt ……▲1▼ として表すことができる。従って、上記衝突緩衝手段20を設けたことにより衝突現象の作用時間Δtを長く(大きく)することができるため、これに伴って衝撃力Pは小さくなる。
【0025】
一方、上記センターコア12と上記外周建物14との間に設けた常接ダンパー32は、これらセンターコア12と外周建物14との衝突作用によって分散される高次モードの振幅成分を常時吸収することができるため、該高次モード成分によって増大される応答加速度を小さくすることができる。
【0026】
従って、連結構造物として構成されるセンターコア12と外周建物14の構造特性の異なる揺れの相違を利用して、双方の構造物12,14を互いに衝突させて制振する場合に、衝突を受けた側の構造物は上記衝突緩衝手段20により衝撃が緩和されるため、衝突箇所が局部的に破損されるのを防止できる。そして、衝突現象によって構造体変形の大部分を占める一次モードの振幅成分は、他の高次モード成分に分散しつつ低減されて構造物の変形を小さくするが、このとき分散された高次モード成分は、上記常接ダンパー32によって容易に吸収できるため、応答加速度が増大されるのを抑制できる。
【0027】
ところで、本実施形態では上記衝突緩衝手段20としてスプリング24とダンパー26とを用いたので、それぞれの弾発力および減衰力を予め調節しておくことにより、簡単な構成をもって衝撃エネルギーを最適な条件下に徐々に吸収することが可能となる。また、この場合、上記衝突緩衝手段20はスプリング24,ダンパー26の併用で構成されるが、これに限ることなくスプリング24のみ、若しくはダンパー26のみで構成することもできる。更に、上記衝突緩衝手段20はセンターコア12の外壁18に設けた場合を開示したが、これに限ることなく外周建物14の内壁28に設けても良く、また、これら外壁18および内壁28の両方に設けることもできる。
【0028】
また、上記振動エネルギー吸収手段30を常接ダンパー32によって構成したので、センターコア12と外周建物14との相対変位を減衰力をもって効果的に吸収でき、かつ、その構成を簡単にすることができる。
【0029】
ところで、上記衝突緩衝手段20は、衝突受け板22を質量体として所定の質量を与えておくことにより、該衝突受け板22と上記スプリング24とで構成されるばね系をダイナミックダンパーとして構成することができ、該衝突緩衝手段20を設けた側の構造物の制振効果を更に向上させることができる。
【0030】
図4は他の実施形態を示す連結構造物の全体構成の断面正面図で、この実施形態を上記実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べる。
【0031】
即ち、この実施形態の連結構造物10aでは、上記センターコア12の上端部に上記外周建物14の頂部14aを覆う剛体鍔部としてのハットトラス40を設け、このハットトラス40の下面と上記外周建物14の頂部14aとの間に、これら両者間の水平移動を許容する滑り材42を介在する。そして、これら滑り材42を介してハットトラス40と外周建物14との水平方向の相対移動を許容しつつ、該ハットトラス40に作用する下方への押し付け力を支持するようになっている。
【0032】
上記ハットトラス40は、所定厚みをもった直方体状の立体トラスとしてセンターコア12頂部に一体に取り付けられ、このセンターコア12の曲がり変形に抵抗するモーメントが作用した場合にも、十分にその形状を保持できる剛性を備えて構成される。この場合、上記滑り材42を上記外周建物14の柱17の形成位置に対応して配置することが望ましい。
【0033】
勿論、この実施形態にあっても上記実施形態と同様にセンターコア12と外周建物14との間の隙間Sに、衝突緩衝手段20および振動エネルギー吸収手段30が図3に示したように設けられる。
【0034】
従って、本実施形態の連結構造物の制振方法にあっては、大地震等により大きな水平力Pが連結構造物10に入力され、これによってセンターコア12が大きく曲げ変形されようとする場合、センターコア12の上端部に設けたハットトラス40は、滑り材42を介して外周建物14の頂部14aに沿って水平移動しつつ、下方への押し下げ力Fが発生する。この押し下げ力Fは上記滑り材42を介して外周建物14によって支持されるため、この支持部分によって押し下げ力Fに対する反力Rが外周建物14に発生し、この反力Rによりハットトラス40にはセンターコア12の曲げに対向するモーメントMが発生することになる。このため、センターコア20はこのときのモーメントMにより、上端部が曲げ方向とは反対方向に押し戻され、延いては、このセンターコア20の曲げ変形を抑制することができる。
【0035】
従って、上記センターコア12は上記外周建物14に支持されることによって剛性(抵抗力)を十分に維持し、その剛性比を十分に確保することができる。このため、1棟終結型として構成される連結構造物10の制振効果を、上記衝突緩衝手段20および上記振動エネルギー吸収手段30による制振効果と相俟って著しく向上させることができる。
【0036】
【発明の効果】
以上に詳しく説明したように、本発明によれば以下に述べるような優れた効果を奏する。
【0037】
請求項1の連結構造物の制振方法は、連結構造物を構成する第1構造物および上記第2構造物の少なくとも一方に、衝突時に作用して衝撃力を吸収する衝突緩衝手段を設けるとともに、上記第1構造物および上記第2構造物双方を連結して両者間の振動を常時吸収する振動エネルギー吸収手段を設けたので、上記衝突緩衝手段によって第1構造物と第2構造物とが衝突した際の作用時間を長くし、延いては衝撃力の大きさを小さくできるとともに、上記振動エネルギー吸収手段によって、衝突した際に発生する高次モード成分を吸収することができる。従って、構造特性の異なる構造物の揺れの相違を利用して互いに衝突させて、双方の第1,第2構造物からなる連結構造物を制振する場合に、衝突を受けた側の構造物は上記衝突緩衝手段により衝撃が緩和されるため、衝突箇所が局部的に破損されるのを防止できる。そして、衝突現象によって構造体変形の大部分を占める一次モードの振幅成分は、他の高次モード成分に分散しつつ低減されて構造物の変形を小さくするが、このとき分散された高次モード成分は、上記振動エネルギー吸収手段によって容易に吸収できるため、応答加速度が増大されてしまうのを抑制することができる。また、上記衝突緩衝手段は、衝突受け板、並びに、該衝突受け板と、上記第1構造物および上記第2構造物の少なくとも一方とを接続するばね部材、を備えており、上記衝突受け板を質量体として所定の質量を与えておくことにより、該衝突受け板と上記ばね部材とで構成されるばね系をダイナミックダンパーとして構成したから、衝突緩衝手段は、第1,第2構造物の衝突時の衝撃力を徐々に吸収するという機能に加えて、衝突受け板とばね部材とで構成されるばね系をダイナミックダンパーとして作用させるという機能を有することとなる。
【0038】
また、請求項2では、上記第1構造物および上記第2構造物のうち、低質量,高剛性となる一方の構造物の上端部に、高質量,低剛性となる他方の構造物の頂部を覆う剛体鍔部を設け、これら剛体鍔部と他方の構造物の頂部との間に水平方向の相対移動を許容する滑り部材を介在し、この滑り部材を介して剛体鍔部と他方の構造物との水平方向の相対移動を許容しつつ、該剛体鍔部に作用する下方への押し付け力を他方の構造物で支持するようにしたので、剛体鍔部は滑り部材を介して他方の構造物の頂部に沿って水平移動しつつ、剛体鍔部の押し下げ力を該他方の構造物によって支持することができる。従って、一方の構造物の曲げ変形を抑制できるため、一方の構造物は他方の構造物に支持されることによって剛性(抵抗力)を十分に維持し、その剛性比を十分に確保することができ、連結構造物の制振効果を更に向上することができる。
【0039】
更に、請求項3では、上記衝突緩衝手段を、ばね部材単体、または、ばね部材とダンパー部材の併用体として構成したので、ばね部材ではこれの弾発力により衝撃エネルギーを吸収する一方、ダンパー部材ではこれの減衰力により衝撃エネルギーを吸収する。このため、いずれにあっても衝撃エネルギーは徐々に吸収されることになり、その作用時間を長くすることができる。
【0040】
更にまた、請求項4では、上記振動エネルギー吸収手段を、ダンパー部材を用いて構成したので、第1構造物と第2構造物との相対変位を減衰力により吸収し、簡単な構成にして第1,第2構造物間の振動エネルギーを効果的に吸収することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す連結構造物の全体構成の断面正面図である。
【図2】本発明の一実施形態を示す図1中のA−A線断面図である。
【図3】本発明の一実施形態を示す連結構造物の要部を拡大した断面平面図である。
【図4】本発明の他の実施形態を示す連結構造物の全体構成の断面正面図である。
【符号の説明】
10,10a 連結構造物
12 センターコア(第1構造物)
14 外周建物(第2構造物)
14a 頂部
20 衝突緩衝手段
22 衝突受け板
24 スプリング
26 ダンパー
30 振動エネルギー吸収手段
32 常接ダンパー
40 ハットトラス(剛体鍔部)
42 滑り材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration control method for a connected structure in which two structures having different structural characteristics are controlled using both collision phenomena.
[0002]
[Prior art]
In general, TMD and AMD that move a mass body actively or passively are known as vibration control devices for structures such as buildings, and these control moments in the horizontal direction at the top of the structure with respect to input vibration. Is supposed to be generated. However, when trying to suppress large vibrations with these devices, excessive additional mass is required to keep the mass body amplitude below the allowable stroke of the device, making it difficult to achieve this. There is also.
[0003]
Therefore, in such a case, a vibration control method for a connected structure in which vibrations are generated by connecting parallel structure systems, instead of using the inertial force of the added mass as in the above-described TMD, AMD, or the like. It is conceivable to employ (see JP-A-6-58017). In other words, the vibration control method for this connected structure uses a difference in the natural period of the vibration of the two structures, in which two parallel structures having different structural characteristics are connected by a spring and a damper to form a connected structure. To suppress vibration.
[0004]
By the way, there are five-storied pagodas in ancient buildings with excellent earthquake resistance, but multi-storied towers such as these five-storied pagoda are built around the core pillars standing in the center, and the pillars and towers are built when an earthquake occurs. It is considered that an excellent vibration control function is exhibited by causing a collision with the house. That is, the vibration is controlled by the collision phenomenon between the two structures using the difference in the shaking of the two structures (core pillar and tower house) having different structural characteristics such as mass and rigidity.
[0005]
[Problems to be solved by the invention]
However, in the conventional vibration damping method for a connected structure, the two structures that are close to each other so that a collision occurs can suppress the deformation of the structure on the side that gives the collision, but the structure has been subjected to the collision. The side structure is greatly deformed at that time as compared with the case where no collision occurs. However, the maximum response occurrence times of structure systems having different natural periods are generally different, and the maximum response displacement of a structure system that has received a collision is probabilistically reduced. The collision phenomenon can be understood as a phenomenon in which a pulse-like impact force is applied to the mutual structures. In the case of a simple collision, since the action time at the time of the collision is short, the impact force becomes very large, which may cause local damage of the collision point.
[0006]
Moreover, how to suppress the deformation distortion of a structure becomes a problem with respect to the earthquake resistance of the structure. At this time, the deformation of the structure is largely defined by the primary mode. The vibration control method by collision action is to convert the kinetic energy that fluctuates at the primary mode frequency into other high-order mode vibration energy by dispersing it into a force with a wide frequency component by impact pulse force called collision. Will be. As a result, the first-order mode amplitude component is reduced, but the other higher-order mode components are larger than before the collision, and the deformation of the structure is reduced, but the response acceleration is increased.
[0007]
Therefore, the present invention has been made in view of such conventional problems, and it is possible to lengthen the action time of a collision between two structures and to constantly absorb vibration energy between the two structures, thereby connecting the structures. An object of the present invention is to provide a vibration control method for a connected structure that can effectively absorb the energy of higher-order mode components generated at the time of collision while reducing the impact force at the time of collision.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the vibration damping method for a connected structure according to claim 1 of the present invention includes a first structure and a first structure constructed in close proximity to each other, having different structural characteristics such as mass and rigidity. In the vibration control method for a connected structure that includes two structures and controls vibrations using the collision phenomenon of both structures that are swung by vibration input caused by an earthquake or wind, the first structure and the first structure Collision buffer means is provided in at least one of the two structures, and when the first and second structures collide, the collision buffer means acts to absorb the impact force gradually, and the first structure and the second structure. Both objects are connected by vibration energy absorbing means, and the vibration energy absorbing means is configured to constantly absorb vibration between the first and second structures . The collision buffer means includes a collision receiving plate, Collision receiving plate and first structure And a spring member that connects at least one of the second structures, and the collision receiving plate and the spring member are configured by giving a predetermined mass using the collision receiving plate as a mass body. The spring system is configured as a dynamic damper.
[0009]
Moreover, in the vibration damping method of the connection structure according to claim 2 of the present invention, of the first structure and the second structure, the upper end portion of one structure having low mass and high rigidity. In addition, a rigid flange that covers the top of the other structure with high mass and low rigidity is provided, and a sliding member that allows relative movement in the horizontal direction is interposed between the rigid flange and the top of the other structure. Then, while allowing the relative movement of the rigid body collar and the other structure in the horizontal direction through the sliding member, the downward pressing force acting on the rigid body collar is supported by the other structure.
[0010]
Furthermore, in the vibration damping method for a connecting structure according to claim 3 of the present invention, the collision buffering means is configured as a single spring member or a combined body of a spring member and a damper member.
[0011]
Furthermore, in the vibration damping method for a connecting structure according to claim 4 of the present invention, the vibration energy absorbing means is configured using a damper member.
[0012]
The operation of the vibration damping method for a connecting structure according to the present invention having the above-described configuration will be described below. In claim 1, at least one of the first structure and the second structure is acted upon at the time of collision to apply an impact force. Since the shock absorbing means for absorbing is provided, the action time when the first structure and the second structure collide with each other is increased by this collision buffering means, so that the magnitude of the impact force can be reduced. . In addition, since vibration energy absorbing means for connecting both the first structure and the second structure and constantly absorbing vibration between the two structures is provided, it is possible to absorb higher-order mode components generated when a collision occurs. it can. Therefore, when the structural structure having different structural characteristics is caused to collide with each other and the connected structure composed of both the first and second structures is damped, the structure on the side subjected to the collision Since the impact is alleviated by the collision buffer means, the collision location can be prevented from being locally damaged. The amplitude component of the primary mode, which accounts for most of the deformation of the structure due to the collision phenomenon, is reduced while being dispersed in the amplitude component of the other higher-order modes to reduce the deformation of the structure. Since the next mode component can be easily absorbed by the vibration energy absorbing means, the response acceleration can be reduced. The collision buffer means includes a collision receiving plate, and a spring member that connects the collision receiving plate and at least one of the first structure and the second structure, and the collision receiving plate. Since the spring system constituted by the collision receiving plate and the spring member is configured as a dynamic damper by giving a predetermined mass as a mass body, the collision buffering means includes the first and second structures. In addition to the function of gradually absorbing the impact force at the time of collision, the spring system composed of the collision receiving plate and the spring member functions as a dynamic damper.
[0013]
Moreover, in Claim 2, the top part of the other structure having high mass and low rigidity is provided at the upper end of one structure having low mass and high rigidity among the first structure and the second structure. And a rigid member that covers the rigid body and the other structure is interposed between the rigid member and the top of the other structure via a sliding member that allows relative movement in the horizontal direction. While allowing the relative movement in the horizontal direction with the object and supporting the downward pressing force acting on the rigid body collar with the other structure, a large horizontal force is input due to a large earthquake, etc. Even if a large bending moment acts on one structure and is about to be bent and deformed, the rigid body flange moves horizontally along the top of the other structure via the sliding member, and the pressing force of the rigid body collar is reduced. It can be supported by the other structure. For this reason, a reaction force against the pressing force is generated in the other structure by the support portion, and a moment that opposes the bending of the one structure is generated in the rigid body collar due to the reaction force. For this reason, the above-mentioned one structure can push back the upper end portion in the direction opposite to the bending direction by the moment at this time, and consequently, the bending deformation of this one structure can be suppressed. Therefore, since one structure can be sufficiently supported by the other structure to maintain sufficient rigidity (resistance force) and sufficiently ensure its rigidity ratio, the vibration damping effect of the connected structure can be further increased. Can be improved.
[0014]
According to a third aspect of the present invention, since the collision buffer means is configured as a single spring member or a combined body of a spring member and a damper member, the spring member absorbs impact energy by its elastic force, while the damper member Then, the impact energy is absorbed by the damping force. For this reason, in any case, the impact energy is gradually absorbed, and the action time can be lengthened.
[0015]
Further, in the present invention, since the vibration energy absorbing means is constituted by using a damper member, the relative displacement between the first structure and the second structure is absorbed by the damping force, and the first structure is made simple. The vibration energy between the second structures can be effectively absorbed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 3 show an embodiment of a vibration damping method for a connecting structure according to the present invention, FIG. 1 is a sectional front view showing the overall structure of the connecting structure, and FIG. 2 is a sectional view taken along line AA in FIG. FIG. 3 is an enlarged cross-sectional plan view of the main part of the connection structure.
[0017]
That is, the connection structure 10 of the present embodiment is configured as a single building termination type, and as shown in FIGS. 1 and 2, a center core 12 as a first structure standing at the center and a predetermined area around it. And the outer peripheral building 14 as a second structure erected so as to be surrounded by the adjacent space S, and the center core 12 and the outer peripheral building 14 have different rigidity characteristics. The center core 12 is formed as a low-mass and high-rigidity using multi-layer earthquake-resistant walls, while the outer peripheral building 14 is constructed as a high-mass and low-rigidity high-rise building with multi-layered floor slabs 16, 16. The center core 12 and the outer peripheral building 14 are formed at the same height.
[0018]
The center core 12 and the outer peripheral building 14 have different rigidity characteristics and are close to each other. Therefore, when each of the center core 12 and the outer peripheral building 14 is greatly swung by a vibration input caused by a large earthquake or strong wind, A method is adopted in which vibration is controlled by one of the two colliding with the other due to the difference in vibration.
[0019]
Here, in the present embodiment, as shown in FIG. 3, collision buffer means 20 is provided on both sides of the outer wall 18 surrounding the four sides of the center core 12, and when the center core 12 and the outer peripheral building 14 collide, the collision buffer 20 is provided. While the means 20 acts to absorb the impact force gradually, the center core 12 and the outer peripheral building 14 are both connected by the vibration energy absorbing means 30, and the vibration energy absorbing means 30 connects the center core 12 and the outer peripheral building 14. It is designed to absorb vibrations at all times.
[0020]
The collision buffering means 20 is arranged with a collision receiving plate 22 arranged at a predetermined interval from the outer wall 18 of the center core 12 and arranged around the collision receiving plate 22 in the horizontal direction. A plurality of springs 24 coupled to the outer wall 18 and a damper 26 connecting the central portion of the collision receiving plate 22 and the outer wall 18 are configured.
[0021]
The vibration energy absorbing means 30 is composed of a constant damper 32 using a viscous fluid such as oil as a working fluid. A cylinder 32a of the constant damper 32 is attached to the center core 12 side, and a piston rod 32b is arranged on the outer periphery. It is attached to the building 14 side. A damping force is generated in the permanent damper 32 due to a change in the interval S caused by the difference in the shaking between the center core 12 and the outer peripheral building 14. The cylinder 32a and the piston rod 32b can be attached to the center core 12 and the outer peripheral building 14 in the opposite directions.
[0022]
By the way, the collision buffering means 20 and the vibration energy absorbing means 30 are provided for each floor of the outer building 14 so as to be able to cope with any deformation of the center core 12 and the outer building 14 with any deformation. .
[0023]
Therefore, in the vibration damping method for a connected structure according to the present embodiment, the collision buffer means 20 is provided on the outer wall 18 of the center core 12, so that the center core 12 and the outer peripheral building 14 are about to collide. The collision receiving plate 22 of the collision buffer means 20 is brought into contact with the inner wall 28 of the outer peripheral building 14. Then, the collision receiving plate 22 moves in the direction of the center core 12 with the compression deformation of the spring 24, and the damper 26 is pushed in with this movement. For this reason, the elastic force of the spring 24 and the damping force of the damper 26 act on the collision buffering means 20 to receive the collision load while gradually absorbing the collision energy at the time of the collision. Therefore, the load acting time when the center core 12 and the outer peripheral building 14 collide can be lengthened.
[0024]
That is, the above-mentioned collision phenomenon can be regarded as a phenomenon in which a pulse-like impact force is applied to each other's buildings. At this time, the impact force is P, the action time is Δt, the mass m1 of the center core 12 and the outer peripheral building. Let Δx1 and Δx2 be the change in the velocity response of the system before and after the collision of 14 mass m2.
P = (m 1 · Δx 1 + m 2 · Δx 2) / Δt (1) Accordingly, the provision of the collision buffer means 20 makes it possible to lengthen (increase) the action time Δt of the collision phenomenon, and accordingly, the impact force P decreases.
[0025]
On the other hand, the continuous damper 32 provided between the center core 12 and the outer peripheral building 14 always absorbs the higher-order mode amplitude component dispersed by the collision action between the center core 12 and the outer peripheral building 14. Therefore, the response acceleration increased by the higher-order mode component can be reduced.
[0026]
Therefore, when the center core 12 configured as a connected structure and the peripheral building 14 are used for vibration suppression by causing the structures 12 and 14 to collide with each other by using the difference in the structural characteristics, the collision is received. Since the impact of the structure on the other side is mitigated by the collision buffering means 20, the collision location can be prevented from being locally damaged. The amplitude component of the primary mode, which accounts for most of the deformation of the structure due to the collision phenomenon, is reduced while being dispersed in the other higher-order mode components to reduce the deformation of the structure. Since the component can be easily absorbed by the constant damper 32, the response acceleration can be suppressed from increasing.
[0027]
By the way, in the present embodiment, the spring 24 and the damper 26 are used as the collision buffering means 20, so that the impact energy and the damping force are adjusted in advance, so that the impact energy can be optimally adjusted with a simple configuration. It becomes possible to absorb gradually down. In this case, the collision buffering means 20 is constituted by the combined use of the spring 24 and the damper 26. However, the present invention is not limited to this, and it can be constituted by only the spring 24 or only the damper 26. Furthermore, although the case where the collision buffering means 20 is provided on the outer wall 18 of the center core 12 has been disclosed, the present invention is not limited to this, and it may be provided on the inner wall 28 of the outer peripheral building 14. It can also be provided.
[0028]
Further, since the vibration energy absorbing means 30 is constituted by the permanent damper 32, the relative displacement between the center core 12 and the outer peripheral building 14 can be effectively absorbed with a damping force, and the configuration can be simplified. .
[0029]
By the way, the collision buffer means 20 configures a spring system composed of the collision receiving plate 22 and the spring 24 as a dynamic damper by giving a predetermined mass using the collision receiving plate 22 as a mass body. Therefore, the vibration damping effect of the structure on the side where the collision buffer means 20 is provided can be further improved.
[0030]
FIG. 4 is a cross-sectional front view of the overall configuration of a connection structure showing another embodiment. This embodiment will be described with the same reference numerals assigned to the same components as those of the above-described embodiment, without redundant description.
[0031]
That is, in the connection structure 10a of this embodiment, a hat truss 40 is provided as a rigid saddle that covers the top 14a of the outer peripheral building 14 at the upper end of the center core 12, and the lower surface of the hat truss 40 and the outer peripheral building are provided. Between the top 14a of 14, a sliding material 42 that allows horizontal movement between the two is interposed. Then, the downward pressing force acting on the hat truss 40 is supported while allowing the horizontal movement of the hat truss 40 and the outer peripheral building 14 through the sliding material 42 in a horizontal direction.
[0032]
The hat truss 40 is integrally attached to the top of the center core 12 as a rectangular solid truss having a predetermined thickness. Even when a moment that resists bending deformation of the center core 12 acts, the hat truss 40 has a sufficient shape. It is configured with rigidity that can be held. In this case, it is desirable to arrange the sliding material 42 corresponding to the formation position of the pillar 17 of the outer peripheral building 14.
[0033]
Of course, also in this embodiment, the collision buffer means 20 and the vibration energy absorbing means 30 are provided in the gap S between the center core 12 and the outer peripheral building 14 as shown in FIG. .
[0034]
Therefore, in the vibration damping method for a connection structure according to the present embodiment, when a large horizontal force P is input to the connection structure 10 due to a large earthquake or the like, and the center core 12 is about to be greatly bent and deformed by this, The hat truss 40 provided at the upper end portion of the center core 12 moves horizontally along the top portion 14a of the outer peripheral building 14 via the sliding material 42, and generates a downward pressing force F. Since the pressing force F is supported by the outer peripheral building 14 via the sliding material 42, a reaction force R against the pressing force F is generated in the outer peripheral building 14 by the supporting portion, and the reaction force R causes the hat truss 40 to A moment M opposite to the bending of the center core 12 is generated. For this reason, the center core 20 is pushed back in the direction opposite to the bending direction by the moment M at this time, so that the bending deformation of the center core 20 can be suppressed.
[0035]
Accordingly, the center core 12 is supported by the outer peripheral building 14 so that the rigidity (resistance force) is sufficiently maintained, and the rigidity ratio can be sufficiently secured. For this reason, the vibration damping effect of the connecting structure 10 configured as a single building termination type can be remarkably improved in combination with the vibration damping effect by the collision buffer means 20 and the vibration energy absorbing means 30.
[0036]
【The invention's effect】
As described above in detail, according to the present invention, the following excellent effects can be obtained.
[0037]
The vibration damping method for a connected structure according to claim 1 is provided with at least one of the first structure and the second structure constituting the connected structure provided with a collision buffer means that acts at the time of collision and absorbs the impact force. Since the vibration energy absorbing means is provided to connect both the first structure and the second structure and always absorb the vibration between them, the first structure and the second structure are separated by the collision buffer means. The action time at the time of collision can be lengthened, and hence the magnitude of impact force can be reduced, and higher-order mode components generated at the time of collision can be absorbed by the vibration energy absorbing means. Therefore, when the structural structure having different structural characteristics is caused to collide with each other and the connected structure composed of both the first and second structures is damped, the structure on the side subjected to the collision Since the impact is alleviated by the collision buffer means, the collision location can be prevented from being locally damaged. The amplitude component of the primary mode, which accounts for most of the deformation of the structure due to the collision phenomenon, is reduced while being dispersed in the other higher-order mode components to reduce the deformation of the structure. Since the component can be easily absorbed by the vibration energy absorbing means, an increase in response acceleration can be suppressed. The collision buffer means includes a collision receiving plate, and a spring member that connects the collision receiving plate and at least one of the first structure and the second structure, and the collision receiving plate. Since the spring system constituted by the collision receiving plate and the spring member is configured as a dynamic damper by giving a predetermined mass as a mass body, the collision buffering means includes the first and second structures. In addition to the function of gradually absorbing the impact force at the time of collision, the spring system composed of the collision receiving plate and the spring member functions as a dynamic damper.
[0038]
Moreover, in Claim 2, the top part of the other structure having high mass and low rigidity is provided at the upper end of one structure having low mass and high rigidity among the first structure and the second structure. And a rigid member that covers the rigid body and the other structure is interposed between the rigid member and the top of the other structure via a sliding member that allows relative movement in the horizontal direction. Since the downward pressing force acting on the rigid body collar is supported by the other structure while allowing relative movement in the horizontal direction with the object, the rigid body collar is supported by the other structure via the sliding member. While moving horizontally along the top of the object, the pressing force of the rigid body collar can be supported by the other structure. Accordingly, since bending deformation of one structure can be suppressed, one structure can be sufficiently supported by the other structure to sufficiently maintain rigidity (resistance force) and ensure a sufficient rigidity ratio. This can further improve the vibration damping effect of the connected structure.
[0039]
Further, in the present invention, since the collision buffer means is configured as a single spring member or a combined body of the spring member and the damper member, the spring member absorbs impact energy by its elastic force, while the damper member Then, the impact energy is absorbed by the damping force. For this reason, in any case, the impact energy is gradually absorbed, and the action time can be lengthened.
[0040]
Furthermore, in claim 4, since the vibration energy absorbing means is configured by using a damper member, the relative displacement between the first structure and the second structure is absorbed by the damping force, and a simple configuration is achieved. The vibration energy between the first and second structures can be effectively absorbed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional front view of the overall configuration of a connection structure showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 showing an embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional plan view of a main part of a connection structure showing an embodiment of the present invention.
FIG. 4 is a cross-sectional front view of the overall configuration of a connection structure showing another embodiment of the present invention.
[Explanation of symbols]
10, 10a Connection structure 12 Center core (first structure)
14 Perimeter building (second structure)
14a Top 20 Collision buffering means 22 Collision receiving plate 24 Spring 26 Damper 30 Vibration energy absorbing means 32 Constant damper 40 Hat truss (rigid buttocks)
42 Sliding material

Claims (4)

質量や剛性等の構造特性が相異なり、かつ、互いに近接して構築された第1構造物および第2構造物を備え、地震や風等を起因とする振動入力により揺動する双方の構造物の衝突現象を用いて制振する連結構造物の制振方法において、
上記第1構造物および上記第2構造物の少なくとも一方に衝突緩衝手段を設け、第1,第2構造物の衝突時に該衝突緩衝手段が作用して衝撃力を徐々に吸収するとともに、上記第1構造物および上記第2構造物双方を振動エネルギー吸収手段で連結し、該振動エネルギー吸収手段によって第1,第2構造物間の振動を常時吸収させるよう構成されており、
上記衝突緩衝手段は、
衝突受け板、並びに、
該衝突受け板と、上記第1構造物および上記第2構造物の少なくとも一方とを接続するばね部材、を備えており、
上記衝突受け板を質量体として所定の質量を与えておくことにより、該衝突受け板と上記ばね部材とで構成されるばね系をダイナミックダンパーとして構成したことを特徴とする連結構造物の制振方法。
Both structures having different structural characteristics such as mass and rigidity, and having a first structure and a second structure constructed close to each other, and oscillating by vibration input caused by earthquakes, winds, etc. In a vibration control method for a connected structure that uses the collision phenomenon of
Collision buffer means is provided in at least one of the first structure and the second structure, and when the first and second structures collide, the collision buffer means acts to absorb the impact force gradually and The first structure and the second structure are both connected by vibration energy absorbing means, and the vibration energy absorbing means is configured to constantly absorb vibration between the first and second structures ,
The collision buffer means is
Collision catcher, and
A spring member connecting the collision receiving plate and at least one of the first structure and the second structure;
A damping system for a connected structure, characterized in that a spring system constituted by the collision receiving plate and the spring member is configured as a dynamic damper by giving a predetermined mass using the collision receiving plate as a mass body. Method.
上記第1構造物および上記第2構造物のうち、低質量,高剛性となる一方の構造物の上端部に、高質量,低剛性となる他方の構造物の頂部を覆う剛体鍔部を設け、これら剛体鍔部と他方の構造物の頂部との間に水平方向の相対移動を許容する滑り部材を介在し、この滑り部材を介して剛体鍔部と他方の構造物との水平方向の相対移動を許容しつつ、該剛体鍔部に作用する下方への押し付け力を他方の構造物で支持することを特徴とする請求項1に示す連結構造物の制振方法。  Of the first structure and the second structure, a rigid body covering the top of the other structure having high mass and low rigidity is provided at the upper end of the one structure having low mass and high rigidity. In addition, a sliding member allowing relative movement in the horizontal direction is interposed between the rigid body collar and the top of the other structure, and the horizontal relative between the rigid body collar and the other structure is interposed via the sliding member. 2. The vibration damping method for a connected structure according to claim 1, wherein the downward pressing force acting on the rigid body collar is supported by the other structure while allowing the movement. 上記衝突緩衝手段は、ばね部材単体、または、ばね部材とダンパー部材の併用体として構成したことを特徴とする請求項1または2に記載の連結構造物の制振方法。The method for damping a connected structure according to claim 1 or 2, wherein the collision buffer means is configured as a single spring member or a combined body of a spring member and a damper member. 上記振動エネルギー吸収手段は、ダンパー部材を用いて構成したことを特徴とする請求項1または2に記載の連結構造物の制振方法。  The method for damping a connected structure according to claim 1 or 2, wherein the vibration energy absorbing means is configured using a damper member.
JP07064698A 1998-03-19 1998-03-19 Vibration control method for linked structures Expired - Fee Related JP3858432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07064698A JP3858432B2 (en) 1998-03-19 1998-03-19 Vibration control method for linked structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07064698A JP3858432B2 (en) 1998-03-19 1998-03-19 Vibration control method for linked structures

Publications (2)

Publication Number Publication Date
JPH11270175A JPH11270175A (en) 1999-10-05
JP3858432B2 true JP3858432B2 (en) 2006-12-13

Family

ID=13437634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07064698A Expired - Fee Related JP3858432B2 (en) 1998-03-19 1998-03-19 Vibration control method for linked structures

Country Status (1)

Country Link
JP (1) JP3858432B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700816B2 (en) * 2001-01-17 2011-06-15 株式会社竹中工務店 Building construction method and seismic control building with excellent seismic safety
JP4572535B2 (en) * 2003-12-22 2010-11-04 株式会社大林組 Building seismic control structure
JP4706281B2 (en) * 2005-03-02 2011-06-22 株式会社大林組 Building seismic control structure
JP4802516B2 (en) * 2005-03-02 2011-10-26 株式会社大林組 Building seismic control structure
JP5076709B2 (en) * 2007-06-12 2012-11-21 株式会社大林組 Seismic control building, control method
JP5422905B2 (en) * 2008-04-09 2014-02-19 株式会社大林組 Damping structure
JP5294683B2 (en) * 2008-04-30 2013-09-18 株式会社豊四季 Anti-sway device and vibration-proof basic structure using it
JP5320031B2 (en) * 2008-11-04 2013-10-23 株式会社大林組 Damping building
JP5240273B2 (en) * 2010-10-15 2013-07-17 株式会社大林組 Building seismic control structure
JP2013185369A (en) * 2012-03-08 2013-09-19 Aritomi Okuno Method of making structure earthquake-resistant
JP6354125B2 (en) * 2013-08-01 2018-07-11 株式会社大林組 Damping building and damping method
CN114040015B (en) * 2021-10-20 2023-12-12 北京珞安科技有限责任公司 Intelligent edge internet of things proxy device with protection structure

Also Published As

Publication number Publication date
JPH11270175A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3858432B2 (en) Vibration control method for linked structures
JP3828695B2 (en) Seismic control wall of a three-story house
JP2877293B2 (en) Outer tube supported steel chimney
JP3861430B2 (en) Vibration control method for linked structures
JP6420012B1 (en) Passive vibration control device for buildings
JP2004285599A (en) Vibration control structure of structure
JP2842159B2 (en) Bending deformation control type vibration control structure
JP2919303B2 (en) Collision mitigation damping structure, building using the structure, and damping method
JP4788134B2 (en) Damping structure of structure
JP7037320B2 (en) Vibration control building
JP5251936B2 (en) Damping structure of structure
JP2008297727A (en) Seismic reinforcing structure of existing building
JPH08277650A (en) Bending deformation control type vibration damping structure
JP3228180B2 (en) Damping structure
JP3463085B2 (en) Seismic building
JP4660722B2 (en) Vibration control device
JP2601439Y2 (en) Brace equipment
JP7286904B2 (en) building
JPH0860895A (en) Bending-deflection control type earthquake control frame
JP7363000B2 (en) building
JP3957255B2 (en) Vibration control rack
JP2000345738A (en) Inter-building collision cushioning method
JP4674838B2 (en) Vibration control mechanism
JP2001227191A (en) Damping apparatus
JP2023169597A (en) Seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140929

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees