JP5415093B2 - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP5415093B2
JP5415093B2 JP2009019271A JP2009019271A JP5415093B2 JP 5415093 B2 JP5415093 B2 JP 5415093B2 JP 2009019271 A JP2009019271 A JP 2009019271A JP 2009019271 A JP2009019271 A JP 2009019271A JP 5415093 B2 JP5415093 B2 JP 5415093B2
Authority
JP
Japan
Prior art keywords
load
foundation beam
foundation
bearing panel
damping member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019271A
Other languages
Japanese (ja)
Other versions
JP2010174534A (en
Inventor
雅人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2009019271A priority Critical patent/JP5415093B2/en
Publication of JP2010174534A publication Critical patent/JP2010174534A/en
Application granted granted Critical
Publication of JP5415093B2 publication Critical patent/JP5415093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、中規模地震時の制振効果を基礎梁よりも上部に構成された上部構造に依存しないようにした制振構造に関するものである。   The present invention relates to a vibration damping structure in which the vibration damping effect at the time of a medium-scale earthquake does not depend on the upper structure formed above the foundation beam.

ブレースや耐力壁、耐力パネル等の耐震要素を有する建物に地震等の水平力が作用した場合、耐震要素下端の水平力の作用方向側には耐力パネル下部横架材を押し下げようとする力が作用し、水平力の作用方向とは逆側には下部横架材を浮き上がらせようとする力が作用する。1階に設置される耐力パネルの場合この力は基礎に伝達される為、基礎にはこの力に耐え得る強度と剛性が必要である。   When a horizontal force such as an earthquake is applied to a building that has seismic elements such as braces, bearing walls, and load-bearing panels, the force that pushes down the lower horizontal member of the load-bearing panel is applied to the direction of the horizontal force at the bottom of the seismic element. A force acts to lift the lower horizontal member on the side opposite to the direction in which the horizontal force acts. In the case of a load-bearing panel installed on the first floor, this force is transmitted to the foundation, so the foundation must have strength and rigidity that can withstand this force.

戸建て住宅等の低層で軽量な木造や鉄骨造の建物の基礎梁として、鋼製の基礎梁とフーチング、ベタ基礎(耐圧盤)、杭等とを組み合わせて構成される、いわゆる鉄骨基礎(鋼製基礎)と呼ばれる基礎が存在する。鉄骨基礎は、鉄筋コンクリートで一体的に構築される一般的な基礎に比べて工期を短くすることができる、基礎梁のリサイクルやリユースが容易である、解体時の廃棄物の量を減らすことができる、といった点で優れている。しかし、一般的な基礎に比べて剛性が低いので、水平力が作用した際の耐震要素の剛体変形に追従してしまい、耐震要素が本来有する性能を発揮しにくいという問題がある。また、腐蝕を防止する為に鋼製基礎梁を地盤から離した場合、基礎梁のせいが確保しにくくなり剛性の確保が更に難しくなる。   The so-called steel foundation (steel), which is composed of a combination of steel foundation beams and footings, solid foundations (pressure panels), piles, etc., as the foundation beams for low-rise, lightweight wooden and steel buildings such as detached houses There is a foundation called (foundation). Steel foundation can shorten construction period compared with general foundation constructed integrally with reinforced concrete, easy to recycle and reuse foundation beams, and reduce the amount of waste at the time of dismantling It is excellent in the point. However, since the rigidity is lower than that of a general foundation, there is a problem that it follows the rigid deformation of the seismic element when a horizontal force is applied, and it is difficult to exhibit the inherent performance of the seismic element. Further, when the steel foundation beam is separated from the ground in order to prevent corrosion, it is difficult to secure the blame of the foundation beam, and it becomes more difficult to ensure rigidity.

特許文献1には、連層のブレースを有する架構において、杭と縁切りされた柱や基礎梁の下端の凸部と杭上端の凹部とを嵌め合わせて、水平力が作用した場合に一方の柱が杭に対して浮き上がるようにし、更に凸部の垂直面と凹部の垂直面の間に粘弾性体等のエネルギー吸収装置を設けた制震(「制振」と同義)構造の記載がある。この技術によれば、水平力が作用し一方の柱が浮き上がった時にエネルギー吸収装置が減衰性能を発揮し浮き上がり量が制御されることによって制振効果が期待される。   In Patent Literature 1, in a frame having a multi-layer brace, when a horizontal force is applied by fitting a pillar cut off from a pile or a convex part at the lower end of the foundation beam and a concave part at the upper end of the pile, There is a description of a vibration control (synonymous with “vibration control”) structure in which an energy absorbing device such as a viscoelastic body is provided between the vertical surface of the convex portion and the vertical surface of the concave portion. According to this technique, when the horizontal force is applied and one of the pillars is lifted, the energy absorbing device exhibits a damping performance, and the amount of lifting is controlled, so that a damping effect is expected.

特開2002−276192号公報JP 2002-276192 A

しかしながら、特許文献1に記載された技術では、柱が浮き上がる場合のみエネルギー吸収装置の減衰性能が発揮される。しかし、柱が下方に押し込まれる場合は凸部の水平面と凹部の水平面は接触したままでありエネルギー吸収装置の減衰性能が発揮されない。   However, in the technique described in Patent Document 1, the attenuation performance of the energy absorbing device is exhibited only when the column is lifted. However, when the column is pushed downward, the horizontal surface of the convex portion and the horizontal surface of the concave portion remain in contact with each other, and the attenuation performance of the energy absorbing device is not exhibited.

本発明の目的は、鉄骨基礎のメリットを損なうことなく、地震等の水平力に対する安全性の高い制振構造、特に中規模地震時の制振効果を上部構造に依存しない制振構造を提供することにある。   The object of the present invention is to provide a vibration damping structure that is highly safe against horizontal forces such as earthquakes, and in particular, does not depend on the superstructure for the damping effect during a medium-scale earthquake without impairing the merit of the steel foundation. There is.

上記課題を解決するために本発明に係る制振構造は、建物荷重支持部上に設置された束で支持された基礎梁と、前記基礎梁と第1層梁との間に所定間隔で立設された一対の柱と、該一対の柱を連結する連結部と、からなる耐力パネルと、前記耐力パネルを構成する一対の柱の両方あるいは一方の下方で、且つ、前記建物荷重支持部と前記基礎梁との間の位置に介装され、前記基礎梁の上下方向の変位を減衰させる制振部材と、からなることを特徴とするものである。なおここで、建物荷重支持部とは、フーチング、ベタ基礎(耐圧盤)、杭等の建物の上部構造の荷重を支持し地盤に伝達する部位のことである。   In order to solve the above-described problems, a vibration damping structure according to the present invention includes a foundation beam supported by a bundle installed on a building load support portion, and a vertical gap between the foundation beam and the first layer beam. A load-bearing panel comprising a pair of provided columns, a connecting portion that connects the pair of columns, and a lower part of one or both of the pair of columns constituting the load-bearing panel, and the building load support portion. And a damping member that is interposed at a position between the base beam and attenuates the vertical displacement of the base beam. Here, the building load support portion is a portion that supports the load of the upper structure of the building such as a footing, a solid foundation (pressure board), and a pile and transmits it to the ground.

上記制振構造に於いて、前記基礎梁は、前記制振部材によって、変形が常に弾性域内に留まるように構成され、前記耐力パネルを構成する連結部は、弾塑性変形してエネルギー吸収するエネルギー吸収部を備え、所定の大きさ以下の地震時には、前記制振部材によってエネルギー吸収がなされ、所定の大きさを超える地震時には、前記制振部材及び塑性変形する前記耐力パネルのエネルギー吸収部によってエネルギー吸収がなされることを特徴とするものである。   In the above vibration damping structure, the foundation beam is configured so that the deformation always remains in the elastic region by the vibration damping member, and the connecting portion constituting the load-bearing panel is elastically plastically deformed to absorb energy. In the event of an earthquake of a predetermined size or less, the energy absorption is performed by the damping member, and in the event of an earthquake exceeding a predetermined size, energy is absorbed by the damping member and the energy absorbing portion of the load-bearing panel that is plastically deformed. It is characterized by absorption.

本発明に係る制振構造では、基礎梁の上下方向の変位を減衰させる制振部材を、建物荷重支持部と基礎梁との間であり、地震時に基礎梁の上下方向の変位が大きくなる部位である耐力パネルを構成する柱の下に介装したので、エネルギー吸収を効果に行うことができ、制振効果が最大限に発揮される。   In the vibration damping structure according to the present invention, the vibration damping member that attenuates the vertical displacement of the foundation beam is between the building load support portion and the foundation beam, and the portion in which the vertical displacement of the foundation beam increases during an earthquake. Because it is placed under the pillars that make up the load-bearing panel, energy can be absorbed effectively, and the damping effect is maximized.

更に、耐力パネルを構成する柱の下に制振部材を配置したので、該柱に作用する下向きの鉛直力の一部が制振部材によって負担され、建物荷重支持部が負担する鉛直荷重を低減することができる。   In addition, since the damping member is placed under the pillar that constitutes the load-bearing panel, part of the downward vertical force acting on the pillar is borne by the damping member, reducing the vertical load borne by the building load support section. can do.

また、中地震(耐力パネルに層間変形角が1/200まで許容される地震)の際には、基礎梁下の制振部材によって制振効果が発生するので、中地震時に耐力パネルで制振する必要がなく、耐力パネルの設計自由度が向上する。   In addition, in the case of a middle earthquake (earthquake where the interlayer deformation angle is allowed to 1/200 in the load-bearing panel), the damping effect is generated by the damping member under the foundation beam. This increases the degree of freedom in designing the load-bearing panel.

