JP2008297727A - Seismic reinforcing structure of existing building - Google Patents

Seismic reinforcing structure of existing building Download PDF

Info

Publication number
JP2008297727A
JP2008297727A JP2007142407A JP2007142407A JP2008297727A JP 2008297727 A JP2008297727 A JP 2008297727A JP 2007142407 A JP2007142407 A JP 2007142407A JP 2007142407 A JP2007142407 A JP 2007142407A JP 2008297727 A JP2008297727 A JP 2008297727A
Authority
JP
Japan
Prior art keywords
damper
support member
column
earthquake
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007142407A
Other languages
Japanese (ja)
Inventor
Masafumi Yamamoto
雅史 山本
Hideo Hisaie
英夫 久家
Hideji Ito
秀司 以頭
Kaoru Otani
馨 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2007142407A priority Critical patent/JP2008297727A/en
Publication of JP2008297727A publication Critical patent/JP2008297727A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficient control vibration by concentrating shear deformation, occurring in an existing building due to earthquakes, on a damper, without closing an opening or deteriorating a view from the opening. <P>SOLUTION: A lower end 61F of an angle 61 is fixed to a lower structure 20, and a column 30 is enclosed with the angle 61 in such a manner that a predetermined gap S is made between the angle 61 and a side surface of the existing column 30. A lower supporting member 60 is formed by combining the four angles 61 together. A side end 61E of the angle 61 is connected to another angle 61, and the lower supporting member 60 has a closed cross section. Similarly, an superstructural member 50 is fixed to superstructure 10 in such a manner as to surround the column 30, and the damper 40 for absorbing seismic energy is arranged between the upper and lower supporting members 50 and 60. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、既存建物を耐震補強する既存建物の耐震補強構造に関する。   The present invention relates to a seismic strengthening structure for an existing building that seismically reinforces an existing building.

既存建物を耐震補強する方法には、補強材としての鉄骨ブレースを既存の柱と柱との間に斜めに配置する方法、補強材としての耐力壁を既存の柱と梁との開口部に設置する方法、既存の耐力壁の厚さを増す方法、既存の柱や梁の断面を増す方法等が一般に用いられている。   The method of seismic reinforcement of existing buildings is to place steel braces as reinforcements diagonally between existing columns and load bearing walls as reinforcements at the openings of existing columns and beams. In general, a method of increasing the thickness of an existing bearing wall, a method of increasing the cross section of an existing column or beam, and the like are generally used.

しかし、既存の耐力壁の厚さを増す方法、既存の柱や梁の断面を増す方法は、建物の大幅な改修工事となり、費用や工事期間の問題がある。鉄骨ブレースを配置する方法、耐力壁を設置する方法は、比較的容易ではあるが、鉄骨ブレースが開口部を斜めに走るため窓からの景観が損なわれる問題や、耐力壁で開口部が塞がれてしまい、視界が遮られ、居住性が低下するという問題がある。   However, the method of increasing the thickness of the existing bearing wall and the method of increasing the cross-section of the existing columns and beams are significant renovation work of the building, and there are problems of cost and construction period. The method of placing steel braces and the method of installing bearing walls are relatively easy, but steel braces run diagonally through the openings and the view from the window is damaged, and the openings are blocked by the bearing walls. As a result, the field of view is obstructed and the comfort level is reduced.

そこで、特許文献1は、鉄骨ブレースや耐力壁を用いずに、柱と梁が接合する接合部位置に補強金具を介装し、補強金具を柱及び梁にアンカー材で接合する方法を提案している。   Therefore, Patent Document 1 proposes a method in which a reinforcing bracket is interposed at a joint position where a column and a beam are joined without using a steel brace or a bearing wall, and the reinforcing bracket is joined to the column and the beam with an anchor material. ing.

この特許文献1では、鉄骨ブレースや耐力壁を用いていないため、開口部からの景観が損なわれたり、開口部そのものが塞がれてしまい、居住性が低下するという問題は解消する。
しかし、特許文献1に記載の方法では、柱梁の接合部は地震時の変形が小さく、この位置を補強しても建物の制振効果は小さい。更に、補強金具は剛性を付与するだけで、エネルギーの吸収効果はない、という課題がある。
特開平10−331437号公報
In this patent document 1, since the steel brace and the bearing wall are not used, the problem that the scenery from an opening part is impaired or the opening part itself is obstruct | occluded, and comfortability falls is solved.
However, in the method described in Patent Document 1, the joint of the column beam is less deformed at the time of the earthquake, and even if this position is reinforced, the vibration damping effect of the building is small. Furthermore, there exists a subject that a reinforcement metal fitting only gives rigidity, and there is no energy absorption effect.
Japanese Patent Laid-Open No. 10-331437

本発明は上記事実に鑑み、開口部を塞いだり、開口部からの景観を損なったりせずに、地震により既存建物に生じるせん断変形をダンパーに集中させ、効率よく制振することを課題とする。   In view of the above-described facts, the present invention has an object to concentrate a shear deformation generated in an existing building due to an earthquake on a damper without blocking an opening or damaging a landscape from the opening, and to efficiently suppress vibration. .

請求項1に記載の発明は、上部構造体と下部構造体との間に配置され、既存建物を耐震補強する耐震補強構造において、前記上部構造体と前記下部構造体との間に設けられた柱を囲んで配置されたダンパーと、前記ダンパーを前記上部構造体と前記下部構造体とに固定する固定手段と、を有することを特徴としている。   The invention according to claim 1 is disposed between the upper structure and the lower structure, and is provided between the upper structure and the lower structure in a seismic reinforcement structure that seismically reinforces an existing building. It is characterized by having a damper arranged around a column, and fixing means for fixing the damper to the upper structure and the lower structure.

請求項1に記載の発明では、ダンパーを上部構造体と下部構造体との間に配置し、固定手段で上部構造体と下部構造体に固定して、地震による上部構造体と下部構造体との相対変位でダンパーを変形させ、既存建物を制振する。
また、ダンパーは、柱を囲むように配置されているため、開口部を塞がず、開口部からの景観を損なわずに既存建物を耐震補強できる。
In the first aspect of the present invention, the damper is disposed between the upper structure and the lower structure, and is fixed to the upper structure and the lower structure by the fixing means. The damper is deformed with the relative displacement of to suppress the existing building.
Moreover, since the damper is disposed so as to surround the pillar, the existing building can be seismically reinforced without blocking the opening and without damaging the scenery from the opening.

請求項2に記載の発明は、前記固定手段は、上端が前記上部構造体に固定され、所定の隙間をあけて前記柱を囲む閉断面の上部支持部材と、下端が前記下部構造体に固定され、所定の隙間をあけて前記柱を囲む閉断面の下部支持部材と、で構成され、前記上部支持部材の下端と前記ダンパーの上端とを接合し、前記下部支持部材の上端と前記ダンパーの下端とを接合したことを特徴としている。   According to a second aspect of the present invention, the fixing means has an upper end fixed to the upper structure, a closed section upper support member surrounding the column with a predetermined gap, and a lower end fixed to the lower structure. A lower support member having a closed cross section surrounding the column with a predetermined gap, and joining a lower end of the upper support member and an upper end of the damper, and an upper end of the lower support member and the damper. It is characterized by joining the lower end.

請求項2に記載の発明は、既存の柱を、所定の隙間をあけてダンパー、上部支持部材及び下部支持部材で囲む構成である。このとき、上部支持部材と下部支持部材を閉断面形状とすることで、水平2方向に高い剛性を得る事ができる。   The invention described in claim 2 is configured to surround an existing column with a damper, an upper support member, and a lower support member with a predetermined gap. At this time, high rigidity can be obtained in two horizontal directions by making the upper support member and the lower support member have a closed cross-sectional shape.

このため、上部支持部材と下部支持部材とが、柱の変形とは独立して剛体挙動ができ、ダンパーに変形を集中させることができる。
更に、大きな地震で柱が傾いたとき、上部支持部材を下部支持部材が受けて、建物の倒壊を防ぐことができる。
For this reason, the upper support member and the lower support member can behave rigidly independently of the deformation of the column, and the deformation can be concentrated on the damper.
Further, when the column is tilted by a large earthquake, the upper support member is received by the lower support member, and the building can be prevented from collapsing.

請求項3に記載の発明は、前記上部支持部材及び前記下部支持部材を鋼板で構成し、端部を接合して閉断面としたことを特徴としている。
請求項3に記載の発明では、上部支持部材及び下部支持部材を鋼板で構成し、端部を接合して閉断面としてあるため、水平2方向の剛性が増す。
The invention described in claim 3 is characterized in that the upper support member and the lower support member are made of steel plates, and end portions are joined to form a closed cross section.
In the invention according to claim 3, since the upper support member and the lower support member are made of steel plates and the end portions are joined to form a closed cross section, the rigidity in two horizontal directions is increased.

請求項4に記載の発明は、前記ダンパーを、前記柱の側面と所定の隙間をあけて対向する複数の鋼板で構成したことを特徴としている。
請求項4に記載の発明では、複数の鋼板を柱の周囲に、柱の側面と所定の隙間をあけて配置した構成であり、地震により生じるせん断エネルギーを、鋼板が塑性変形しながら吸収し減衰させる。このため、柱に加わるせん断エネルギーが低減される。また、簡単な構成であり施工が容易である。
The invention described in claim 4 is characterized in that the damper is composed of a plurality of steel plates facing the side surface of the column with a predetermined gap.
The invention according to claim 4 is a configuration in which a plurality of steel plates are arranged around the column with a predetermined gap from the side of the column, and the shear energy generated by the earthquake is absorbed and attenuated while the steel plate is plastically deformed. Let For this reason, the shear energy applied to the column is reduced. In addition, the construction is simple and the construction is easy.

請求項5に記載の発明は、前記ダンパーを、前記柱の側面と所定の隙間をあけて対向する複数の粘弾性部材で構成したことを特徴としている。
請求項5に記載の発明では、複数の粘弾性部材を柱の周囲に、柱の側面と所定の隙間をあけて対向させた構成であり、地震により生じるせん断エネルギーを、粘性と弾性の特性を合わせ持つ粘弾性部材が変形しながら吸収し減衰させる。このため、柱に加わるせん断エネルギーが低減される。また、簡単な構成であり施工が容易である。
The invention described in claim 5 is characterized in that the damper is composed of a plurality of viscoelastic members facing the side surface of the column with a predetermined gap.
The invention according to claim 5 is a configuration in which a plurality of viscoelastic members are opposed to each other around a column with a predetermined gap from the side surface of the column. It absorbs and attenuates while the viscoelastic member it has is deformed. For this reason, the shear energy applied to the column is reduced. In addition, the construction is simple and the construction is easy.

本発明は上記構成としたので、開口部を塞いだり、開口部からの景観を損なったりせずに、地震により既存建物に生じるせん断変形をダンパーに集中させ、効率よく制振することができる。   Since this invention set it as the said structure, the shear deformation which arises in the existing building by an earthquake can be concentrated on a damper, and can be efficiently damped, without blocking an opening part or impairing the scenery from an opening part.

(第1の実施の形態)
図1乃至図3を用いて、本発明の既存建物の耐震補強構造(以下耐震補強構造という)について説明する。
図1、2に示すように、耐震補強構造90は、天井スラブまたは梁で構成される上部構造体10と、床スラブまたは梁で構成される下部構造体20との間にある既存の柱30を、取り囲んで補強する構成である。
(First embodiment)
The earthquake-proof reinforcement structure (hereinafter referred to as the earthquake-proof reinforcement structure) of the existing building according to the present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the seismic reinforcement structure 90 includes an existing pillar 30 between an upper structure 10 composed of a ceiling slab or a beam and a lower structure 20 composed of a floor slab or a beam. It is the structure which surrounds and reinforces.

下部構造体20の床面には、アングル61の下端部61Fが、アンカーボルト65で固定されている。
アングル61は、柱30の側面形状に対応させた形状とされ、2つ以上(図1では4つ)のアングル61が組合わされて下部支持部材60を形成している。
A lower end 61 </ b> F of the angle 61 is fixed to the floor surface of the lower structure 20 with an anchor bolt 65.
The angle 61 has a shape corresponding to the side shape of the pillar 30, and two or more (four in FIG. 1) angles 61 are combined to form the lower support member 60.

また、アングル61は、鋼板で形成され、柱30と隙間Sをあけて、周囲から柱30を囲むように配置されている。
アングル61の側端部61Eは、隣接するアングル61の側端部61Gと連結され、下部支持部材60を閉断面としている。
上部構造体10の天井面には、アングル51の上端部51Fが、アンカーボルト55で固定されている。
In addition, the angle 61 is formed of a steel plate and is disposed so as to surround the column 30 from the periphery with a gap S between the column 30 and the column 61.
The side end portion 61E of the angle 61 is connected to the side end portion 61G of the adjacent angle 61, and the lower support member 60 has a closed cross section.
An upper end 51 </ b> F of the angle 51 is fixed to the ceiling surface of the upper structure 10 with an anchor bolt 55.

アングル51は、柱30の側面形状に対応させた形状とされ、2つ以上(図1では4つ)のアングル51が組合わされて上部支持部材50を形成している。
また、アングル51は、鋼板で形成され、柱30と隙間Sをあけて、周囲から柱30を囲むように配置されている。
アングル51の側端部51Eは、隣接するアングル51の側端部51Gと連結され(図示せず)、上部支持部材50を閉断面としている。
The angle 51 has a shape corresponding to the side shape of the pillar 30, and two or more (four in FIG. 1) angles 51 are combined to form the upper support member 50.
In addition, the angle 51 is formed of a steel plate, and is disposed so as to surround the column 30 from the periphery with a gap S between the column 30 and the column 51.
The side end 51E of the angle 51 is connected to the side end 51G of the adjacent angle 51 (not shown), and the upper support member 50 has a closed cross section.

下部支持部材60の上端部と、上部支持部材50の下端部との間には、地震エネルギーを、変形しながら吸収し減衰させるダンパー40が配置されている。
ダンパー40は、図3(A)(B)に示すように、鋼板4枚で構成され、柱30の側面と所定の隙間Sをあけて配置されている。
Between the upper end portion of the lower support member 60 and the lower end portion of the upper support member 50, a damper 40 that absorbs and attenuates seismic energy while being deformed is disposed.
As shown in FIGS. 3A and 3B, the damper 40 is composed of four steel plates, and is disposed with a predetermined gap S from the side surface of the pillar 30.

ダンパー40の下端は下部支持部材60の上端と接合されており、上端は上部支持部材50の下端と接合されている。
ダンパー40の材質は、水平2方向の地震エネルギーをダンパー40の塑性変形により吸収し、建物の揺れを抑えることが必要であることから、例えばLYP225のような低降伏点鋼が望ましい。
The lower end of the damper 40 is joined to the upper end of the lower support member 60, and the upper end is joined to the lower end of the upper support member 50.
The material of the damper 40 is preferably a low yield point steel such as LYP225, for example, because it is necessary to absorb seismic energy in two horizontal directions by plastic deformation of the damper 40 and suppress shaking of the building.

また、ダンパー40の取り付け位置は、地震で建物が揺れたときに、上部支持部材50及び下部支持部材60の端部に生じる曲げモーメントを、偏りなく、それぞれに均等に負担させるため、柱30のほぼ中央に配置させるのが望ましい。
また、ダンパー40の鉛直方向の長さは、階高の1/10〜1/30程度が望ましい。
Also, the mounting position of the damper 40 is such that when the building is shaken by an earthquake, the bending moment generated at the ends of the upper support member 50 and the lower support member 60 is evenly distributed without being biased. It is desirable to place it at approximately the center.
The vertical length of the damper 40 is desirably about 1/10 to 1/30 of the floor height.

しかし、求められる制振特性は、建物の構造や想定する地震の規模等により異なるため、ダンパー40の材質は低降伏点鋼に限定されることはなく、また、ダンパー40の取付位置及び長さも上記に限定されることはなく、耐震補強の対象である既存建物に応じて、最適な材質、寸法、位置等を選択すればよい。   However, since the required damping characteristics vary depending on the structure of the building and the magnitude of the assumed earthquake, the material of the damper 40 is not limited to the low yield point steel, and the mounting position and length of the damper 40 are not limited. The present invention is not limited to the above, and an optimal material, size, position, etc. may be selected according to the existing building that is the target of seismic reinforcement.

また、図1では、矩形の柱に対応させて4枚のダンパー40を配置する構成について説明したが、柱30の断面形状が円形の場合には、ダンパー40の形状も円筒とし、柱30を所定の隙間Sをあけて取り囲めばよく、柱30が他の断面形状であっても、断面形状に応じて、ダンパー40の形状を決定し、柱30を所定の隙間Sをあけて取り囲めばよい。   In addition, in FIG. 1, the configuration in which the four dampers 40 are arranged corresponding to the rectangular pillars has been described. However, when the pillar 30 has a circular cross-sectional shape, the dampers 40 have a cylindrical shape, and the pillars 30 are It is only necessary to surround the pillar 30 with a predetermined gap S. Even if the pillar 30 has another cross-sectional shape, the shape of the damper 40 is determined according to the cross-sectional shape, and the pillar 30 is surrounded with a predetermined gap S. That's fine.

このとき、下部支持部材60及び上部支持部材50の分割は、柱30の断面(側面)形状若しくは製造、施工条件等に対応させて、2つ以上とすればよい。
即ち、図1では、下部支持部材60及び上部支持部材50を平板構成として4分割としたが、平板をアングル状に構成した2分割としてもよい。
At this time, the lower support member 60 and the upper support member 50 may be divided into two or more according to the cross-section (side surface) shape of the column 30, manufacturing, construction conditions, or the like.
That is, in FIG. 1, the lower support member 60 and the upper support member 50 are divided into four as a flat plate configuration, but may be divided into two as a flat plate is formed in an angle shape.

更に、下部支持部材60及び上部支持部材50は、地震時の水平2方向の変形に対し高い剛性を持たせ、柱の変形とは独立して剛体挙動させるため、肉厚の厚い例えばSS400のような一般鋼材を使用し、柱30と所定の隙間Sをあけて閉断面としている。
これにより、上部支持部材50と下部支持部材60とが、柱30の変形とは独立して剛体挙動でき、ダンパー40にせん断変形を集中させることができる。
Furthermore, the lower support member 60 and the upper support member 50 have high rigidity against deformation in two horizontal directions at the time of an earthquake and behave rigidly independently of the deformation of the column. A general steel material is used, and a closed section is formed with a predetermined gap S from the column 30.
Thereby, the upper support member 50 and the lower support member 60 can behave rigidly independently of the deformation of the column 30, and the shear deformation can be concentrated on the damper 40.

次に、耐震補強構造90の作用について図4を用いて説明する。
図4(A)(B)(C)は、地震時の柱30の挙動を示しており、図4(D)(E)(F)は、耐震補強構造90を配置した場合の、地震時の柱30及びダンパー40の挙動を示したものである。以下、対比しながら説明する。
Next, the effect | action of the earthquake-proof reinforcement structure 90 is demonstrated using FIG.
4 (A), 4 (B), and 4 (C) show the behavior of the pillar 30 during an earthquake, and FIGS. 4 (D), 4 (E), and 4 (F) show the seismic reinforcement structure 90 in the event of an earthquake. The behavior of the pillar 30 and the damper 40 is shown. Hereinafter, the comparison will be described.

地震前は、図4(A)の柱30及び図4(D)の柱30、ダンパー40、上部支持部材50及び下部支持部材60は、上部構造体10と下部構造体20との間で左右に変形することなく静止状態にある。   Before the earthquake, the pillar 30 in FIG. 4A and the pillar 30 in FIG. 4D, the damper 40, the upper support member 50, and the lower support member 60 are left and right between the upper structure 10 and the lower structure 20. It is in a stationary state without deformation.

次に、上部構造体10と下部構造体20との間に相対変位が生じた場合について、便宜上、上部構造体10が静止していると仮定して説明する。
図4(B)に示すように、下部構造体20は、地震時に柱30を変形させながらX方向に移動(変位量ΔB)する。変位量ΔBは、柱30に作用するX方向の地震力Fと、柱30の水平剛性によって決まる。また、このとき、柱30の内部に生じる抵抗力Rは地震力Fと釣り合う。
Next, the case where a relative displacement occurs between the upper structure 10 and the lower structure 20 will be described on the assumption that the upper structure 10 is stationary for convenience.
As shown in FIG. 4B, the lower structure 20 moves (displacement amount ΔB) in the X direction while deforming the column 30 during an earthquake. The displacement amount ΔB is determined by the X-direction seismic force F acting on the column 30 and the horizontal rigidity of the column 30. At this time, the resistance force R 0 generated inside the pillar 30 is balanced with the seismic force F.

