JP3463085B2 - Seismic building - Google Patents
Seismic buildingInfo
- Publication number
- JP3463085B2 JP3463085B2 JP30613797A JP30613797A JP3463085B2 JP 3463085 B2 JP3463085 B2 JP 3463085B2 JP 30613797 A JP30613797 A JP 30613797A JP 30613797 A JP30613797 A JP 30613797A JP 3463085 B2 JP3463085 B2 JP 3463085B2
- Authority
- JP
- Japan
- Prior art keywords
- building
- viscous
- earthquake
- beams
- seismic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、耐震性に優れる構
造の耐震建築物に関する。
【0002】
【従来の技術】周知のように建築物の耐震性能を確保す
るための構造としては、とにかく頑強な構造として地震
力に対する耐力を高めるという耐力構造が長く一般的で
あったが、近年においては免震構造や制震構造が提案さ
れ実用化されている。免震構造は積層ゴム等の免震装置
によって建物全体を支持することにより建物に入力され
る地震動を低減させて応答を低減しようとするものであ
り、制震構造は建物に入力された地震エネルギーをダン
パー等の制震装置により制御、吸収することで応答を低
減しようとするものである。
【0003】
【発明が解決しようとする課題】ところで、従来一般の
耐力構造では、地震力に対する耐力を高めるために必然
的に柱や梁等の構造部材の断面が大きくなって高剛性で
短周期型の建築物となり、その結果、建築物に入力され
る地震力が益々大きくなって部材断面がさらに大きくな
るという悪循環となる。
【0004】一方、従来の免震構造では建築物に対する
地震入力が大幅に低減されて加速度応答量は十分に小さ
くなるが、逆に変位応答量は大きくなるものであり、ま
た、免震装置の設置のために基礎を二重構造とする必要
が生じることから建設費の増大は避けられないし、免震
装置に対して長期にわたる保守も必要であるという問題
がある。
【0005】さらに、従来の制震構造は建築物の要所に
オイルダンパーや粘性ダンパー、鋼材ダンパー、摩擦ダ
ンパー等の各種ダンパーを設置して振動エネルギーを吸
収し振動を減衰させようというものではあるが、従来に
おいては地震エネルギーのごく一部を吸収する程度のも
のに過ぎず、したがって建築物の変形を十分に抑制でき
るものではないから、制震構造とはいっても基本的には
地震力に対する建築物の耐力を確保しておくことが前提
となるものである。
【0006】上記事情に鑑み、本発明は従来の耐力構造
や免震構造、制震構造に代って、耐震性能を格段に向上
させ得る有効な耐震建築物を提供しようとするものであ
る。
【0007】
【課題を解決するための手段】本発明の耐震建築物は、
1階がピロティーとされ、そのピロティーの中央部のス
パンに、地震荷重を受けた際に自身の粘性抵抗力により
微小変形して減衰機能を発揮する粘性耐震壁を直交する
2方向に備えた耐震建築物であって、前記粘性耐震壁は
高剛性かつ高靱性を有して地震荷重に相当する耐力を有
するとともに該粘性耐震壁が発揮する減衰力は当該建築
物全体の復元力よりも大きく設定される一方、当該建築
物の躯体を構成する柱および梁は当該建築物に作用する
長期荷重に相当する耐力のみを有し、前記粘性耐震壁
は、間隔をおいて相対変位可能に積層された少なくとも
一対の鋼板の間に粘性体あるいは粘弾性体を粘着させた
状態で挟み込んだ構成とされて、該粘性耐震壁を1階の
中央部のスパンにおける柱と梁とにより囲まれる空間に
配置して前記対の鋼板を上下の梁に対してそれぞれ固定
してなることを特徴とするものである。すなわち、本発
明の耐震建築物は、地震荷重のほぼ全てを粘性耐震壁の
みが負担し、その粘性耐震壁の減衰力により地震時にお
ける振動が十分に抑制されて殆ど振動し得ない、つまり
過減衰を実現し得るものである。したがって柱や梁には
地震荷重が加わらず、それら柱や梁は長期荷重のみを負
担し得る小断面のもので十分となる。
【0008】
【0009】
【発明の実施の形態】以下、本発明の耐震建築物の実施
形態を説明する。図1は本実施形態の耐震建築物の概要
を示す立面図、図2はその1階平面図である。この耐震
建築物は低層(図示例のものは6階建て)の鉄骨造建築
物であって、1階がピロティーとされており、その1階
の中央部のスパンに、地震時にダンパーとして機能して
大きな減衰力を発揮する粘性耐震壁1が配置されたもの
となっている。
【0010】上記の粘性耐震壁1は、図3および図4に
示すように、柱2と梁3(3a,3b)とにより囲まれ
る空間内に設置されるものであって、下側の梁3aに対
して固定される鋼板4aと上側の梁3bに対して固定さ
れる鋼板4bとを若干の間隙をおいて交互に積層し、そ
れら鋼板4a,4bの間に粘性抵抗の大きい粘性体5た
とえばゴムアスファルトを双方の鋼板4a,4bに対し
て粘着させた状態で挟み込んだ構成のものである。符号
6a,6bは各鋼板4a,4bに固定された取付板、7
は取付板6a,6bを介して各鋼板4a,4bを梁3
a,3bに対して固定するためのアンカーである。
【0011】上記構成の粘性耐震壁1は、全体として薄
肉でありながら高剛性と高靱性とを併せて有するもので
あって、非破壊的に大変形可能、しかも復元可能なもの
である。たとえば厚さ16mmの鋼板4a,4bを全5
枚交互に重ね合わせてそれらの間に粘性体5として厚さ
2mmのゴムアスファルト(粘度6万〜100万pois程
度)を挟み込んだものでは、全体の厚さがわずか88m
mでありながら厚さ500mmの鉄筋コンクリート造耐
震壁と同等程度の剛性を有するものとでき、かつ鉄筋コ
ンクリートでは望むべくもない高靱性を有するものであ
る。また、この粘性耐震壁1は十分に高剛性であること
からその振動特性は自ずと短周期となり、したがってそ
の復元力特性は縦長ループを呈するものとなって単位時
間当りのエネルギー吸収量が極めて大きなものとなる。
勿論、粘性体あるいは粘弾性体の種類や鋼板4a,4b
の積層枚数、その寸法等を調節することにより、減衰力
を自由に設定できるものである。
【0012】そして、上記の粘性耐震壁1を備えた本実
施形態の建築物では、地震時にこの粘性耐震壁1が発揮
する減衰力がこの建築物全体の復元力よりも大きくなる
ように、すなわち過減衰となるように設定されており、
それにより地震時においても建築物が殆ど振動し得ない
ものとなっている。つまり、地震時に上下の梁3a,3
bどうしが層間変位を生じるような場合においては、粘
性制震壁1が極めて大きな減衰力を発揮して双方の鋼板
4a,4bが面内で微小(2〜4mm程度)に相対変位
するにとどまり、建築物が振動することを防止し得るも
のとなっている。その結果、この建築物は、地震力を受
けても地動と所定の位相差をもって同じ動きをするのみ
で共振することはなく、それ故、従来一般の構造の建築
物に比較して加速度、速度、変位の全てが低減し、また
入力エネルギーも殆どゼロとなる。
【0013】また、上記のように、この建築物において
は粘性耐震壁1の減衰力により過減衰が実現して地震時
においても建築物が殆ど振動し得ないものとなることか
ら、柱2や梁3等の構造部材には地震力に対する耐力を
見込む必要がなく、したがってそれら柱2や梁3は長期
荷重に対する耐力を確保できる程度の小断面のものとす
ることが可能である。つまり、この建築物では地震荷重
のほぼ全てを粘性耐震壁1が負担し、したがって柱2や
梁3等の構造部材は長期荷重のみを負担すれば良いこと
になり、その結果、それら構造部材の断面節約による大
幅なコストダウンと室内有効空間の拡大を図ることがで
きるものである。
【0014】なお、構造部材を小断面のものとするとそ
のばね定数は小さくなり、かつ建築物の質量も小さくな
り、したがって建築物はより減衰しやすいものとなり、
過減衰を実現するうえで有利となる。しかも、柱2や梁
3の断面が小さくなることは降伏変形(弾性変形限界)
が大きくなり、したがって仮にそれらに大変形が生じた
としても弾性変形範囲内に収まりやすくなり、この点に
おいても有利である。
【0015】以上で本発明の実施形態を説明したが、本
発明は建築物の形態や規模、用途、構造形式を問わない
ものであって、S造、RC造、SRC造その他任意の構
造に適用でき、かつ、平屋建てを含む低層の建築物から
超高層建築物まで広く適用できるものである。勿論、粘
性耐震壁は所要数を適正位置に適正配置すれば良く、そ
の構成や形態も所望の減衰力、剛性、靱性を確保し得る
限りにおいて適宜の変更が可能である。また、本発明は
新築建築物のみならず既存建築物の耐震補強を目的とし
て実施する場合にも適用可能であり、その場合は既存建
築物に粘性耐震壁を付加することに加えて、既存の柱や
梁に対しては長期荷重に対する耐力を残しつつその一部
を間引きしたり小断面のものに改修する等して地震荷重
に対する耐力を低減せしめれば良い。
【0016】
【発明の効果】以上のように、本発明の耐震建築物は、
大減衰力を有する高剛性かつ高靱性の粘性耐震壁を1階
のピロティーの中央部のスパンにおいて直交する2方向
に配置して、その減衰力を建物全体の復元力よりも大き
く設定することにより、地震時においても殆ど振動する
ことがないような減衰特性すなわち過減衰を実現でき、
その粘性耐震壁に地震荷重を負担させ、柱および梁には
長期荷重のみを負担させるものであるから、耐震性能に
格段に優れ、かつ構造的に合理的でコスト的にも有利な
耐震建築物を実現することができる。特に、鋼板の間に
粘性体あるいは粘弾性体を粘着させた状態で挟み込んだ
構成の粘性耐震壁を採用したので、大減衰力、高剛性、
高靱性の粘性耐震壁を容易に得ることができるとともに
減衰力の調節も容易である。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant building having a structure excellent in earthquake resistance. 