本発明に係る制振構造を模式的に説明する図である。It is a figure which illustrates the vibration control structure concerning the present invention typically. 制振部材の構成を説明すると共に耐力パネルとの関係位置を説明する図である。It is a figure explaining the structure of a damping member, and explaining the relative position with a load-bearing panel. 地震時の挙動を説明する図である。It is a figure explaining the behavior at the time of an earthquake. 地震時の制振部材の挙動を説明する図である。It is a figure explaining the behavior of the damping member at the time of an earthquake. 制振部材の他の例の構成を説明する図である。It is a figure explaining the structure of the other example of a damping member.

本発明に係る制振構造は、基礎工法の合理化をはかり、中規模地震時の制振効果を上部構造に依存しない制振構造を実現することにより、上部構造の耐力パネルの設計を容易にし得るようにしたものである。   The vibration damping structure according to the present invention can simplify the design of the load-bearing panel of the superstructure by rationalizing the foundation construction method and realizing a vibration damping structure that does not depend on the superstructure for the damping effect during a medium-scale earthquake. It is what I did.

図1に示す制振構造は、建物荷重支持部(ベタ基礎)1の上部に配置された束2に基礎梁3が支持されており、この基礎梁3と第1層梁4との間に一対の柱10a、10bとこれら一対の柱10a、10bを連結する連結部11とによって構成された耐力パネルAが配置され、耐力パネルAを構成する柱10bの下方で且つ基礎梁3とベタ基礎1との間に制振部材Bが配置されている。   In the vibration damping structure shown in FIG. 1, a foundation beam 3 is supported by a bundle 2 disposed on the upper part of a building load support portion (solid foundation) 1, and between the foundation beam 3 and the first layer beam 4. A load bearing panel A constituted by a pair of pillars 10a and 10b and a connecting portion 11 connecting the pair of pillars 10a and 10b is arranged, below the pillar 10b constituting the load bearing panel A, and on the foundation beam 3 and a solid foundation. A damping member B is disposed between the first and second members.

本発明に於いて、建物の構造や層数は限定するものではなく、木造の躯体、或いは鉄骨造の躯体を有する2階建て、3階建て等の建物に適用することが可能である。本実施例では、梁勝ち工法の軸組の各層に耐力パネルAが配置された架構を有する2層の鉄骨造の工業化住宅に適用したものである。   In the present invention, the structure and the number of layers of the building are not limited, and the present invention can be applied to a two-story or three-story building having a wooden frame or a steel frame. In this embodiment, the present invention is applied to a two-layered steel-frame industrial house having a frame in which a load-bearing panel A is arranged in each layer of the beam-winning method.

建物荷重支持部1は建物の荷重を支持し該荷重を地盤に伝達し得る構造体であり、フーチング、ベタ基礎(耐圧盤)杭等を選択的に採用することが可能である。本実施例では、建物荷重支持部1として鉄筋コンクリート製のベタ基礎1を採用している。   The building load support unit 1 is a structure that can support the load of the building and transmit the load to the ground, and can selectively employ footing, a solid foundation (pressure board) pile, or the like. In this embodiment, a solid foundation 1 made of reinforced concrete is employed as the building load support portion 1.

基礎梁3は束2によって支持されることで、ベタ基礎1から離隔して配置されている。基礎梁3が如何なる位置で束2によって支持されるか、何ヶ所で支持されるかは限定するものではなく、少なくとも制振部材Bが設置されない状態で安定して支持されれば良い。   The foundation beam 3 is supported by the bundle 2 so as to be spaced apart from the solid foundation 1. The position at which the foundation beam 3 is supported by the bundle 2 and the position at which the foundation beam 3 is supported is not limited, and it is sufficient that the foundation beam 3 is stably supported at least without the vibration damping member B being installed.

基礎梁3としては、建物の躯体構造に対応させて鋼製梁或いは木製梁等を選択的に採用することが可能である。本実施例では、H形鋼からなる鋼製梁によって基礎梁3を構成している。また、基礎梁3は第1層梁4と同じ梁せいを持つ同一仕様のH形鋼によって構成されている。このため、梁の品種を多くすることがなく、製造上、管理上の合理化をはかることが可能となる。   As the foundation beam 3, a steel beam, a wooden beam, or the like can be selectively employed in accordance with the building structure of the building. In this embodiment, the foundation beam 3 is constituted by a steel beam made of H-shaped steel. Further, the foundation beam 3 is made of the same specification H-shaped steel having the same beam length as the first layer beam 4. For this reason, it is possible to rationalize manufacturing and management without increasing the number of beam types.

基礎梁3と第1層梁4の間であって、平面上の所定位置に耐力要素となる耐力パネルAが配置されている。この耐力パネルAは、中地震時には弾性挙動し、大地震時には塑性化してエネルギーを吸収する機能を有するものであり、既存の耐力パネルをそのまま採用することが可能である。   A load bearing panel A serving as a load bearing element is disposed at a predetermined position on the plane between the foundation beam 3 and the first layer beam 4. The load-bearing panel A has a function of elastically acting during a medium earthquake and plasticizing and absorbing energy during a large earthquake, and an existing load-bearing panel can be used as it is.

本実施例に於いて、耐力パネルAは、所定の間隔をもって配置され、上下の端部が夫々基礎梁3と第1層梁4に対しボルトによってピン接合された一対の柱10a、10bと、一対の柱10a、10bの内部側に配置され、これらの柱10a、10bを連結する連結部11とによって構成されている。   In this embodiment, the load-bearing panel A is arranged with a predetermined interval, and a pair of columns 10a and 10b whose upper and lower ends are pin-connected to the foundation beam 3 and the first layer beam 4 by bolts, respectively, It arrange | positions at the inner side of a pair of pillar 10a, 10b, and is comprised by the connection part 11 which connects these pillar 10a, 10b.

基礎梁3と第1層梁4の間に於ける耐力パネルAの配置位置は限定するものではなく、躯体の設計時に適宜設定すべき事項である。本実施例では、耐力パネルAは建物の出隅部に配置されており、一方の柱10aの下方に制振部材Bが配置され、他方の柱10bの下方には束2が配置されると共に上方には第2層の柱5が配置されている。従って、他方の柱10bは、一般部の柱と同様の機能をも有するものである。   The arrangement position of the load-bearing panel A between the foundation beam 3 and the first layer beam 4 is not limited, and should be set as appropriate when designing the frame. In the present embodiment, the load-bearing panel A is disposed at the corner of the building, the damping member B is disposed below the one column 10a, and the bundle 2 is disposed below the other column 10b. A second-layer pillar 5 is disposed above. Therefore, the other pillar 10b has the same function as the pillar of the general part.

連結部11はエネルギーの吸収機能を有し、一対の柱10a、10bの間で縦方向に2組取り付けられている。   The connecting portion 11 has an energy absorbing function, and two sets are attached in the vertical direction between the pair of pillars 10a and 10b.

連結部11は、一対の柱10a、10bに沿って取り付けられた一対の枠材12と、一対の枠材12どうしを連結するエネルギー吸収材13とからなる。枠材12は、縦枠12aと、一端が縦枠12aの高さ方向の中心位置に接合されて該縦枠12aとは直角をなす水平枠12bと、一端が縦枠12aの上下端と接合され他端が水平枠12bの他端と連結板を介して接合されることで斜めに配置された斜め枠12cと、からなり、枠材12は全体として二等辺三角形をなしており、高い剛性を有している。連結板にはボルト孔が穿設されており、このボルト孔を利用して枠材12を構成する水平枠12b、斜め枠12cが接合され、更に連結板どうしがエネルギー吸収材13にて連結されている。   The connection part 11 consists of a pair of frame material 12 attached along a pair of pillar 10a, 10b, and the energy absorption material 13 which connects a pair of frame material 12. The frame member 12 has a vertical frame 12a, a horizontal frame 12b whose one end is bonded to the center position in the height direction of the vertical frame 12a and perpendicular to the vertical frame 12a, and one end bonded to the upper and lower ends of the vertical frame 12a. And the other end of the horizontal frame 12b is joined to the other end of the horizontal frame 12b through a connecting plate, and the frame member 12 forms an isosceles triangle as a whole, and has high rigidity. have. Bolt holes are drilled in the connecting plate, and the horizontal frame 12b and the oblique frame 12c constituting the frame member 12 are joined using the bolt holes, and the connecting plates are connected by the energy absorbing material 13. ing.

エネルギー吸収材13は、正面視蝶形の板状の極低降伏点鋼板からなり、くびれ部分が所定の値を越える外力によって降伏し、塑性変形することで地震力のエネルギーを吸収するように構成されている。エネルギー吸収材13の両端部にはボルト穴が穿設されており、このボルト穴を利用して枠材12の連結板とボルト接合されている。エネルギー吸収材13は、必要とされるエネルギー吸収量に応じて1または複数個連結し得るように構成されている。   The energy absorbing member 13 is made of a plate-like ultra-low yield point steel plate with a butterfly shape when viewed from the front, and the constricted portion yields by an external force exceeding a predetermined value, and is configured to absorb the energy of seismic force by plastic deformation. Has been. Bolt holes are drilled at both ends of the energy absorbing member 13, and the bolts are used to join the connecting plate of the frame member 12 with the bolts. One or more energy absorbing members 13 can be connected depending on the amount of energy absorption required.

なお、エネルギー吸収材13は、所定の外力により塑性変形しエネルギー吸収しうる普通鋼や低降伏点鋼で構成されていてもよい。   The energy absorbing member 13 may be made of ordinary steel or low yield point steel that can be plastically deformed and absorb energy by a predetermined external force.

束2の構造は特に限定するものではなく、基礎梁3の構造や材質に対応して適宜設定することが好ましい。本実施例では、鋼製の束2を採用している。また、第2層の柱5は、耐力パネルAを構成する柱10a、10bと同一構成の鋼製の柱を採用している。   The structure of the bundle 2 is not particularly limited, and is preferably set as appropriate according to the structure and material of the foundation beam 3. In this embodiment, a steel bundle 2 is employed. Moreover, the pillar 5 of the 2nd layer employ | adopts the steel pillar of the same structure as the pillars 10a and 10b which comprise the load-bearing panel A. FIG.

制振部材Bは、基礎梁3と第1層梁4の間に配置された耐力パネルAを構成する一対の柱10a、10bの両方、又は一方の下方であって、基礎梁3とベタ基礎1の間に配置され、地震時に柱10a、10bに作用する力に応じて生じる基礎梁3の鉛直方向の変位を減衰させる機能を有するものである。   The damping member B is a lower part of one or both of the pair of columns 10a and 10b constituting the load-bearing panel A arranged between the foundation beam 3 and the first layer beam 4, and the foundation beam 3 and the solid foundation 1 and has a function of attenuating the displacement in the vertical direction of the foundation beam 3 generated according to the force acting on the columns 10a and 10b during an earthquake.

制振部材Bとしては、地震時にエネルギーを吸収し前記減衰機能を発揮し得るものであればいかなるものも採用することが可能である。このような機能を有するものとしては、後述する制振部材Bのように鋼材の塑性変形を利用したものの他に、高減衰ゴム等の粘弾性体を利用した粘弾性ダンパー、オイル等の粘性体を利用した粘性ダンパー、摩擦を利用した摩擦ダンパー等がある。そして、これらの中から目的の建物の躯体構造や、基礎梁3に生じるであろう鉛直方向の変位量等の条件を検討して適したものを採用することが好ましい。   As the damping member B, any member can be employed as long as it can absorb energy and exhibit the above-described damping function in the event of an earthquake. What has such a function includes a viscoelastic damper using a viscoelastic body such as a high damping rubber, a viscous body such as oil, in addition to a member using plastic deformation of a steel material like a vibration damping member B described later. There are viscous dampers using friction and friction dampers using friction. Of these, it is preferable to adopt a suitable structure by examining conditions such as the frame structure of the target building and the amount of displacement in the vertical direction that would occur in the foundation beam 3.

本実施例では、制振部材Bは耐力パネルAを構成する柱10aの下方に配置されており、地震時に柱10aに上下方向の力(軸力)が作用し、この軸力に応じて生じる基礎梁3の上下方向の変位を減衰し得るように構成されている。   In this embodiment, the damping member B is disposed below the column 10a constituting the load-bearing panel A, and a vertical force (axial force) acts on the column 10a during an earthquake, and is generated according to this axial force. It is comprised so that the displacement of the up-down direction of the foundation beam 3 can be attenuated.

制振部材Bは、図2に示すように、平面視中央において基礎梁3に固定される変位部23と、変位部23を取り囲むように複数配置されベタ基礎1に固定される脚部26と、変位部23と脚部26とを連結する変形部24とを有する。変位部23は、基礎梁3の上下方向の変位に追従して変位する部位であり、想定される最大変位に基づいてその下方には空間25が形成されている。変形部24は、変位部21の変位に伴って中地震よりも大きな地震の際に塑性変形するように設計され、この際にエネルギー吸収する部位である。   As shown in FIG. 2, the damping member B includes a displacement portion 23 fixed to the foundation beam 3 in the center in plan view, and a plurality of leg portions 26 arranged to surround the displacement portion 23 and fixed to the solid foundation 1. And a deformation portion 24 that connects the displacement portion 23 and the leg portion 26. The displacement portion 23 is a portion that displaces following the displacement in the vertical direction of the foundation beam 3, and a space 25 is formed below it based on the assumed maximum displacement. The deformation part 24 is designed to be plastically deformed in the event of an earthquake larger than a middle earthquake in accordance with the displacement of the displacement part 21, and is a part that absorbs energy.

本実施例では、クランク形状の鋼板を4枚用意しこれらを平面視十字状に溶接等によって接合することで変位部23、脚部26、変形部24が形成されている。また、変形部24には、複数のスリット孔24aによって梯子状に形成され、せん断変形を生じやすいように構成されている。   In the present embodiment, four crank-shaped steel plates are prepared, and these are joined by welding or the like in a cross shape in plan view to form the displacement portion 23, the leg portion 26, and the deformation portion 24. Further, the deformable portion 24 is formed in a ladder shape by a plurality of slit holes 24a, and is configured to easily cause shear deformation.

また、脚部26の下端には、矩形状をなし、各隅部にベタ基礎1にボルト固定する為の複数のボルト穴21aが形成された下部板21が溶接等により取り付けられており、変位部23の上端には、下部板21と比較して小さい寸法を持った矩形状をなし、各隅部に基礎梁3の下フランジ3aにボルト固定する為の複数のボルト穴22aが形成された上部板22が溶接等により取り付けられている。従って、制振部材Bは、繰り返しの変形によって初期の性能が発揮されなくなった場合の交換作業を容易に行うことができる。   Further, a lower plate 21 having a rectangular shape and a plurality of bolt holes 21a for fixing the bolt to the solid base 1 at each corner is attached to the lower end of the leg 26 by welding or the like. At the upper end of the portion 23, a rectangular shape having a smaller size than the lower plate 21 is formed, and a plurality of bolt holes 22a for bolting to the lower flange 3a of the foundation beam 3 are formed at each corner. The upper plate 22 is attached by welding or the like. Therefore, the damping member B can be easily replaced when the initial performance is not exhibited due to repeated deformation.

上記の如く構成された制振構造を採用した建物が中地震を受けた場合、図3(a)及び図4に示すように、水平力に応じた柱10aからの下向きの力が基礎梁3伝えられて基礎梁3に下向きの変位が生じ、基礎梁3の変位に伴って制振部財Bの変位部23が下向きに変位する。そして、変位部23の変位に伴って変形部24に塑性域に達するせん断変形が生じ、このせん断変形によってエネルギーが吸収されて基礎梁3の変位が減衰する。   When the building adopting the vibration control structure configured as described above receives a middle earthquake, as shown in FIGS. 3A and 4, the downward force from the column 10 a corresponding to the horizontal force is applied to the foundation beam 3. Accordingly, a downward displacement is generated in the foundation beam 3, and the displacement portion 23 of the damping member B is displaced downward in accordance with the displacement of the foundation beam 3. Along with the displacement of the displacement portion 23, shear deformation that reaches the plastic region occurs in the deformation portion 24, and energy is absorbed by this shear deformation, and the displacement of the foundation beam 3 is attenuated.

また、逆方向(図の左方向)の水平力が作用した場合は、同様のメカニズムによって制振部財Bの変位部23が上向きに変位する。そして、変位部23の変位に伴って変形部24に逆方向の塑性域に達するせん断変形が生じ、このせん断変形によってエネルギーが吸収されて基礎梁3の下方への変位が減衰する。   Further, when a horizontal force in the reverse direction (left direction in the figure) is applied, the displacement portion 23 of the damping member B is displaced upward by the same mechanism. Along with the displacement of the displacement portion 23, shear deformation that reaches the plastic region in the opposite direction occurs in the deformation portion 24, and energy is absorbed by this shear deformation, and the downward displacement of the foundation beam 3 is attenuated.

一方、耐力パネルAは、層間変形に応じて枠材12が二等辺三角形の形状を維持したまま倒れ、連結部11の変形はエネルギー吸収材13に集約されるが、中地震の場合、エネルギー吸収材13の変形は弾性域内に留まり、塑性変形を生じることがない。   On the other hand, in the load-bearing panel A, the frame material 12 falls while maintaining the shape of an isosceles triangle according to the interlayer deformation, and the deformation of the connecting portion 11 is concentrated in the energy absorbing material 13. The deformation of the material 13 remains in the elastic region and does not cause plastic deformation.

上記建物が大地震を受けた場合、制振部材Bの挙動は中地震を受けた場合と同様である。一方、耐力パネルAについては、図3(b)に示すように、耐力パネルAに作用する水平力が大きくなり、これに伴って層間変形も大きくなる。そして、連結部11を構成する一対の枠材12どうしを連結するエネルギー吸収材13が塑性変形を生じる。このように、制振部材Bのエネルギー吸収に加えてエネルギー吸収材13が塑性変形することにより、大地震の際にはより大きなエネルギーを吸収することができる。   When the building is subjected to a large earthquake, the behavior of the damping member B is the same as when a moderate earthquake is received. On the other hand, as shown in FIG. 3B, the horizontal force acting on the load-bearing panel A increases, and the interlayer deformation also increases with the load-bearing panel A. And the energy absorption material 13 which connects a pair of frame material 12 which comprises the connection part 11 produces a plastic deformation. Thus, in addition to the energy absorption of the damping member B, the energy absorber 13 is plastically deformed, so that a larger energy can be absorbed in the event of a large earthquake.

上記構成によれば、基礎梁3の上下方向の変位を減衰させる制振部材Bを、建物荷重支持部であるベタ基礎1と基礎梁3との間であり、地震時に基礎梁3の上下方向の変位が大きくなる部位である耐力パネルAを構成する柱10aの下に介装したので、エネルギー吸収を効果に行うことができ、制振効果が最大限に発揮される。   According to the above configuration, the damping member B that attenuates the displacement in the vertical direction of the foundation beam 3 is between the solid foundation 1 and the foundation beam 3 that are the building load support portions, and the vertical direction of the foundation beam 3 during an earthquake. Since it is interposed under the pillar 10a that constitutes the load bearing panel A, which is a portion where the displacement increases, energy can be absorbed effectively, and the vibration damping effect is maximized.

更に、耐力パネルAを構成する柱10aの下に制振部材Bを配置したので、柱10aに作用する下向きの鉛直力の一部が制振部材Bによって負担され、建物荷重支持部であるベタ基礎1が負担する鉛直荷重を低減することができる。   Furthermore, since the damping member B is arranged under the pillar 10a constituting the load-bearing panel A, a part of the downward vertical force acting on the pillar 10a is borne by the damping member B, and the solid load is a building load support portion. The vertical load borne by the foundation 1 can be reduced.

また、中地震の際には、基礎梁3下の制振部材Bによって制振効果が発生するので、中地震時に耐力パネルAで制振する必要がない。すなわち、中地震でエネルギー吸収材13が適度に塑性化して制振するように耐力パネルAを設計することは極めて難しいが、そのように設計する必要がなく、設計が容易な弾性変形に留める設計を行えばよい。従って、耐力パネルAの設計自由度が向上する。   Further, in the case of a middle earthquake, the damping effect is generated by the damping member B under the foundation beam 3, so that it is not necessary to suppress the vibration with the load-bearing panel A during the middle earthquake. That is, it is extremely difficult to design the load-bearing panel A so that the energy absorbing material 13 is appropriately plasticized and controlled in a middle earthquake, but it is not necessary to design such a design, and the design is limited to elastic deformation that is easy to design. Can be done. Therefore, the design freedom of the load-bearing panel A is improved.

また、基礎梁3は、制振部材Bによって変位が抑制されるので、剛性や耐力を小さく設定し経済的な設計をすることができる。また、大地震時に想定される最大変位時にも塑性変形することがないように基礎梁3を設計しておくことで、大地震時を受けた場合にも耐力パネルAのエネルギー吸収材13や制振部材Bの交換のみで性能が回復でき、基礎梁3の交換を伴う大規模な修復工事を行う必要がない。   Further, since the displacement of the foundation beam 3 is suppressed by the damping member B, it is possible to design economically by setting the rigidity and proof stress small. In addition, by designing the foundation beam 3 so as not to be plastically deformed even at the maximum displacement assumed at the time of a large earthquake, the energy absorbing material 13 of the load-bearing panel A or the control can be obtained even in the event of a large earthquake. The performance can be recovered only by exchanging the vibration member B, and there is no need to perform a large-scale restoration work involving the replacement of the foundation beam 3.

次に、制振部材Bの他の構成について図5により説明する。図に示す制振部材Bは、基礎梁3の変位を高減衰ゴム等の減衰部材によって減衰させるように構成されている。   Next, another structure of the damping member B will be described with reference to FIG. The vibration damping member B shown in the figure is configured to attenuate the displacement of the foundation beam 3 with an attenuation member such as a high attenuation rubber.

制振部材Bは、下端部がベタ基礎1に固定され上端部が開放されたシリンダー31と、上端部が基礎梁3の下フランジ3aに固定され下端部がシリンダー31の内部に挿通されたロッド32と、シリンダー31の内面ロッド32の外面に接着されて介装される減衰部材33と、を有して構成されている。   The damping member B includes a cylinder 31 whose lower end is fixed to the solid foundation 1 and whose upper end is opened, and a rod whose upper end is fixed to the lower flange 3a of the foundation beam 3 and whose lower end is inserted into the cylinder 31. 32 and a damping member 33 that is bonded to and interposed on the outer surface of the inner rod 32 of the cylinder 31.

上記の如く構成された制振部材Bでは、地震時に耐力パネルAを構成する柱10aに作用する軸力によって基礎梁3に上下方向への変位が生じたとき、この変位に伴ってロッド32が上下方向に移動し、この移動時に減衰部材33に変形が生じる。この変形によってエネルギーを吸収し基礎梁3の変位を減衰することができる。   In the damping member B configured as described above, when the base beam 3 is displaced in the vertical direction due to the axial force acting on the column 10a constituting the load-bearing panel A during an earthquake, the rod 32 is moved along with this displacement. It moves up and down, and the damping member 33 is deformed during this movement. This deformation can absorb energy and attenuate the displacement of the foundation beam 3.

本発明の制振構造は、鉄筋コンクリート以外の剛性が低く、且つリサイクルやリユースが容易な鉄骨造の躯体や、木造の躯体を持った建物の基礎に利用して有利である。   The vibration damping structure of the present invention is advantageous when used for the foundation of a building having a steel frame or a wooden frame that has low rigidity other than reinforced concrete and can be easily recycled and reused.

A 耐力パネル
B 制振部材
1 ベタ基礎(建物荷重支持部)
2 束
3 基礎梁
3a 下フランジ
4 第1層梁
5 柱
10a、10b 柱
11 連結部
12 枠材
12a 縦枠
12b 水平枠
12c 斜め枠
13 エネルギー吸収材
21 下部板
21a ボルト穴
22 上部板
22a ボルト穴
23 変位部
24 変形部
24a スリット孔
25 空間
26 脚部
31 シリンダー
32 ロッド
33 減衰部材
A Load-bearing panel B Damping member 1 Solid foundation (building load support)
2 Bundles 3 Foundation Beam 3a Lower Flange 4 First Layer Beam 5 Column 10a, 10b Column 11 Connection 12 Frame Material 12a Vertical Frame 12b Horizontal Frame 12c Diagonal Frame 13 Energy Absorbing Material 21 Lower Plate 21a Bolt Hole 22 Upper Plate 22a Bolt Hole 23 Displacement part 24 Deformation part 24a Slit hole 25 Space 26 Leg part 31 Cylinder 32 Rod 33 Damping member

Claims (2)

建物荷重支持部上に設置された束で支持された基礎梁と、
前記基礎梁と第1層梁との間に所定間隔で立設された一対の柱と、該一対の柱を連結する連結部と、からなる耐力パネルと、
前記耐力パネルを構成する一対の柱の両方あるいは一方の下方で、且つ、前記建物荷重支持部と前記基礎梁との間の位置に介装され、前記基礎梁の上下方向の変位を減衰させる制振部材と、からなることを特徴とする制振構造。
A foundation beam supported by a bundle installed on the building load support;
A load-bearing panel comprising a pair of columns erected at a predetermined interval between the foundation beam and the first layer beam, and a connecting portion that connects the pair of columns;
It is interposed under both or one of the pair of pillars constituting the load-bearing panel and at a position between the building load support portion and the foundation beam, and suppresses the vertical displacement of the foundation beam. A vibration damping structure comprising: a vibration member.
前記基礎梁は、前記制振部材によって、変形が常に弾性域内に留まるように構成され、
前記耐力パネルを構成する連結部は、弾塑性変形してエネルギー吸収するエネルギー吸収部を備え、
所定の大きさ以下の地震時には、前記制振部材によってエネルギー吸収がなされ、
所定の大きさを超える地震時には、前記制振部材及び塑性変形する前記耐力パネルのエネルギー吸収部によってエネルギー吸収がなされることを特徴とする請求項1に記載した制振構造。
The foundation beam is configured so that the deformation always remains in the elastic region by the damping member,
The connecting portion constituting the load-bearing panel includes an energy absorbing portion that absorbs energy by elastic-plastic deformation,
During an earthquake of a predetermined magnitude or less, energy is absorbed by the vibration damping member,
2. The vibration damping structure according to claim 1, wherein energy is absorbed by the vibration damping member and an energy absorbing portion of the load-bearing panel that is plastically deformed in the event of an earthquake exceeding a predetermined magnitude.
JP2009019271A 2009-01-30 2009-01-30 Vibration control structure Active JP5415093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019271A JP5415093B2 (en) 2009-01-30 2009-01-30 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019271A JP5415093B2 (en) 2009-01-30 2009-01-30 Vibration control structure

Publications (2)

Publication Number Publication Date
JP2010174534A JP2010174534A (en) 2010-08-12
JP5415093B2 true JP5415093B2 (en) 2014-02-12

Family

ID=42705760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019271A Active JP5415093B2 (en) 2009-01-30 2009-01-30 Vibration control structure

Country Status (1)

Country Link
JP (1) JP5415093B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6142181B2 (en) * 2013-03-12 2017-06-07 株式会社テージーケー Expansion valve and anti-vibration spring

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256025B2 (en) * 1993-05-24 2002-02-12 旭化成株式会社 Elasto-plastic energy absorber of frame
JPH09100537A (en) * 1995-10-06 1997-04-15 Kajima Corp Foundation structure of building
JPH09100538A (en) * 1995-10-06 1997-04-15 Kajima Corp Foundation structure for building
JP3037177U (en) * 1996-10-24 1997-05-06 純夫 浜川 Earthquake-proof structure in a detached house

Also Published As

Publication number Publication date
JP2010174534A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
JP4587386B2 (en) Seismic reinforcement structure for existing buildings
JP4585046B1 (en) Post restraint device in seismic retrofitting frame
JP6136680B2 (en) Damping damper for building and damping structure of building
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
JP4838554B2 (en) Boiler damping support structure
JP4038472B2 (en) Seismic retrofitting frame for existing buildings and seismic control structures using the same
JP5483525B2 (en) Seismic wall
JP5132503B2 (en) Seismic structure and building
JP2014194116A (en) Vibration control structure of building
JP7270134B2 (en) Pier structure of road bridge
JP5415093B2 (en) Vibration control structure
JPH10220062A (en) Vibration damping structure for building
JP7154328B2 (en) damping building
KR102209624B1 (en) Seismic reinforcing structure
JP6414877B2 (en) Reinforcement structure and building
JP6833292B2 (en) Roof seismic structure
JP2008297727A (en) Seismic reinforcing structure of existing building
JP2016084701A (en) Vibration control building
JP5159487B2 (en) Seismic control column construction method, seismic control column, and building structure
JP4698389B2 (en) Seismic retrofit equipment and seismic retrofit method for buildings
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP6535157B2 (en) Seismic structure, building panels and buildings
JP6749081B2 (en) Vibration control structure
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350