一方、図4(E)に示すように、耐震補強構造90を柱30の周囲に配置した場合、下部構造体20は地震時に、柱30とダンパー40を変形させながらX方向に移動(変位量ΔE)する。変位量ΔEは、柱30及びダンパー40に作用するX方向の地震力Fからダンパー40の抵抗力Qを引いた力(F−Q)と、柱30の水平剛性によって決まる。このとき、柱30の内部に生じる抵抗力Rは(F−Q)と釣り合う。ダンパー40の抵抗力Qが作用する分、柱30に加わる力(F−Q)は小さくなり、下部構造体20の変位量ΔEは、変位量ΔBより小さい値となる。 On the other hand, as shown in FIG. 4E, when the seismic reinforcement structure 90 is arranged around the pillar 30, the lower structure 20 moves in the X direction (displacement amount) while deforming the pillar 30 and the damper 40 at the time of the earthquake. ΔE). The displacement amount ΔE is determined by the force (FQ) obtained by subtracting the resistance force Q of the damper 40 from the X-direction seismic force F acting on the column 30 and the damper 40 and the horizontal rigidity of the column 30. At this time, the resistance force R 1 generated inside the pillar 30 is balanced with (FQ). As the resistance force Q of the damper 40 acts, the force (FQ) applied to the column 30 is reduced, and the displacement amount ΔE of the lower structure 20 is smaller than the displacement amount ΔB.

即ち、ダンパー40のエネルギー吸収により、既存建物を制振することができる。
このとき、下部支持部材60および上部支持部材50に高い剛性を持たせることで、これらの支持部材はほとんど変形することなく、ダンパー40にせん断変形を集中させ、効率よく地震エネルギーを吸収させることができる。
That is, the existing building can be damped by absorbing the energy of the damper 40.
At this time, by providing the lower support member 60 and the upper support member 50 with high rigidity, these support members are hardly deformed, and the shear deformation is concentrated on the damper 40 to efficiently absorb the seismic energy. it can.

ダンパー40は、柱30の側面を囲んで周囲に配置されているため、X方向のみでなく、水平2方向の地震力に対して、既存建物を制振することができる。
なお、柱30とダンパー40との間には隙間Sが設けてあるため、図4(E)に示すように、ダンパー40に変形を集中させることができる。
Since the damper 40 surrounds the side surface of the pillar 30 and is arranged in the periphery, the existing building can be damped not only in the X direction but also in the horizontal two directions.
Since a gap S is provided between the pillar 30 and the damper 40, the deformation can be concentrated on the damper 40 as shown in FIG.

次に、柱30のせん断変形の許容限度を超えるような地震が、既存建物に作用した場合について説明する。   Next, a case where an earthquake that exceeds the allowable limit of shear deformation of the pillar 30 acts on the existing building will be described.

図4(C)に示すように、地震力FによるX方向の変位量ΔCが柱30のせん断変形の許容限度を超え場合、柱30の一部には亀裂13が生じ、柱30の損壊が始まる。
一方、図4(F)に示すように、上述の理由で、同一の地震力Fでは、柱30の変位量ΔFは、変位量ΔCより小さく、未だせん断変形の許容限度には至っていない。即ち、より規模の大きな地震に対しても、柱30の損壊を防ぎ、既存建物に制振効果を持たせることができる。
As shown in FIG. 4C, when the displacement amount ΔC in the X direction due to the seismic force F exceeds the allowable limit of shear deformation of the column 30, a crack 13 is generated in a part of the column 30, and the column 30 is damaged. Begins.
On the other hand, as shown in FIG. 4 (F), for the above-mentioned reason, with the same seismic force F, the displacement amount ΔF of the column 30 is smaller than the displacement amount ΔC and has not yet reached the allowable limit of shear deformation. That is, it is possible to prevent the pillar 30 from being damaged and to have a vibration control effect on the existing building even for a larger-scale earthquake.

更に大きな地震が発生し、万一、柱30が損壊した場合においても、耐震補強構造90が柱30を囲んでおり、上部支持部材50を下部支持部材60が受けて、倒壊を防ぐことができる。   Even in the event that a greater earthquake occurs and the pillar 30 is damaged, the seismic reinforcement structure 90 surrounds the pillar 30 and the upper support member 50 is received by the lower support member 60, preventing collapse. .

次に、耐震補強構造90の検証結果の一例を図5乃至図9を用いて説明する。
制振効果の検証に用いたモデル建物100は、図5の長辺方向の軸組図及び図6の短辺方向の軸組図に示すように、店舗用の地下1階、地上5階、及び塔屋からなるRC造の建物である。
Next, an example of the verification result of the seismic reinforcement structure 90 will be described with reference to FIGS.
The model building 100 used for the verification of the vibration damping effect is as shown in the long side direction axis group diagram of FIG. 5 and the short side direction axis group diagram of FIG. And it is an RC building consisting of towers.

モデル建物100の層間の高さは、地下1階と地上1階は他より高く4m、2階から5階までは各3.85mである。柱は、外壁に位置する柱も含め、長辺方向では間隔9.3m、8m、8m、9mで5列に、短辺方向では間隔7.7m、7.7m、4.3m、3.4mで5列(一部4列)に配置されている。   The height between the layers of the model building 100 is 4 m higher on the first basement floor and the first floor above the ground, and 3.85 m from the second floor to the fifth floor. The columns, including the columns located on the outer wall, are arranged in five rows at intervals of 9.3 m, 8 m, 8 m, and 9 m in the long side direction, and intervals of 7.7 m, 7.7 m, 4.3 m, and 3.4 m in the short side direction. Are arranged in 5 rows (partially 4 rows).

検証方法は、モデル建物100に耐震補強構造90を配置していない状態と、耐震補強構造90を配置した状態において、それぞれ地震応答解析を行った。入力地震動は、建築構造設計で標準的に用いられる地震3波(EL CENTRO NS、FAFT EW、HACHINOHE NS)とした。   In the verification method, the seismic response analysis was performed in the state where the seismic reinforcement structure 90 is not disposed in the model building 100 and in the state where the seismic reinforcement structure 90 is disposed. The input ground motion was 3 earthquakes (EL CENTRO NS, FAFT EW, HACHINOH NS) used as standard in building structure design.

応答解析結果の評価方法は、地震3波によるモデル建物100の各層の水平2方向の移動量を算出し、算出した移動量を層間距離(階高さ)で除して層間変形角(rad)を求め、この層間変形角の値で評価した。
即ち、耐震補強構造90を配置したことで層間変形角が小さくなれば、地震による層の水平2方向の移動を抑制できたと評価され、制振効果が客観的に裏付けできたといえる。
The response analysis result is evaluated by calculating the horizontal two-direction movement amount of each layer of the model building 100 due to three earthquakes, and dividing the calculated movement amount by the interlayer distance (floor height). Was evaluated by the value of the interlayer deformation angle.
In other words, it is evaluated that if the interlaminar deformation angle is reduced by arranging the seismic reinforcement structure 90, the horizontal movement of the layer due to the earthquake can be suppressed, and it can be said that the damping effect can be objectively supported.

応答解析結果は、縦軸をモデル建物100の階層数、横軸を層間変形角とし、地震3波それぞれの計算結果を図示した。
先ず、モデル建物100の特性を把握するため、耐震補強構造90を配置していない状態で応答解析を行った。
As for the response analysis results, the vertical axis represents the number of layers of the model building 100 and the horizontal axis represents the interlayer deformation angle, and the calculation results for each of the three earthquake waves are illustrated.
First, in order to grasp the characteristics of the model building 100, a response analysis was performed without the seismic reinforcement structure 90 being arranged.

結果は、図9(A)に示すように、1階、2階の順に層間変形角が他に比べ大きく、この部分の層の移動量が大きいことが分かる。この傾向は、いずれの地震波でも同じ傾向を示した。なお、図9(A)は層の移動量がより大きく算出された短辺方向(図6参照)の解析結果である。   As a result, as shown in FIG. 9A, it can be seen that the interlayer deformation angle is larger in the order of the first floor and the second floor, and the movement amount of the layer in this portion is large. This tendency was the same for all seismic waves. FIG. 9A shows the analysis result in the short side direction (see FIG. 6) in which the amount of movement of the layer is calculated to be larger.

また、地震3波の中では、いずれの階においても、層間変形角の最大値はEL CENTRO NSで生じていた。EL CENTRO NSにおける最大層間変形角は、1階の層間変形角で0.0097(rad)となっている。   In addition, among the three earthquake waves, the maximum value of the interlayer deformation angle was caused by EL CENTRO NS on any floor. The maximum interlayer deformation angle in EL CENTRO NS is 0.0097 (rad) as the first-layer interlayer deformation angle.

これは、建物の下層階の柱ほど、大きな建物重量を負担しており、地震時には、その重量に比例して水平せん断力を受ける。加えて店舗となっているため、1階部分の外壁に開口部が多い。このため、1階の層間変形角が最も大きくなっているものと思われる。   This is because the pillars on the lower floors of the building bear a larger building weight, and in the event of an earthquake, they receive a horizontal shearing force in proportion to their weight. In addition, since it is a store, there are many openings on the outer wall of the first floor. For this reason, it is considered that the interlayer deformation angle on the first floor is the largest.

次に、1階の層間変形角が1番大きく、次いで2階の層間変形角が大きいことが把握できたので、モデル建物100の補強方法として、1階の柱と2階の柱とに耐震補強構造90を配置した。この1階の柱と2階の柱とに耐震補強構造90を配置した条件で、同じ地震3波を入力して応答解析を行った。   Next, since it was understood that the first floor interlayer deformation angle was the largest and then the second floor interlayer deformation angle was the largest, as a reinforcement method for the model building 100, the first floor pillar and the second floor pillar were seismic resistant. A reinforcing structure 90 is arranged. Under the condition that the seismic reinforcement structure 90 is disposed on the first-floor pillar and the second-floor pillar, response analysis was performed by inputting the same three earthquake waves.

耐震補強構造90の配置場所は、1階においては、図7の1階の伏図に示すように、長辺方向に配置された5列の柱のうち、外壁を構成する柱を除いた建物内部の3列の柱と、短辺方向に配置された5列の柱のうち、外壁を構成する柱を除いた建物内部の2列の柱とで構成される合計6本の柱とした。   The location of the seismic retrofit structure 90 is a building on the first floor excluding the pillars constituting the outer wall from the five columns arranged in the long side direction, as shown in the floor plan of the first floor in FIG. A total of six columns composed of three columns in the interior and two columns in the building excluding the columns constituting the outer wall among the five columns arranged in the short side direction.

また、2階においても、柱の配置は基本的には1階と同じであり、1階の柱位置と対応する位置の6本の柱とした。
なお、応答解析に使用した耐震補強構造90は、図8に示すように、ダンパー40の材質は低降伏点鋼(LYP225、板厚9mm)で、寸法は200×1000mmとした。上部支持部材50及び下部支持部材60の材質は一般鋼板(SS400、板厚18mm)で、一辺の寸法はいずれも1000mmとした。なお、柱30の一辺の寸法は450mmで、高さは約3000mmである。
Also on the second floor, the arrangement of the pillars is basically the same as that on the first floor, and there are six pillars at positions corresponding to the pillar positions on the first floor.
In addition, as shown in FIG. 8, the material 40 of the damper 40 used for the response analysis was a low yield point steel (LYP225, plate thickness 9 mm), and the dimensions were 200 × 1000 mm. The material of the upper support member 50 and the lower support member 60 was a general steel plate (SS400, plate thickness 18 mm), and the dimensions of one side were 1000 mm. In addition, the dimension of one side of the pillar 30 is 450 mm, and the height is about 3000 mm.

結果は、図9(B)に示すように、1階と2階を中心に、地震3波のいずれにおいても、層間変形角が大きく低減しており、既存建物に制振効果を持たせることができた。   As a result, as shown in Fig. 9 (B), the inter-layer deformation angle is greatly reduced in all three earthquakes centering on the 1st and 2nd floors, and the existing building has a damping effect. I was able to.

具体的には、耐震補強構造90の配置前には最大で0.0097(rad)であった1階の層間変形角が、耐震補強構造90の配置後は最大で0.003(rad)となり、約1/3に低減された。更に、他の階における層間変形角も低減されている。     Specifically, the inter-layer deformation angle on the first floor, which was 0.0097 (rad) at the maximum before the placement of the seismic reinforcement structure 90, becomes 0.003 (rad) at the maximum after the placement of the seismic reinforcement structure 90. About 1/3. Furthermore, the interlayer deformation angles on other floors are also reduced.

以上説明したように、耐震補強構造90におけるダンパー40の材質及び寸法を最適値に選択することで層間変形角を減少させることができる。即ち、既存建物の耐震補強にあたり、層間変形角の許容限度を定めておき、ダンパー40の材質、長さ、厚さ、配置位置等の条件を、許容限度の範囲内に収まるよう選択することで所要の制振効果を持たせることができる。   As described above, the interlayer deformation angle can be reduced by selecting the material and dimensions of the damper 40 in the seismic reinforcement structure 90 to the optimum values. In other words, in the seismic reinforcement of existing buildings, the allowable limit of the interlayer deformation angle is determined, and the conditions such as the material, length, thickness, and arrangement position of the damper 40 are selected so as to be within the allowable limit range. The required vibration control effect can be provided.

なお、本実施の形態では、ダンパー40の材質を低降伏点鋼としたが、地震エネルギーを吸収するための部材であれば低降伏点鋼に限定する必要はなく、例えば粘弾性部材を板状に成形し、断面が矩形状の柱30の周囲に所定の隙間Sをあけて対向して配置し、ダンパー40としてもよい。   In this embodiment, the material of the damper 40 is a low yield point steel, but it is not necessary to limit the material to a low yield point steel as long as it is a member for absorbing seismic energy. Alternatively, the damper 40 may be formed by forming a predetermined gap S around the column 30 having a rectangular cross section and facing each other.

(第2の実施の形態)
図10は、第2の実施形態を示したものである。
第2の実施形態は、耐震補強構造90における地震力を吸収するダンパー40を、4個のオイルダンパー70A、70B、70C、70Dとし、下部ブラケット75F、75G及び上部ブラケット76H、76Iに、それぞれ一端を取り付けた構成である。他の構成要素は、すべて第1の実施の形態と同一であり、同一な部分の説明は省略する。
(Second Embodiment)
FIG. 10 shows the second embodiment.
In the second embodiment, the damper 40 that absorbs the seismic force in the seismic reinforcement structure 90 has four oil dampers 70A, 70B, 70C, and 70D, and one end is provided on each of the lower brackets 75F and 75G and the upper brackets 76H and 76I. It is the structure which attached. All other components are the same as those in the first embodiment, and the description of the same parts is omitted.

下部ブラケット75F、75Gは強度を持たせるため、肉厚の厚い鋼板でL字状に形成され、下部支持部材60の上端の角部の対向する2ヶ所に、下部支持部材60の角部とL字状の角部とを一致させ、下部支持部材60の上端と下部ブラケット75の下端とを固定して、配置されている。   In order to give strength to the lower brackets 75F and 75G, a thick steel plate is formed in an L shape, and the corners of the lower support member 60 and the corners of the lower support member 60 are located at two opposite corners of the upper end of the lower support member 60. The upper end of the lower support member 60 and the lower end of the lower bracket 75 are fixed so as to coincide with the character-shaped corners.

上部ブラケット76H、76Iも同じく強度を持たせるため、肉厚の厚い鋼板でL字状に形成され、上部支持部材50の下端の角部の対向する2ヶ所に、上部支持部材50の角部にL字状の角部を一致させ、上部支持部材50の下端と上部ブラケット76の上端とを固定して、配置されている。   The upper brackets 76H and 76I are also formed in a L-shape with thick steel plates in order to give the same strength. The upper brackets 76H and 76I are formed at two opposite corners of the upper support member 50 at the corners of the upper support member 50. The L-shaped corners are aligned and the lower end of the upper support member 50 and the upper end of the upper bracket 76 are fixed.

なお、上部ブラケット76H、76Iを固定する上部支持部材50の2ヶ所の角部は、上部支持部材50の角部と対向する下部支持部材60の角部の上端に下部ブラケット75F、75Gが配置されていない角部とされている。   Note that the lower brackets 75F and 75G are arranged at the upper ends of the corners of the lower support member 60 that are opposite to the corners of the upper support member 50 at the two corners of the upper support member 50 that fix the upper brackets 76H and 76I. There are no corners.

下部ブラケット75Fの片側の側面上部にはオイルダンパー70Aのシリンダー部が取り付けられており、他の側面上部にはオイルダンパー70Cのシリンダー部が取り付けられている。
また、下部ブラケット75Gの片側の側面上部にはオイルダンパー70Bのシリンダー部が取り付けられており、他の側面上部にはオイルダンパー70Dのシリンダー部が取り付けられている。
The cylinder part of the oil damper 70A is attached to the upper part of one side surface of the lower bracket 75F, and the cylinder part of the oil damper 70C is attached to the upper part of the other side surface.
Further, the cylinder portion of the oil damper 70B is attached to the upper portion of one side surface of the lower bracket 75G, and the cylinder portion of the oil damper 70D is attached to the upper portion of the other side surface.

一方、上部ブラケット76Hの片側の側面下部にはオイルダンパー70Aのロッド部が取り付けられており、他の側面上部にはオイルダンパー70Bのロッド部が取り付けられている。
また、上部ブラケット76Iの片側の側面下部にはオイルダンパー70Cのロッド部が取り付けられており、他の側面上部にはオイルダンパー70Dのロッド部が取り付けられている。
On the other hand, the rod part of the oil damper 70A is attached to the lower part of the side surface on one side of the upper bracket 76H, and the rod part of the oil damper 70B is attached to the upper part of the other side surface.
Further, the rod portion of the oil damper 70C is attached to the lower portion of the side surface on one side of the upper bracket 76I, and the rod portion of the oil damper 70D is attached to the upper portion of the other side surface.

ここに、オイルダンパー70A、70B、70C、70Dは市販されている製品でよく、オイルダンパー70A、70B、70C、70Dのロッド部と上部ブラケット76H、76Iとの取り付けは、ロッド部に設けられているピン孔を利用して取付部材92で取り付けられている。また、オイルダンパー70A、70B、70C、70Dのシリンダー部と下部ブラケット75F、75Gとの取り付けはシリンダー部に設けられているピン孔を利用して取付部材94を用いて取り付けられている。   Here, the oil dampers 70A, 70B, 70C, and 70D may be commercially available products, and the rod portions of the oil dampers 70A, 70B, 70C, and 70D and the upper brackets 76H and 76I are attached to the rod portions. It is attached with the attachment member 92 using the pin hole which exists. Further, the cylinder portions of the oil dampers 70A, 70B, 70C, and 70D and the lower brackets 75F and 75G are attached by using an attachment member 94 using a pin hole provided in the cylinder portion.

次に、上述の構成による作用について説明する。
地震発生前には、図10(A)(B)の状態でオイルダンパー70A、70B、70C、70Dは伸縮されることはなく、静止している。
Next, the effect | action by the above-mentioned structure is demonstrated.
Prior to the occurrence of the earthquake, the oil dampers 70A, 70B, 70C, and 70D are not expanded and contracted in the state shown in FIGS.

地震時には、上述の理由で、地震によるせん断変形が、上部支持部材50と下部支持部材60の間に配置されたオイルダンパー70A、70B、70C、70Dに集中される。このとき、せん断変形による引張力若しくは圧縮力を直接受ける場所に配置されたオイルダンパー70A、70B、70C、70Dは、それぞれ引張力若しくは圧縮力で伸縮されながら地震によるせん断力を吸収し、建物の振動を抑制する。   During an earthquake, the shear deformation due to the earthquake is concentrated on the oil dampers 70A, 70B, 70C, and 70D disposed between the upper support member 50 and the lower support member 60 for the reason described above. At this time, the oil dampers 70A, 70B, 70C, 70D arranged in the place directly receiving the tensile force or compressive force due to the shear deformation absorb the shear force due to the earthquake while being expanded and contracted by the tensile force or compressive force, respectively. Suppresses vibration.

便宜上、下部構造体20が、地震によりX方向に変位し、上部構造体10は静止したままで、上部構造体10と下部構造体20との間に相対変位が生じた場合を例にとり説明する。   For convenience, the case where the lower structure 20 is displaced in the X direction by an earthquake, the upper structure 10 remains stationary, and a relative displacement occurs between the upper structure 10 and the lower structure 20 will be described as an example. .

下部支持部材60は高い剛性を持つため、下部構造体20とほぼ同じ量だけX方向に変位し、上部支持部材50は高い剛性を持つため、上部構造体10と共にほぼ静止している。従って、上部構造体10と下部構造体20との間に生じた相対変位は、効率よく、オイルダンパー70A、70Dに伝わる。   Since the lower support member 60 has high rigidity, the lower support member 60 is displaced in the X direction by almost the same amount as the lower structure 20, and the upper support member 50 has high rigidity, so that it is substantially stationary with the upper structure 10. Accordingly, the relative displacement generated between the upper structure 10 and the lower structure 20 is efficiently transmitted to the oil dampers 70A and 70D.

このとき、オイルダンパー70Aは、上部ブラケット76Hを介して上部支持部材50に、下部ブラケット75Fを介して下部支持部材60に、取り付けられているため、相対変位を引張力で受ける形となる。   At this time, since the oil damper 70A is attached to the upper support member 50 via the upper bracket 76H and to the lower support member 60 via the lower bracket 75F, the oil damper 70A receives a relative displacement with a tensile force.

一方、オイルダンパー70Dは、上部ブラケット76Iを介して上部支持部材50に、下部ブラケット75Gを介して下部支持部材60に、取り付けられているため、相対変位を圧縮力で受ける形となる。   On the other hand, since the oil damper 70D is attached to the upper support member 50 via the upper bracket 76I and to the lower support member 60 via the lower bracket 75G, the oil damper 70D receives relative displacement with a compressive force.

このため、オイルダンパー70Aには、オイルダンパー70Aのロッド部のピン孔位置とシリンダー部のピン孔位置との距離を広げようとする力が作用し、オイルダンパー70Dには、オイルダンパー70Dのロッド部のピン孔位置とシリンダー部のピン孔位置との距離を縮めようとする力が作用する。   Therefore, a force is applied to the oil damper 70A to increase the distance between the pin hole position of the rod portion of the oil damper 70A and the pin hole position of the cylinder portion, and the rod of the oil damper 70D is applied to the oil damper 70D. A force acts to reduce the distance between the pin hole position of the part and the pin hole position of the cylinder part.

このとき、オイルダンパー70Aの内部に配置されたピストンは、引張力を受けて広がる方向に移動しようとする、一方、内部に充填されているオイルは、ピストンの移動を妨げる方向に作用する。このため、オイルの抵抗力で地震エネルギーが吸収され、上部構造体10と下部構造体20との間の相対変位の増大が抑制される。   At this time, the piston disposed inside the oil damper 70A attempts to move in a direction that expands by receiving a tensile force, while the oil filled inside acts in a direction that prevents movement of the piston. For this reason, seismic energy is absorbed by the resistance of oil, and an increase in relative displacement between the upper structure 10 and the lower structure 20 is suppressed.

これに対し、オイルダンパー70Dの内部に配置されたピストンは、圧縮力を受けて縮められる方向に移動しようとする。一方、内部に充填されているオイルは、ピストンの動きを妨げる方向に作用する。このため、オイルの抵抗力で地震エネルギーが吸収され、上部構造体10と下部構造体20との間の相対変位の増大が抑制される。   On the other hand, the piston arranged inside the oil damper 70D tends to move in a direction in which it is contracted by receiving a compressive force. On the other hand, the oil filled inside acts in a direction that hinders the movement of the piston. For this reason, seismic energy is absorbed by the resistance of oil, and an increase in relative displacement between the upper structure 10 and the lower structure 20 is suppressed.

下部構造体10が逆方向に動く場合、オイルダンパー70A、70Dが相対変位で受ける力は、上述とは逆方向となり、引張力と圧縮力を入れ替えた形で作用し、上部構造体10と下部構造体20との間の相対変位の増大が抑制される。
この結果、既存建物を制振することができる。
When the lower structure 10 moves in the opposite direction, the forces received by the oil dampers 70A and 70D by the relative displacement are in the opposite directions, acting in a form in which the tensile force and the compression force are switched, and the upper structure 10 and the lower structure 10 An increase in relative displacement with respect to the structure 20 is suppressed.
As a result, the existing building can be controlled.

また、オイルダンパー70A、70B、70C、70Dは、柱30の周囲に、柱30の側面と所定の隙間S3をあけて配置してあるため、X方向のみでなく、水平2方向の地震力を吸収でき、既存建物を制振することができる。   In addition, since the oil dampers 70A, 70B, 70C, and 70D are arranged around the pillar 30 with a predetermined gap S3 from the side face of the pillar 30, the seismic force in two horizontal directions as well as the X direction is provided. Absorbs and can dampen existing buildings.

また、耐震補強構造90において、地震エネルギーを吸収させるダンパー40をオイルダンパー70A、70B、70C、70Dとしたことで、繰り返し使用が可能となる、市販品が使用でき性能が安定する、上部ブラケット76H、76I及び下部ブラケット75F、75Gへの取り付け、取り外しが簡単にできるためメンテナンスが容易である等の効果も期待できる。   Further, in the seismic reinforcement structure 90, the damper 40 that absorbs the seismic energy is the oil dampers 70A, 70B, 70C, 70D, so that it can be used repeatedly, a commercially available product can be used, and the performance is stable. , 76I and the lower brackets 75F and 75G can be easily attached and detached, so that an effect such as easy maintenance can be expected.

本発明の第1の実施の形態に係る既存構造物の耐震補強構造を示す図である。It is a figure which shows the earthquake-proof reinforcement structure of the existing structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造を示す要部説明図である。It is principal part explanatory drawing which shows the earthquake-proof reinforcement structure of the existing structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造を示す説明図である。It is explanatory drawing which shows the earthquake-proof reinforcement structure of the existing structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the earthquake-proof reinforcement structure of the existing structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造の効果検証に用いたモデル建物の長辺方向の軸組図である。It is an axis set figure of the long side direction of a model building used for verification of the effect of the earthquake-proof reinforcement structure of the existing structure concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造の効果検証に用いたモデル建物の短辺方向の軸組図である。It is an axis set figure of the short side direction of a model building used for verification of the effect of the earthquake-proof reinforcement structure of the existing structure concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造の効果検証に用いた建物の1階の伏図である。It is a floor plan of the 1st floor of the building used for verification of the effect of the earthquake-proof reinforcement structure of the existing structure concerning the 1st embodiment of the present invention. 効果検証に用いた本発明の第1の実施の形態に係る既存構造物の耐震補強構造を示す図である。It is a figure which shows the earthquake-proof reinforcement structure of the existing structure which concerns on the 1st Embodiment of this invention used for effect verification. 本発明の第1の実施の形態に係る既存構造物の耐震補強構造の効果検証結果を示す図である。It is a figure which shows the effect verification result of the earthquake-proof reinforcement structure of the existing structure which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る既存構造物の耐震補強構造を示す図である。It is a figure which shows the earthquake-proof reinforcement structure of the existing structure which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 上部構造体
20 下部構造体
30 柱
40 ダンパー
50 上部支持部材
60 下部支持部材
90 耐震補強構造
DESCRIPTION OF SYMBOLS 10 Upper structure 20 Lower structure 30 Column 40 Damper 50 Upper support member 60 Lower support member 90 Seismic reinforcement structure

Claims (5)

上部構造体と下部構造体との間に配置され、既存建物を耐震補強する耐震補強構造において、
前記上部構造体と前記下部構造体との間に設けられた柱を囲んで配置されたダンパーと、
前記ダンパーを前記上部構造体と前記下部構造体とに固定する固定手段と、
を有することを特徴とする既存建物の耐震補強構造。
In the seismic reinforcement structure that is arranged between the upper structure and the lower structure and seismically strengthens existing buildings,
A damper disposed around a column provided between the upper structure and the lower structure;
Fixing means for fixing the damper to the upper structure and the lower structure;
A seismic reinforcement structure for an existing building, characterized by comprising:
前記固定手段は、上端が前記上部構造体に固定され、所定の隙間をあけて前記柱を囲む閉断面の上部支持部材と、
下端が前記下部構造体に固定され、所定の隙間をあけて前記柱を囲む閉断面の下部支持部材と、で構成され、
前記上部支持部材の下端と前記ダンパーの上端とを接合し、前記下部支持部材の上端と前記ダンパーの下端とを接合したことを特徴とする請求項1に記載の既存建物の耐震補強構造。
The fixing means has an upper support member with a closed cross section that is fixed at the upper end to the upper structure and surrounds the pillar with a predetermined gap therebetween.
The lower end is fixed to the lower structure, and is composed of a lower support member having a closed cross section surrounding the column with a predetermined gap,
The seismic reinforcement structure for an existing building according to claim 1, wherein the lower end of the upper support member and the upper end of the damper are joined, and the upper end of the lower support member and the lower end of the damper are joined.
前記上部支持部材及び前記下部支持部材を鋼板で構成し、端部を接合して閉断面としたことを特徴とする請求項2に記載の既存建物の耐震補強構造。 The seismic reinforcement structure for an existing building according to claim 2, wherein the upper support member and the lower support member are made of steel plates, and end portions are joined to form a closed cross section. 前記ダンパーを、前記柱の側面と所定の隙間をあけて対向する複数の鋼板で構成したことを特徴とする請求項2に記載の既存建物の耐震補強構造。 The seismic reinforcement structure for an existing building according to claim 2, wherein the damper is composed of a plurality of steel plates facing the side surfaces of the pillar with a predetermined gap. 前記ダンパーを、前記柱の側面と所定の隙間をあけて対向する複数の粘弾性部材で構成したことを特徴とする請求項2に記載の既存建物の耐震補強構造。 The seismic reinforcement structure for an existing building according to claim 2, wherein the damper is composed of a plurality of viscoelastic members facing the side surface of the column with a predetermined gap.
JP2007142407A 2007-05-29 2007-05-29 Seismic reinforcing structure of existing building Pending JP2008297727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142407A JP2008297727A (en) 2007-05-29 2007-05-29 Seismic reinforcing structure of existing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142407A JP2008297727A (en) 2007-05-29 2007-05-29 Seismic reinforcing structure of existing building

Publications (1)

Publication Number Publication Date
JP2008297727A true JP2008297727A (en) 2008-12-11

Family

ID=40171492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142407A Pending JP2008297727A (en) 2007-05-29 2007-05-29 Seismic reinforcing structure of existing building

Country Status (1)

Country Link
JP (1) JP2008297727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046766A (en) * 2013-01-14 2013-04-17 北京筑福建设工程有限责任公司 Method for lengthening columns, adding beams, resisting earthquakes and reinforcing for bottom frame structure
CN103669896A (en) * 2013-10-23 2014-03-26 北京工业大学 Method for reinforcing structures through method of externally pasting reinforced concrete frame with ductility column energy dissipators
JP2019031815A (en) * 2017-08-07 2019-02-28 株式会社竹中工務店 Structure seismic reinforcement structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046766A (en) * 2013-01-14 2013-04-17 北京筑福建设工程有限责任公司 Method for lengthening columns, adding beams, resisting earthquakes and reinforcing for bottom frame structure
CN103669896A (en) * 2013-10-23 2014-03-26 北京工业大学 Method for reinforcing structures through method of externally pasting reinforced concrete frame with ductility column energy dissipators
CN103669896B (en) * 2013-10-23 2015-12-30 北京工业大学 The method of outer adhesive tape ductility pile damper reinforced concrete frame method ruggedized construction
JP2019031815A (en) * 2017-08-07 2019-02-28 株式会社竹中工務店 Structure seismic reinforcement structure
JP7155488B2 (en) 2017-08-07 2022-10-19 株式会社竹中工務店 Structural Seismic Reinforcement Structure

Similar Documents

Publication Publication Date Title
TWI472670B (en) Method and structure for damping movement in buildings
JP5567094B2 (en) Long-period building
JP2022171747A (en) Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP2008297727A (en) Seismic reinforcing structure of existing building
JP3828695B2 (en) Seismic control wall of a three-story house
JPH09296625A (en) Building structure having earthquake-resistant construction
JP5918282B2 (en) Long-period building
JP4529564B2 (en) Seismic structure of suspended ceiling
JP7154328B2 (en) damping building
JP5946165B2 (en) Seismic reinforcement structure
KR102209624B1 (en) Seismic reinforcing structure
JP5727690B2 (en) Long-period building
JP2011038294A (en) Additional mass seismic response control building
JP2017101516A (en) Structure combining base isolation with vibration control
JP2010281171A (en) Building having vibration control reinforcing structure and vibration control reinforcing method
JP2012233374A5 (en)
JP6756441B2 (en) Vibration damping device and vibration damping structure of structure
JP3671311B2 (en) Damping and reinforcing structure for existing buildings
JP6364225B2 (en) Connected vibration control structure
JP5415093B2 (en) Vibration control structure
JP6535157B2 (en) Seismic structure, building panels and buildings
JP2010189903A (en) Damping frame for building
JP2018135655A (en) Damping building
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same