2. Description of the Related Art As is well known, as a structure for securing the seismic performance of a building, a structural structure that enhances the resistance against seismic force as a robust structure has been long and generally used. In, seismic isolation structures and seismic control structures have been proposed and put into practical use. The seismic isolation structure reduces the response by supporting the entire building with seismic isolation devices such as laminated rubber to reduce the seismic motion input to the building. The seismic isolation structure uses the seismic energy input to the building. Is controlled by a damping device such as a damper to absorb response. [0003] By the way, in the conventional general bearing structure, in order to increase the resistance to seismic force, the cross-section of structural members such as columns and beams is inevitably increased, resulting in high rigidity and short period. This results in a vicious cycle in which the seismic force input to the building increases and the member cross section further increases. On the other hand, in the conventional seismic isolation structure, the seismic input to the building is greatly reduced and the acceleration response is sufficiently small, but the displacement response is large. Since the foundation needs to have a double structure for installation, an increase in construction cost is inevitable, and there is a problem that long-term maintenance is required for the seismic isolation device. Further, in the conventional vibration control structure, various dampers such as an oil damper, a viscous damper, a steel damper, and a friction damper are installed at important points of a building to absorb vibration energy and attenuate vibration. However, in the past, it was only enough to absorb a small part of the seismic energy, and it was not possible to sufficiently suppress the deformation of the building. It is a prerequisite to ensure the strength of the building. In view of the above circumstances, the present invention is intended to provide an effective earthquake-resistant building which can greatly improve the earthquake-resistant performance in place of the conventional load-bearing structure, seismic isolation structure, and vibration control structure. [0007] The earthquake-resistant building of the present invention comprises:
The first floor is made of pyro tea, and the span of the center of the tea is orthogonally crossed with a viscous shear wall that exerts a damping function due to its own viscous resistance when subjected to an earthquake load.
An earthquake-resistant building provided in two directions , wherein the viscous shear wall has high rigidity and high toughness, has a strength corresponding to an earthquake load, and a damping force exerted by the viscous shear wall has an overall strength of the building. While being set to be larger than the restoring force, the columns and beams constituting the skeleton of the building have only the proof stress corresponding to the long-term load acting on the building, and the viscous shear walls are spaced apart from each other. A viscous body or a viscoelastic body is sandwiched between at least a pair of steel plates laminated so as to be displaceable in a state where the viscous body or the viscoelastic body is adhered. The pair of steel plates are arranged in an enclosed space and fixed to the upper and lower beams, respectively. That is, in the earthquake-resistant building of the present invention, almost all of the seismic load is borne only by the viscous shear wall, and the damping force of the viscous shear wall sufficiently suppresses the vibration during the earthquake and hardly vibrates. Attenuation can be realized. Therefore, seismic loads are not applied to columns and beams, and those columns and beams having a small cross section that can bear only a long-term load are sufficient. An embodiment of the earthquake-resistant building according to the present invention will be described below. FIG. 1 is an elevation view showing an outline of the earthquake-resistant building of the present embodiment, and FIG. 2 is a plan view of the first floor. This earthquake-resistant building is a low-rise (six-story in the example shown) steel-frame building. The first floor is a piloti, and the center of the first floor functions as a damper during an earthquake. The viscous earthquake-resistant wall 1 which exerts a large damping force is arranged. As shown in FIGS. 3 and 4, the above-mentioned viscous earthquake-resistant wall 1 is installed in a space surrounded by columns 2 and beams 3 (3a, 3b). The steel plate 4a fixed to the upper beam 3b and the steel plate 4b fixed to the upper beam 3b are alternately laminated with a slight gap therebetween, and a viscous body 5 having a large viscous resistance is provided between the steel plates 4a and 4b. For example, it has a configuration in which rubber asphalt is sandwiched between both steel plates 4a and 4b in a state of being adhered thereto. Reference numerals 6a and 6b denote mounting plates fixed to the steel plates 4a and 4b, respectively.
Connects the steel plates 4a, 4b to the beams 3 through the mounting plates 6a, 6b.
An anchor for fixing to a and 3b. The viscous earthquake-resistant wall 1 having the above-mentioned structure has high rigidity and high toughness while being thin as a whole, and is nondestructively large-deformable and can be restored. For example, steel plates 4a and 4b having a thickness of 16 mm
In the case where rubber asphalt (viscosity of about 60,000 to 1,000,000 pois) having a thickness of 2 mm is sandwiched between them as the viscous material 5 by alternately stacking them, the total thickness is only 88 m.
m, it can have the same degree of rigidity as a reinforced concrete shear wall having a thickness of 500 mm, and reinforced concrete has an undesirably high toughness. In addition, since the viscous shear wall 1 has sufficiently high rigidity, its vibration characteristics naturally have a short period, and therefore its restoring force characteristics exhibit a vertically long loop, and the amount of energy absorption per unit time is extremely large. Becomes
Of course, the type of the viscous or viscoelastic material and the steel plates 4a, 4b
The damping force can be freely set by adjusting the number of stacked layers, their dimensions, and the like. In the building of the present embodiment having the above-described viscous shear wall 1, the damping force exerted by the viscous shear wall 1 during an earthquake is larger than the restoring force of the entire building, that is, It is set to be over damped,
As a result, the building can hardly vibrate even during an earthquake. In other words, the upper and lower beams 3a, 3
In the case where b causes interlayer displacement, the viscous damping wall 1 exerts an extremely large damping force and the two steel plates 4a and 4b are relatively displaced minutely (about 2 to 4 mm) in the plane. It can prevent the building from vibrating. As a result, this building does not resonate simply by performing the same motion with a predetermined phase difference from the ground motion even if it receives the seismic force, and therefore does not resonate. , All of the displacement is reduced, and the input energy is almost zero. Further, as described above, in this building, overdamping is realized by the damping force of the viscous shear wall 1, and the building can hardly vibrate even during an earthquake. It is not necessary for the structural members such as the beams 3 to take into account the resistance to seismic force. Therefore, the columns 2 and the beams 3 can be formed to have a small cross section enough to ensure the resistance to a long-term load. In other words, in this building, almost all of the seismic load is borne by the viscous shear wall 1, and therefore the structural members such as the columns 2 and the beams 3 need to bear only long-term loads. It is possible to significantly reduce costs and increase the effective indoor space by saving the cross section. If the structural member has a small cross section, its spring constant will be small and the mass of the building will be small, so that the building will be more easily damped.
This is advantageous in realizing overdamping. In addition, the reduction in the cross section of the column 2 or the beam 3 is the yield deformation (the elastic deformation limit).
Is large, and therefore, even if they undergo large deformation, they easily fall within the range of elastic deformation, which is also advantageous in this respect. Although the embodiments of the present invention have been described above, the present invention is not limited to the form, scale, application, and structural form of the building, and may be applied to S structures, RC structures, SRC structures and any other structures. It can be applied and can be widely applied from low-rise buildings including one-story buildings to high-rise buildings. Needless to say, the required number of viscous shear walls may be appropriately arranged at appropriate positions, and the configuration and form thereof may be appropriately changed as long as desired damping force, rigidity and toughness can be secured. In addition, the present invention is applicable not only to newly-built buildings, but also to the case of implementing seismic reinforcement of existing buildings, in which case, in addition to adding viscous shear walls to existing buildings, existing For columns and beams, it is sufficient to reduce the proof stress against seismic loads by, for example, thinning out some of them or modifying them to have small cross sections while maintaining the proof stress against long-term loads. As described above, the earthquake-resistant building of the present invention is
High rigidity and two directions Oite orthogonal span of the central portion of the high toughness of the viscous shear walls the first floor pilotis having a large damping force
Be placed, by setting larger than restoring force of the entire building its damping force, almost can be realized damping characteristics or overdamped as no to vibrate during an earthquake,
Since the seismic load is applied to the viscous shear walls and the long-term load is applied only to the columns and beams, the seismic building has excellent seismic performance, is structurally reasonable, and is cost-effective. Can be realized. In particular, the use of a viscous earthquake-resistant wall sandwiching a viscous or visco-elastic body between steel plates in a state of being adhered makes it possible to achieve high damping force, high rigidity,
A highly tough viscous shear wall can be easily obtained, and the damping force can be easily adjusted.
【図面の簡単な説明】
【図1】 本発明の耐震建築物の一実施形態を示す立面
図である。
【図2】 同、平面図である。
【図3】 粘性耐震壁の一例を示す側断面図である。
【図4】 同、正面図である。
【符号の説明】
1 粘性耐震壁
2 柱
3 梁
4a,4b 鋼板
5 粘性体BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevation view showing an embodiment of an earthquake-resistant building of the present invention. FIG. 2 is a plan view of the same. FIG. 3 is a side sectional view showing an example of a viscous shear wall. FIG. 4 is a front view of the same. [Description of Signs] 1 Viscous shear wall 2 Column 3 Beam 4a, 4b Steel plate 5 Viscous body
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−144374(JP,A) 特開 平5−33525(JP,A) 特開 平8−338153(JP,A) 特開 平6−212833(JP,A) 特開 昭64−29583(JP,A) 特開 平1−154970(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-9-144374 (JP, A) JP-A-5-33525 (JP, A) JP-A-8-338153 (JP, A) JP-A-6-212833 (JP, A) JP-A-64-29583 (JP, A) JP-A-1-154970 (JP, A)
Claims (1)
ーの中央部のスパンに、地震荷重を受けた際に自身の粘
性抵抗力により微小変形して減衰機能を発揮する粘性耐
震壁を直交する2方向に備えた耐震建築物であって、 前記粘性耐震壁は高剛性かつ高靱性を有して地震荷重に
相当する耐力を有するとともに該粘性耐震壁が発揮する
減衰力は当該建築物全体の復元力よりも大きく設定され
る一方、当該建築物の躯体を構成する柱および梁は当該
建築物に作用する長期荷重に相当する耐力のみを有し、 前記粘性耐震壁は、間隔をおいて相対変位可能に積層さ
れた少なくとも一対の鋼板の間に粘性体あるいは粘弾性
体を粘着させた状態で挟み込んだ構成とされて、該粘性
耐震壁を1階の中央部のスパンにおける柱と梁とにより
囲まれる空間に配置して前記対の鋼板を上下の梁に対し
てそれぞれ固定してなることを特徴とする耐震建築物。(57) [Claims] [Claim 1] The first floor is made of a pyro tea, and the span at the center of the pyro tea is minutely deformed by its own viscous resistance when subjected to an earthquake load to have a damping function. An earthquake-resistant building provided with viscous shear walls to exert in two orthogonal directions , wherein the viscous shear walls have high rigidity and high toughness, have a strength corresponding to an earthquake load, and exhibit the viscous shear walls. While the damping force is set to be larger than the restoring force of the entire building, the columns and beams constituting the skeleton of the building have only the proof stress corresponding to the long-term load acting on the building, The wall is configured such that a viscous body or a viscoelastic body is sandwiched between at least a pair of steel plates laminated so as to be relatively displaceable at intervals, and the viscous earthquake-resistant wall is located at a central portion of the first floor. Columns and beams in the span of Ri seismic buildings characterized by comprising fixed each steel plate of the pair disposed in the space to the upper and lower beams enclosed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30613797A JP3463085B2 (en) | 1997-11-07 | 1997-11-07 | Seismic building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30613797A JP3463085B2 (en) | 1997-11-07 | 1997-11-07 | Seismic building |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11141177A JPH11141177A (en) | 1999-05-25 |
JP3463085B2 true JP3463085B2 (en) | 2003-11-05 |
Family
ID=17953507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30613797A Expired - Fee Related JP3463085B2 (en) | 1997-11-07 | 1997-11-07 | Seismic building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3463085B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103866874A (en) * | 2014-01-21 | 2014-06-18 | 清华大学 | Triple-seismic-fortification high-performance steel structure system with high-strength steel columns, common steel beams and low-yield-point steel plate shear walls |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4547979B2 (en) * | 2004-04-28 | 2010-09-22 | 大成建設株式会社 | Vibration control pillar |
CN106545110A (en) * | 2016-11-04 | 2017-03-29 | 西安建筑科技大学 | A kind of anti-buckling steel plate shear wall structure being easily assembled |
CN107085640B (en) * | 2017-04-19 | 2020-04-28 | 青岛腾远设计事务所有限公司 | Simulation method of arc-shaped cut non-stiffened steel plate shear wall |
-
1997
- 1997-11-07 JP JP30613797A patent/JP3463085B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103866874A (en) * | 2014-01-21 | 2014-06-18 | 清华大学 | Triple-seismic-fortification high-performance steel structure system with high-strength steel columns, common steel beams and low-yield-point steel plate shear walls |
CN103866874B (en) * | 2014-01-21 | 2016-07-27 | 清华大学 | High-strength steel column-common girder steel-low yield point steel plate shear wall triple seismic fortification high-performance steel structural system and method for designing thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH11141177A (en) | 1999-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1948878B1 (en) | Structure with increased damping by means of fork configuration dampers | |
KR101621966B1 (en) | Method and structure for damping movement in buildings | |
US5487534A (en) | Laminated rubber vibration control device for structures | |
Villaverde | Aseismic roof isolation system: Feasibility study with 13-story building | |
JP3463085B2 (en) | Seismic building | |
WO2019020991A1 (en) | Building, integrated damping unit, and method of damping | |
JPH11343675A (en) | Damping device and damping structure | |
JP3957890B2 (en) | Building vibration control device | |
JPH11172952A (en) | Seisemic resistant and wind resistant structure | |
JP3114602B2 (en) | Seismic isolation device | |
JP2573525B2 (en) | Partition wall damping structure | |
JPH11141176A (en) | Overdamping structure | |
JP3074572B2 (en) | Seismic isolation support structure for low-load structures | |
JPH0259262B2 (en) | ||
JP3218528B2 (en) | Damping structure | |
JP3116824B2 (en) | Beam damper structure | |
JP3552008B2 (en) | Vibration control structure of building structure | |
JPH02300475A (en) | Frame built-in damping device | |
JP3463086B2 (en) | Damping structure | |
JP3961748B2 (en) | Vibration damping device | |
JP3028033B2 (en) | Damping structure | |
JP2000104420A (en) | Base isolation structure | |
JPS62121279A (en) | Earthquake damping structure | |
JPH11152930A (en) | Highrise building | |
JPH046835B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |