JP3957255B2 - Vibration control rack - Google Patents

Vibration control rack Download PDF

Info

Publication number
JP3957255B2
JP3957255B2 JP2000264933A JP2000264933A JP3957255B2 JP 3957255 B2 JP3957255 B2 JP 3957255B2 JP 2000264933 A JP2000264933 A JP 2000264933A JP 2000264933 A JP2000264933 A JP 2000264933A JP 3957255 B2 JP3957255 B2 JP 3957255B2
Authority
JP
Japan
Prior art keywords
rack
column
joint member
vibration control
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000264933A
Other languages
Japanese (ja)
Other versions
JP2002068432A (en
Inventor
修 福田
隆宏 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2000264933A priority Critical patent/JP3957255B2/en
Publication of JP2002068432A publication Critical patent/JP2002068432A/en
Application granted granted Critical
Publication of JP3957255B2 publication Critical patent/JP3957255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の利用分野】
この発明は、自動倉庫等に用いる制震ラックに関する。
【0002】
【従来技術】
自動倉庫等に用いるラックには耐震性が要求され、特に高層になるほど、耐震性への要求は厳しくなる。そして必要な耐震性に合わせて柱等の剛性を高めると、柱の太さが著しく増す。
【0003】
【発明の課題】
この発明の課題は、地震時などに柱に働く水平力を軽減して、柱を細くできるようにすることにある(請求項1〜4)。
【0004】
【発明の構成】
この発明は、左右方向に沿って各2本の柱を備えた一対のラックユニットを結合し、左右方向外側の柱と左右方向内側の柱とでラックを支持すると共に、ラックの各柱を少なくとも高さ方向の中間よりも下側で分割し、前記分割部で、上側の柱部材の上方向への移動を許容するジョイント部材で、上下の柱部材を接続し、かつ前記ジョイント部材は、地震時に上側の柱部材に働く引き抜き力で変形して上側の柱部材の上方向への移動を許容し、上側の柱部材に圧縮力が働くと元の形状に戻って上側の柱部材を元の位置に復帰させ、この間の変形により地震エネルギーを吸収する。そして前記外側の柱部材間を接続するジョ イント部材の上側の柱部材の上方向移動への抵抗を、前記内側の柱部材間を接続するジョイント部材の上側の柱部材の上方向移動への抵抗よりも大きくする (請求項1)。
またこの発明では、上下の柱部材を接続するジョイント部材は、地震時に上側の柱部材に引き抜き力が作用すると、引き抜き力が該ジョイント部材の降伏点を超える時点で変形を開始し、圧縮力が加わると元の形状に戻り、この間の変形により地震エネルギーを吸収する。そして前記外側の柱部材間を接続するジョイント部材の降伏点を、前記内側の柱部材間を接続するジョイント部材の降伏点よりも大きくする(請求項2)。なお以下で混同する恐れが無い場合、制震ラックを単にラックと呼ぶ。
【0005】
好ましくは、水平材を前記柱に取り付けた位置で、前記柱を上下に分割して、前記ジョイント部材で接続する(請求項3)。この水平材は、例えばラックの水平構面をなすものとする。
また好ましくは、ラックの柱を高さ方向の中間よりも上部でも分割すると共に、該上部の分割部でも、上側の柱部材の上方向への移動を許容するジョイント部材で、前記上下の柱部材を接続する(請求項4)。
【0006】
【発明の作用と効果】
この発明では、制震ラックの上下の柱部材を、上側の柱部材の上方向への移動を許容するジョイント部材で接続する。このため地震時に制震ラックに加わる力は、上側の柱部材が上方向に移動することで逃がすことができる。即ち地震時に上側の柱部材に引き抜き力が作用すると、例えば降伏点以上の力で上下の柱部材を接続するジョイント部材が変形を開始するなどにより、上側の柱部材の上方向への移動を許容し、上側の柱部材に圧縮力が働くと、元の形に復帰する。そしてこの間の変形により地震エネルギーを吸収する。次に地震時に制震ラックに働く曲げモーメントは、ラックの高さ方向の中間よりもやや上側でほぼ0となる場所(反曲点)があり、この場所から下に下がるほど曲げモーメントが大きく作用する。そこでラックの高さ方向中間よりも下側でラックの柱を上下に分割し、そこに前記のジョイント部材を設けると、効率的に制震できる。この結果、地震時等に柱に働く水平力を軽減し、柱を細くできる(請求項1)。さらにこの発明では、一対のラックユニットを結合する。この場合、外側の柱には内側の柱よりも大きな曲げモーメントが働く。そこで外側の柱部材間を接続するジョイント部材の降伏点などを、前記内側の柱部材間を接続するジョイント部材の降伏点などよりも大きくする。
【0007】
好ましくは前記のジョイント部材を、柱間を水平方向に接続する水平材の位置で設ける。この位置であればジョイント部材の取り付けや、柱の上下への分割が容易になる。
高層のラックの場合、ラックの上層でも地震時に大きな曲げモーメントが加わる。そこでラックの柱を高さ方向の中間よりも上部でも分割し、柱を高さ方向に合計少なくとも3本以上に分割する。そして上部の分割部でも、上下の柱部材を、上側の柱部材の上方向移動を許容するジョイント部材で接続する。上側の分割部を設ける高さは、反曲点よりも上側とすることが好ましい。このようにすれば高層のラックでも、水平力を軽減でき、柱を細くできる。
【0008】
【実施例】
図1〜図9に実施例を示す。図1に制震ラック2の短辺方向の構造を示すと、制震ラック2は、一対のラックユニット3,4を結合したものである。6〜9は柱で、このうち両端の柱6,7は対称な等しい柱で、内側の柱8,9も同様に対称な等しい柱である。制震ラック2は、自動倉庫のラック等として用い、長辺方向に柱6〜9を多数本配置して短辺方向よりも長く構成する。ここでは一対のラックユニット3,4を連結した制震ラック2を示すが、単一のラックユニットのみで制震ラックを構成しても良い。また制震ラック2の両側にはスタッカークレーンの走行レールなどを敷設して、自動倉庫とする。
【0009】
10〜24は水平構面で、このうち水平構面24は頂部でラックユニット3,4を連結し、水平構面10〜23はラックユニット3,4間を高さ方向の中間で接続する。各水平構面10〜24は水平材と斜材とで構成されたトラス構造をしており、柱6〜9に水平材が結合されている。上下の柱6,8や柱9,7も、同様にトラス構造をしている。
【0010】
地震時に、制震ラック2に働く曲げモーメントの分布を図1の右側に示す。ラックの高さ方向の中間よりもやや上側に、地震時の曲げモーメントがほぼ0となり、地震時の変形の節となる反曲点Pが存在する。そして反曲点Pの高さは、一般にラック2の高さの1/2以上である。制震ジョイントの取付位置は反曲点Pよりも低い位置とし、曲げモーメントの大きい位置に取り付けることが好ましいため、ラック2の高さ方向の中間よりも下側に設ける。好ましい取付位置は、ラック2の高さの50%以下の位置で、水平構面10〜15を設けた位置である。ラック2の高さが増すと、ラック2の上部での曲げモーメントも大きくなる。このような曲げモーメントを吸収するため、水平構面20〜23のようにラック2の高さの1/2以上の高さの位置で、特に反曲点Pよりも高い位置で、上部の制震ジョイントを取り付けるのが好ましい。上部の制震ジョイントの取付位置は、水平構面20〜23を設けた位置が好ましい。
【0011】
図2に制震ジョイント31,32の取り付けを示す。28は水平構面に設けた水平材で、25,26は柱部材で、前記の柱6〜9を上下に分割したものである。なお柱6,7側と、柱8,9側とでは、柱部材26や柱部材25の太さ等が異なることもある。30は斜材で、柱6,8や柱7,9を用いてトラス構造にするためのものである。制震ジョイント31,32には、外側の制震ジョイント31と内側の制震ジョイント32の2つの種類がある。実施例では、柱部材25,26の接続部で、同じ制震ジョイントを上下対称に配置して、同じ力で制震ジョイントが上下対称に変形するようにする。
【0012】
図2の下部に示すように、制震ラック2に、例えばラックユニット4の右端を中心とする曲げモーメントが加わっている場合、柱6に加わる曲げモーメントは、柱8,9に加わる曲げモーメントの合計値の約2倍となる。このため制震ジョイント31が柱部材25の上方移動に対して与える抵抗は、制震ジョイント32の抵抗の約4倍とすることが好ましい。実施例では、制震ジョイント31,32に、金属の塑性変形を用いるので、外側の制震ジョイント31の降伏点を内側の制震ジョイント32の降伏点の約4倍とすることが好ましい。このようにラックユニット32,4の外側柱6,7の制震ジョイントの柱部材の上移動への抵抗を、ラックユニット3,4の内側柱8,9の制震ジョイントの抵抗よりも大きくし、好ましくは約4倍とする。
【0013】
図3〜図5に、制震ジョイント31の構造の例を示す。なお前記のように、制震ジョイント32は制震ジョイント31の約1/4の抵抗で、上側の柱部材の上方移動を許容する。そして制震ジョイント32も、制震ジョイント31も、構造自体が同等で、図3〜図5では、制震ジョイント31を例に図示する。
【0014】
34は制震ジョイントの中央のフランジ部で、ここに柱部材25,26を例えば溶接で固着し、その両外側に変形部36を設け、変形部36の外側の制震ジョイントの両端部に接続部38を設けて、上下の制震ジョイントを例えばボルト40とナット42とで固着する。
【0015】
変形部36は、制震ジョイントの降伏点を超える引き抜き力が作用した際に変形する部分である。地震時に働く水平力は、制震ラックを曲げ変形させようとする曲げモーメントとして働き、制震ラックの一端には圧縮力として作用し、他端には引き抜き力として作用する。そしてこの引き抜き力が変形部36の降伏点を超えると、制震ラックは上下に開いて塑性変形する。
【0016】
次にフランジ部34では、柱部材25,26を固着してあるため、変形は起こり難い。接続部38では実施例の場合、制震ジョイントの肉厚を増して強度を増してある。そこで変形部36で変形が生じることになる。
【0017】
ここでは変形部36の肉厚を接続部38よりも薄くすることにより変形を起こさせるようにしたが、変形部36の幅を狭くしたり、切れ込みや穴等を設けたりしても良い。また制震ジョイントには、変形部の塑性変形を用いたもの以外に、ダンパーやバネ、あるいは粘弾性材料の変形などを用いたものでも良い。
【0018】
地震時に上側の柱部材25に引き抜き力が作用すると、その力が変形部36の降伏点を超える時点で、制震ジョイントは上下対称に開き始め、図5の右側の状態から左側の状態に変化する。これによって引き抜き力を逃がすと共に、次に圧縮力が加わった時点で、制震ジョイントは図5の右側の状態へと圧縮されて戻り、この間の塑性変形により地震エネルギーを吸収する。そして地震が終了すると、制震ジョイントは図5右側の閉じた状態に戻る。これは開閉を繰り返す間、平均して制震ラック2の自重分だけ、制震ジョイントは閉じる方向への力を受けるからである。
【0019】
図6〜図9に、実施例の制震ラックの試験結果を示す。比較例として、制震ジョイント31,32に代えて、単なる平板からなるフランジに上下の柱部材を溶接し、フランジ間をボルト止めしたものを用いた。地震波として十勝沖地震(震度5〜6程度)に相当するものを加えた場合の応答をシミュレーションすると、実施例では高さ50mのラックでラック最上部の最大揺れ幅は約77cm、これに対して比較例では87cmであった。
【0020】
次に図6に示すサイクルの頂部水平変位を、制震ラックと比較例のラックとに加え、実際の応答を測定して、シミュレーション値と比較した。制震ジョイントは、例えば図1の水平構面10,11に対応する位置に設けた。図7は、比較例での頂部の水平変位と頂部水平荷重との関係を示している。なお図7は、図6のサイクル2までの試験結果である。図8は、実施例でのサイクル2までの頂部水平変位と頂部水平荷重との関係を示している。図9は図8に続いてサイクル3の振動を加えた際の、実施例での頂部水平変位と頂部水平荷重との関係を示している。
【0021】
比較例では頂部の水平変位が増すほど、頂部の水平荷重が増す。実施例ではこれに対して、頂部水平変位を大きくしても、頂部の水平荷重は頭打ちで増加しなくなり、水平力を制限できた。また図9でのヒステリシスループの面積は、地震エネルギーの吸収を表している。
【0022】
図10に、制震ジョイント31間にライナー50を介在させた変形例を示す。なお図10では各部材を平面視で示し、上下の制震ジョイント31,31とその間のライナー50の、上下方向の重ね合わせの関係を示している。図10の上部には、上側の制震ジョイント31の表面(上側の柱部材との接続面)が見え、下部には下側の制震ジョイント31の裏面が見えている。ライナー50は板状部材で、例えば普通鋼製である。ライナー50は図10の上下で非対称な形状をしており、図10でのライナー50の上側がラックの外側に、下側がラックの内側に位置するように用いる。
【0023】
ライナー50には、カット部52と、変形部対応部54と、ボルト穴56とを設け、ボルト穴56は制震ジョイント31のボルト穴58と連通するように設けてある。カット部52は、制震ジョイントのフランジ部に対応する位置で、ラックの外側を向いた大きな切り欠きからなる。変形部対応部54は、制震ジョイント31の変形部36の形状に合わせた切り欠きで、制震ジョイント31側で変形部に切り欠きを設けず肉厚を薄くする場合等は、変形部対応部54は不要である。
【0024】
ライナー50は、図1のラック2での外側の柱6,7の制震ジョイント31、31間に用い、内側の柱8,9の制震ジョイント32側には設けなくても良い。仮に内側の柱8,9の制震ジョイント32側にも設ける場合、図10での上下双方にカット部を奥行きがより小さな切り欠きとして設け、ライナー50の中央部で図10の上下方向での幅を、他の部分に比べ狭くする。
【0025】
図1のラック2で、地震等により水平力が加わると、一方の柱には圧縮力が、他方の柱には引き抜き力が加わり、引き抜き力により制震ジョイント31の変形部36が変形して、上側の柱部材が上方へ移動する。この時、圧縮力が加わった側の柱では、上側の柱部材がラックの外側へ僅かに回動すれば、水平力をより効果的に逃がすことができる。ここで制震ジョイント31,31間にライナー50を設け、カット部52がラックの外側を向いていると、上側の柱部材がラックの外側へ回動するのが容易になる。このためラックの、水平力への耐久性がさらに向上する。
【0026】
なおライナー50は、上下の制震ジョイント間に設ける板状の部材で、両端付近に上下の制震ジョイントとの取り付け部を設け、その間のライナー中央部を、ラックの外側への上側の柱部材の回動を、内側への回動よりも容易にするように構成した部材であれば良い。例えば、カット部52に変えて、カット部52の部分を肉薄にしても良い。またラックの上部と下部の各々に制震ジョイントを設ける場合、上側の制震ジョイントにはライナーを設けなくても良い。さらにライナーは全く設けなくても良い。
【0027】
実施例では金属の降伏点を利用した制震ジョイントを示したが、これに限るものではなく、ダンパーやバネ等を用いたものでも良く、上下の柱部材の接続で上側の柱部材の上方向移動を許容し、水平方向への相対移動を許容しない部材であればよい。また実施例では一対のラックユニット3,4を連結したものを示したが、これに限るものではない。実施例の制震ジョイントでは、上下のジョイントが対称変形する必要があるため、基礎と柱6〜9との接続部には制震ジョイントを設けることができない。そこで制震ジョイントの好ましい取付位置は、実施例の場合、ラックの高さの1/2以下で、基礎よりも上の水平構面がある位置となる。ただしバネやダンパーを用いた制震ジョイントでは、基礎へのラックの取り付け部からラックの1/2の高さまでの高さ位置で、水平構面がある位置が、取り付けに好ましい。
【図面の簡単な説明】
【図1】 実施例の制震ラックを示す正面図
【図2】 実施例の制震ラックへの水平方向に沿った曲げモーメントの分布を示す図
【図3】 実施例で用いた制震ジョイントの平面図
【図4】 実施例の制震ジョイントの側面図
【図5】 実施例での制震ジョイントの塑性変形による振動の吸収を示す図で、左側が塑性変形後の状態を、右側が塑性変形前の状態を示す
【図6】 制震ラックに加えた頂部水平変位を示す特性図
【図7】 従来例のラックで、サイクル2での頂部水平変位と頂部水平荷重との関係を示す特性図
【図8】 実施例の制震ラックで、サイクル2での頂部水平変位と頂部水平荷重との関係を示す特性図
【図9】 実施例の制震ラックで、サイクル3での頂部水平変位と頂部水平荷重との関係を示す特性図
【図10】 制震ジョイントの間にライナーを介在させた変形例での、上側の制震ジョイントとライナーと下側の制震ジョイントとの関係を示す図
【符号の説明】
2 制震ラック
3,4 ラックユニット
6〜9 柱
10〜24 水平構面
25,26 柱部材
28 水平材
30 斜材
31,32 制震ジョイント
34 フランジ部
36 変形部
38 接続部
40 ボルト
42 ナット
50 ライナー
52 カット部
54 変形部対応部
56,58 ボルト穴
[0001]
[Field of the Invention]
The present invention relates to a vibration control rack used for an automatic warehouse or the like.
[0002]
[Prior art]
Racks used in automatic warehouses and the like are required to have earthquake resistance, and the requirement for earthquake resistance becomes more severe as the height increases. And if the rigidity of a pillar etc. is raised according to the required earthquake resistance, the thickness of a pillar will increase remarkably.
[0003]
[Problems of the Invention]
An object of the present invention is to reduce a horizontal force acting on a column during an earthquake or the like so that the column can be narrowed (claims 1 to 4).
[0004]
[Structure of the invention]
The present invention combines a pair of rack units each having two columns along the left-right direction, supports the rack with a left-right outer column and a left-right inner column, and at least each rack column divided in the height direction of the lower side of the intermediate, in the divided portion, a joint member to allow upward movement of the upper column member, connecting the upper and lower column members, and said joint member, earthquakes Sometimes the upper column member is deformed by the pulling force acting on the upper column member, allowing the upper column member to move upward. When the compression force is applied to the upper column member, it returns to its original shape and the upper column member is moved back to the original shape. It returns to its position and absorbs seismic energy by deformation during this time . And resistance of the resistance to upward movement of the upper column member of joints member for connecting the outer pillar member, the upward movement of the upper column members of the joint member that connects the inner pillar member larger than (claim 1).
In this invention, when the pulling force acts on the upper column member during an earthquake, the joint member connecting the upper and lower column members starts to deform when the pulling force exceeds the yield point of the joint member , and the compressive force is When added, it returns to its original shape and absorbs seismic energy through deformation during this time . And the yield point of the joint member which connects between the said outer column members is made larger than the yield point of the joint member which connects between the said inner column members (Claim 2). In the following, if there is no risk of confusion, the seismic control rack is simply called a rack.
[0005]
Preferably, at a position where a horizontal member is attached to the pillar, the pillar is divided vertically and connected by the joint member. For example, the horizontal member forms a horizontal plane of the rack.
Further preferably, the upper and lower column members are divided by a joint member that divides the rack column at an upper portion from the middle in the height direction and also allows the upper column member to move upward in the upper divided portion. Are connected (claim 4).
[0006]
[Operation and effect of the invention]
In this invention, the upper and lower column members of the vibration control rack are connected by a joint member that allows the upper column member to move upward. For this reason, the force applied to the damping rack during an earthquake can be released by the upper column member moving upward. In other words, if a pulling force acts on the upper column member during an earthquake, the upper column member is allowed to move upward, for example, when the joint member that connects the upper and lower column members starts to deform with a force higher than the yield point. When the compression force is applied to the upper column member, the original shape is restored. And seismic energy is absorbed by the deformation in the meantime. Next, there is a place where the bending moment acting on the damping rack at the time of an earthquake is almost 0 (an inflection point) slightly above the middle in the height direction of the rack, and the bending moment increases as it goes down from this place. To do. Therefore, if the rack column is divided vertically below the middle of the rack in the height direction and the joint member is provided there, the vibration can be effectively controlled. As a result, the horizontal force acting on the column during an earthquake or the like can be reduced, and the column can be narrowed (Claim 1). Furthermore, in the present invention, a pair of rack units are coupled. In this case, a larger bending moment acts on the outer column than on the inner column. Therefore, the yield point of the joint member connecting the outer column members is made larger than the yield point of the joint member connecting the inner column members.
[0007]
Preferably, the joint member is provided at a position of a horizontal member that connects the columns in the horizontal direction. If it is this position, attachment of a joint member and the division | segmentation to the upper and lower sides of a pillar will become easy.
In the case of a high-rise rack, a large bending moment is applied even in the upper layer of the rack during an earthquake. Therefore, the rack columns are divided even above the middle in the height direction, and the columns are divided into a total of at least three in the height direction. In the upper divided portion, the upper and lower column members are connected by a joint member that allows the upper column member to move upward. The height at which the upper divided portion is provided is preferably higher than the inflection point. In this way, even in a high-rise rack, the horizontal force can be reduced and the pillars can be made thinner.
[0008]
【Example】
1 to 9 show an embodiment. FIG. 1 shows the structure of the damping rack 2 in the short side direction. The damping rack 2 is a combination of a pair of rack units 3 and 4. 6 to 9 are pillars, of which the pillars 6 and 7 at both ends are the same symmetrical pillars, and the inner pillars 8 and 9 are the same symmetrical symmetrical pillars as well. The vibration control rack 2 is used as an automatic warehouse rack or the like, and is configured to be longer than the short side direction by arranging a large number of columns 6 to 9 in the long side direction. Here, the seismic control rack 2 in which a pair of rack units 3 and 4 are connected is shown, but the seismic control rack may be composed of only a single rack unit. In addition, stacking rails for stacker cranes will be installed on both sides of the vibration control rack 2 to create an automatic warehouse.
[0009]
Reference numerals 10 to 24 denote horizontal construction surfaces, of which the horizontal construction surface 24 connects the rack units 3 and 4 at the top, and the horizontal construction surfaces 10 to 23 connect the rack units 3 and 4 in the middle in the height direction. Each horizontal construction surface 10 to 24 has a truss structure composed of a horizontal material and a diagonal material, and the horizontal material is coupled to the columns 6 to 9. Similarly, the upper and lower columns 6 and 8 and the columns 9 and 7 have a truss structure.
[0010]
The distribution of the bending moment acting on the damping rack 2 during an earthquake is shown on the right side of FIG. A bending moment at the time of an earthquake is almost 0 and an inflection point P that becomes a node of deformation at the time of an earthquake exists slightly above the middle in the height direction of the rack. The height of the inflection point P is generally ½ or more of the height of the rack 2. The mounting position of the damping joint is lower than the inflection point P, and it is preferable to mount it at a position where the bending moment is large, so it is provided below the middle of the rack 2 in the height direction. A preferred mounting position is a position where the horizontal structural surfaces 10 to 15 are provided at a position of 50% or less of the height of the rack 2. As the height of the rack 2 increases, the bending moment at the top of the rack 2 also increases. In order to absorb such a bending moment, the upper control is performed at a position that is at least a half of the height of the rack 2 as in the horizontal planes 20 to 23, particularly at a position higher than the inflection point P. It is preferable to install a seismic joint. The mounting position of the upper vibration control joint is preferably a position where the horizontal structural surfaces 20 to 23 are provided.
[0011]
FIG. 2 shows how the vibration control joints 31 and 32 are attached. 28 is a horizontal member provided on the horizontal construction surface, 25 and 26 are pillar members, and the pillars 6 to 9 are divided into upper and lower parts. In addition, the thickness etc. of the column member 26 and the column member 25 may differ in the column 6 and 7 side and the column 8 and 9 side. Reference numeral 30 denotes an oblique material for forming a truss structure using the columns 6 and 8 and the columns 7 and 9. There are two types of damping joints 31, 32, an outer damping joint 31 and an inner damping joint 32. In the embodiment, the same vibration control joint is arranged vertically symmetrically at the connecting portion of the column members 25 and 26 so that the vibration control joint is deformed symmetrically with the same force.
[0012]
As shown in the lower part of FIG. 2, when a bending moment is applied to the damping rack 2 around the right end of the rack unit 4, for example, the bending moment applied to the column 6 is the bending moment applied to the columns 8 and 9. It is about twice the total value. For this reason, the resistance given to the upward movement of the column member 25 by the damping joint 31 is preferably about four times the resistance of the damping joint 32. In the embodiment, since plastic deformation of metal is used for the vibration control joints 31 and 32, the yield point of the outer vibration control joint 31 is preferably about four times the yield point of the inner vibration control joint 32. In this way, the resistance to the upward movement of the column members of the vibration control joints of the outer columns 6 and 7 of the rack units 32 and 4 is made larger than the resistance of the vibration control joints of the inner columns 8 and 9 of the rack units 3 and 4. , Preferably about 4 times.
[0013]
3 to 5 show examples of the structure of the vibration control joint 31. FIG. As described above, the vibration control joint 32 allows the upper column member to move upward with a resistance of about ¼ that of the vibration control joint 31. The structures of the vibration control joint 32 and the vibration control joint 31 are the same, and FIG. 3 to FIG. 5 illustrate the vibration control joint 31 as an example.
[0014]
Reference numeral 34 denotes a flange portion at the center of the vibration control joint. The column members 25 and 26 are fixed thereto by welding, for example, and deformed portions 36 are provided on both outer sides thereof, which are connected to both ends of the vibration control joint outside the deformable portion 36. The part 38 is provided, and the upper and lower vibration control joints are fixed by, for example, bolts 40 and nuts 42.
[0015]
The deformation part 36 is a part that is deformed when a pulling force exceeding the yield point of the vibration control joint is applied. The horizontal force that acts during an earthquake acts as a bending moment for bending the damping rack, acting as a compressive force at one end of the damping rack and acting as a pulling force at the other end. When the pulling force exceeds the yield point of the deforming portion 36, the vibration control rack opens up and down and plastically deforms.
[0016]
Next, in the flange portion 34, since the column members 25 and 26 are fixed, deformation hardly occurs. In the case of the embodiment, the connecting portion 38 is increased in strength by increasing the thickness of the damping joint. Therefore, deformation occurs in the deformation portion 36.
[0017]
Here, the deformation is caused by making the thickness of the deforming portion 36 thinner than the connecting portion 38, but the width of the deforming portion 36 may be narrowed, or a notch or a hole may be provided. Further, the damping joint may be one using a damper, a spring, or a deformation of a viscoelastic material in addition to the one using plastic deformation of the deforming portion.
[0018]
When a pulling force is applied to the upper column member 25 during an earthquake, when the force exceeds the yield point of the deforming portion 36, the vibration control joint starts to open symmetrically and changes from the right side state to the left side state in FIG. To do. As a result, the pull-out force is released, and at the time when the compressive force is applied next, the vibration control joint is compressed and returned to the state on the right side of FIG. 5, and the seismic energy is absorbed by the plastic deformation during this time. When the earthquake ends, the vibration control joint returns to the closed state on the right side of FIG. This is because, during repeated opening and closing, the damping joint receives a force in the closing direction by the weight of the damping rack 2 on average.
[0019]
6 to 9 show the test results of the vibration control rack of the example. As a comparative example, in place of the vibration control joints 31 and 32, the upper and lower column members were welded to a flange made of a simple flat plate, and a bolt between the flanges was used. When a response corresponding to a Tokachi-oki earthquake (seismic intensity of about 5 to 6) is added as a seismic wave, the maximum swing width at the top of the rack is about 77 cm in a 50 m high rack in this example. In the comparative example, it was 87 cm.
[0020]
Next, the top horizontal displacement of the cycle shown in FIG. 6 was added to the vibration control rack and the rack of the comparative example, and the actual response was measured and compared with the simulation value. The vibration control joint is provided at a position corresponding to, for example, the horizontal surfaces 10 and 11 in FIG. FIG. 7 shows the relationship between the top horizontal displacement and the top horizontal load in the comparative example. FIG. 7 shows the test results up to cycle 2 in FIG. FIG. 8 shows the relationship between the top horizontal displacement and the top horizontal load up to cycle 2 in the example. FIG. 9 shows the relationship between the top horizontal displacement and the top horizontal load in the embodiment when the vibration of cycle 3 is applied following FIG.
[0021]
In the comparative example, the horizontal load at the top increases as the horizontal displacement at the top increases. In contrast, in the example, even if the top horizontal displacement was increased, the horizontal load at the top did not increase due to the peak, and the horizontal force could be limited. The area of the hysteresis loop in FIG. 9 represents the absorption of seismic energy.
[0022]
FIG. 10 shows a modification in which a liner 50 is interposed between the vibration control joints 31. In addition, in FIG. 10, each member is shown by planar view and the up-and-down superimposition relation of the upper and lower damping joints 31 and 31 and the liner 50 between them is shown. The upper surface of FIG. 10 shows the surface of the upper vibration control joint 31 (the connection surface with the upper column member), and the lower surface shows the back surface of the lower vibration control joint 31. The liner 50 is a plate-like member, for example, made of ordinary steel. The liner 50 has an asymmetric shape in the vertical direction of FIG. 10, and is used so that the upper side of the liner 50 in FIG. 10 is located outside the rack and the lower side is located inside the rack.
[0023]
The liner 50 is provided with a cut portion 52, a deformable portion corresponding portion 54, and a bolt hole 56, and the bolt hole 56 is provided so as to communicate with the bolt hole 58 of the vibration control joint 31. The cut portion 52 is a large notch facing the outside of the rack at a position corresponding to the flange portion of the vibration control joint. The deformable part corresponding part 54 is a notch that matches the shape of the deformed part 36 of the vibration control joint 31. If the wall thickness is reduced without providing a cutout in the deformed part on the vibration control joint 31 side, the deformed part corresponding part 54 is compatible. The part 54 is not necessary.
[0024]
The liner 50 is used between the vibration control joints 31 and 31 of the outer columns 6 and 7 in the rack 2 of FIG. 1 and may not be provided on the vibration control joint 32 side of the inner columns 8 and 9. If the inner pillars 8 and 9 are also provided on the vibration control joint 32 side, the cut portions are provided as notches with smaller depths on both the upper and lower sides in FIG. Make the width narrower than other parts.
[0025]
In the rack 2 of FIG. 1, when a horizontal force is applied due to an earthquake or the like, a compressive force is applied to one column and a pulling force is applied to the other column, and the deforming portion 36 of the damping joint 31 is deformed by the pulling force. The upper column member moves upward. At this time, in the column on which the compressive force is applied, if the upper column member is slightly rotated to the outside of the rack, the horizontal force can be released more effectively. Here, if the liner 50 is provided between the vibration control joints 31 and 31 and the cut portion 52 faces the outside of the rack, the upper column member can be easily rotated to the outside of the rack. This further improves the durability of the rack against horizontal force.
[0026]
The liner 50 is a plate-like member provided between the upper and lower vibration control joints, and is provided with attachment portions for the upper and lower vibration control joints near both ends, and the center part of the liner between them is the upper column member to the outside of the rack. Any member may be used as long as the rotation is easier than the inward rotation. For example, instead of the cut portion 52, the portion of the cut portion 52 may be thinned. Moreover, when providing a vibration control joint at each of the upper part and the lower part of the rack, it is not necessary to provide a liner at the upper vibration control joint. Furthermore, it is not necessary to provide a liner at all.
[0027]
In the embodiment, a vibration control joint using a metal yield point is shown, but the present invention is not limited to this, and a damper, a spring, or the like may be used. Any member that allows movement and does not allow relative movement in the horizontal direction may be used. In the embodiment, the pair of rack units 3 and 4 are connected. However, the present invention is not limited to this. In the vibration control joint of the embodiment, since the upper and lower joints need to be symmetrically deformed, the vibration control joint cannot be provided at the connection portion between the foundation and the columns 6 to 9. Therefore, in the case of the embodiment, a preferable mounting position of the vibration control joint is a position having a horizontal surface above the foundation that is ½ or less of the height of the rack. However, in a vibration control joint using a spring or a damper, a position with a horizontal surface at a height position from a rack mounting portion to the foundation to a height of 1/2 the rack is preferable for mounting.
[Brief description of the drawings]
FIG. 1 is a front view showing a vibration control rack of an embodiment. FIG. 2 is a diagram showing a distribution of bending moment along the horizontal direction to the vibration control rack of the embodiment. FIG. 3 is a vibration control joint used in the embodiment. [Fig. 4] Side view of the vibration control joint of the embodiment [Fig. 5] A diagram showing the absorption of vibration due to plastic deformation of the vibration control joint in the embodiment, the left side is the state after plastic deformation, the right side is Fig. 6 shows the state before plastic deformation. Fig. 6 is a characteristic diagram showing the top horizontal displacement applied to the vibration control rack. Fig. 7 shows the relationship between the top horizontal displacement and the top horizontal load in cycle 2 in the conventional rack. Characteristic diagram [Fig. 8] Characteristic diagram showing the relationship between top horizontal displacement and top horizontal load in cycle 2 in the vibration control rack of the example [Fig. 9] Top horizontal in cycle 3 in the vibration control rack of the example Characteristic diagram showing the relationship between displacement and top horizontal load [Fig. 10] Diagram showing the relationship between the upper damping joint and the liner and lower damping joint in a modified example with a liner interposed between them.
2 Damping racks 3 and 4 Rack units 6 to 9 Columns 10 to 24 Horizontal construction surfaces 25 and 26 Column members 28 Horizontal members 30 Diagonal members 31 and 32 Damping joints 34 Flange portions 36 Deformation portions 38 Connection portions 40 Bolts 42 Nuts 50 Liner 52 Cut part 54 Deformed part corresponding part 56, 58 Bolt hole

Claims (4)

左右方向に沿って各2本の柱を備えた一対のラックユニットを結合し、左右方向外側の柱と左右方向内側の柱とでラックを支持すると共に、
ラックの各柱を少なくとも高さ方向の中間よりも下側で分割し、前記分割部で、上側の柱部材の上方向への移動を許容するジョイント部材で、上下の柱部材を接続し、かつ前記ジョイント部材は、地震時に上側の柱部材に働く引き抜き力で変形して上側の柱部材の上方向への移動を許容し、上側の柱部材に圧縮力が働くと元の形状に戻って上側の柱部材を元の位置に復帰させ、この間の変形により地震エネルギーを吸収するものであり、
さらに前記外側の柱部材間を接続するジョイント部材の上側の柱部材の上方向移動への抵抗を、前記内側の柱部材間を接続するジョイント部材の上側の柱部材の上方向移動への抵抗よりも大きくした、制震ラック。
A pair of rack units each having two columns along the left-right direction are combined, and the rack is supported by the left-right outer column and the left-right inner column,
Dividing each column of the rack at least below the middle in the height direction, and connecting the upper and lower column members with a joint member that allows the upper column member to move upward in the divided portion; and The joint member is deformed by the pulling force acting on the upper column member in the event of an earthquake and allows upward movement of the upper column member, and when the compression force acts on the upper column member, it returns to its original shape and moves upward. to return the pillar member to the original position state, and are not to absorb seismic energy through this period of deformation,
Further, the resistance to the upward movement of the upper column member of the joint member connecting the outer column members is determined from the resistance to the upward movement of the upper column member of the joint member connecting the inner column members. An anti-seismic rack that is also larger .
左右方向に沿って各2本の柱を備えた一対のラックユニットを結合し、左右方向外側の柱と左右方向内側の柱とでラックを支持すると共に、
ラックの各柱を少なくとも高さ方向の中間よりも下側で分割し、前記分割部で、上側の柱部材の上方向への移動を許容するジョイント部材で、上下の柱部材を接続し、かつ前記ジョイント部材は、地震時に上側の柱部材に引き抜き力が作用すると、引き抜き力が該ジョイント部材の降伏点を超える時点で変形を開始し、圧縮力が加わると元の形状に戻り、この間の変形により地震エネルギーを吸収するものであり、
さらに前記外側の柱部材間を接続するジョイント部材の降伏点を、前記内側の柱部材間を接続するジョイント部材の降伏点よりも大きくした、制震ラック。
A pair of rack units each having two columns along the left-right direction are combined, and the rack is supported by the left-right outer column and the left-right inner column,
Dividing each column of the rack at least below the middle in the height direction, and connecting the upper and lower column members with a joint member that allows the upper column member to move upward in the divided portion; and When the pulling force acts on the upper column member during an earthquake, the joint member starts to deform when the pulling force exceeds the yield point of the joint member , and when the compressive force is applied, the joint member returns to its original shape. all SANYO to absorb the seismic energy by,
Furthermore , the damping rack which made the yield point of the joint member which connects between the said outer column members larger than the yield point of the joint member which connects between the said inner column members .
水平材を前記柱に取り付けた位置で、前記柱を上下に分割して、前記ジョイント部材で接続したことを特徴とする、請求項1または2の制震ラック。The vibration control rack according to claim 1 or 2, wherein the pillar is divided into upper and lower parts and connected by the joint member at a position where a horizontal member is attached to the pillar. ラックの柱を高さ方向の中間よりも上部でも分割すると共に、該上部の分割部でも、上側の柱部材の上方向への移動を許容するジョイント部材で、前記上下の柱部材を接続したことを特徴とする、請求項1〜3のいずれかの制震ラック。The upper and lower column members are connected with a joint member that allows the upper column member to move upward, even at the upper part of the rack in the middle of the rack. The vibration control rack according to any one of claims 1 to 3, wherein
JP2000264933A 2000-09-01 2000-09-01 Vibration control rack Expired - Fee Related JP3957255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264933A JP3957255B2 (en) 2000-09-01 2000-09-01 Vibration control rack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264933A JP3957255B2 (en) 2000-09-01 2000-09-01 Vibration control rack

Publications (2)

Publication Number Publication Date
JP2002068432A JP2002068432A (en) 2002-03-08
JP3957255B2 true JP3957255B2 (en) 2007-08-15

Family

ID=18752272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264933A Expired - Fee Related JP3957255B2 (en) 2000-09-01 2000-09-01 Vibration control rack

Country Status (1)

Country Link
JP (1) JP3957255B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051271A (en) * 2002-07-17 2004-02-19 Taisei Corp Storing shelf
JP5845707B2 (en) * 2011-08-12 2016-01-20 村田機械株式会社 Automatic warehouse rack equipment

Also Published As

Publication number Publication date
JP2002068432A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
KR20130003919A (en) Damping system and construction method of that
JP2002338018A (en) Automatic high-rise warehouse
JPH09221852A (en) Vibration control device for building
JP3858432B2 (en) Vibration control method for linked structures
JP3603765B2 (en) Vibration control rack
JP3828695B2 (en) Seismic control wall of a three-story house
JP3957255B2 (en) Vibration control rack
JPH09296625A (en) Building structure having earthquake-resistant construction
JPH11343675A (en) Damping device and damping structure
JP4087026B2 (en) Superplastic metal damper
JP2003118819A (en) Vibration damping rack and rack vibration damping method
JP4964545B2 (en) Seismic control structure of a connected building
JP2008297727A (en) Seismic reinforcing structure of existing building
JP5946165B2 (en) Seismic reinforcement structure
JP4828053B2 (en) Structure damping device
JPH08277650A (en) Bending deformation control type vibration damping structure
CN219773255U (en) Variable-order metal yield damper
JP3895866B2 (en) Multistage history damper
JP2601439Y2 (en) Brace equipment
JP3463085B2 (en) Seismic building
JP2004300912A (en) Vibration control damper coping with habitability
JP3228180B2 (en) Damping structure
JPH0762927A (en) Eccentric brace structure with vibration control function
JP2012233374A5 (en)
JP3654423B2 (en) Vibration control rack

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees