JP5132503B2 - Seismic structure and building - Google Patents

Seismic structure and building Download PDF

Info

Publication number
JP5132503B2
JP5132503B2 JP2008242730A JP2008242730A JP5132503B2 JP 5132503 B2 JP5132503 B2 JP 5132503B2 JP 2008242730 A JP2008242730 A JP 2008242730A JP 2008242730 A JP2008242730 A JP 2008242730A JP 5132503 B2 JP5132503 B2 JP 5132503B2
Authority
JP
Japan
Prior art keywords
earthquake
corrugated steel
horizontal member
seismic
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008242730A
Other languages
Japanese (ja)
Other versions
JP2010071044A (en
Inventor
藍 卜部
義弘 太田
満 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2008242730A priority Critical patent/JP5132503B2/en
Publication of JP2010071044A publication Critical patent/JP2010071044A/en
Application granted granted Critical
Publication of JP5132503B2 publication Critical patent/JP5132503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、建物の層を構成する上部水平部材と下部水平部材との間に耐震部材を配置して構成された耐震構造、及び建物に関する。   The present invention relates to an earthquake-resistant structure configured by arranging an earthquake-resistant member between an upper horizontal member and a lower horizontal member constituting a building layer, and a building.

建物における耐震要素としては、柱と水平部材とからなる架構に配置された鉄筋コンクリート造の耐震壁(以下、「RC耐震壁」という)や、架構を構成する柱と柱との間に斜めに架け渡されるブレース(筋交い)等が知られている。しかしながら、その設置場所は通常架構の構面に限定されている。   Seismic elements in buildings include reinforced concrete seismic walls (hereinafter referred to as “RC seismic walls”) arranged on a frame composed of columns and horizontal members, and slanted between columns and columns that constitute the frame. The braces that are handed over are known. However, the installation location is usually limited to the frame structure.

また、特許文献1には、鋼板を波形形状に加工した波形鋼板を、その折り筋を横にして架構の構面に配置した波形鋼板耐震壁が提案されている。この波形鋼板耐震壁は、鉛直方向にアコーディオンのように伸縮するため鉛直力を負担しないが、水平力に対しては抵抗可能であり、せん断剛性・せん断耐力を確保しつつ優れた変形性能を有している。更に、せん断剛性・せん断耐力については、鋼板の材質強度、板厚、重ね合わせ枚数、波形のピッチ、波高等を変えることにより調整可能であり、設計自由度の高い耐震壁を実現している。   Patent Document 1 proposes a corrugated steel shear wall in which a corrugated steel sheet obtained by processing a steel sheet into a corrugated shape is arranged on the frame surface of the frame with its fold line being lateral. This corrugated steel shear wall does not bear vertical force because it extends and contracts like an accordion in the vertical direction, but it can resist horizontal force and has excellent deformation performance while ensuring shear rigidity and shear strength. doing. Furthermore, the shear rigidity and shear strength can be adjusted by changing the material strength, thickness, number of overlapping sheets, corrugated pitch, wave height, etc. of the steel sheet, realizing a seismic wall with a high degree of design freedom.

更に、特許文献2には、図25に示すように、架構の構面外に波形鋼板を配置した耐震構造312が開示されている。この耐震構造312は、波形鋼板318を備えており、この波形鋼板318は、大梁316及び柱314に支持された上下のスラブ326の間に配置されている。波形鋼板318の左右の端辺には、縦フランジ320が設けられると共に、上下の端辺に沿って横フランジ322が設けられている。これらの縦フランジ320と横フランジ322とは、その端部同士が接合され、波形鋼板318の外周を囲う枠体324を構成している。このように構成された波形鋼板318は、ボルト328A及びナット328Bにより横フランジ322をスラブ326に接合することで、上下のスラブ326の間に設置されている。即ち、特許文献2の耐震構造312では、架構の構面外に波形鋼板318を設置することで、波形鋼板318の設置位置の自由度を向上させている。   Furthermore, Patent Document 2 discloses an earthquake-resistant structure 312 in which corrugated steel plates are arranged outside the frame surface as shown in FIG. The seismic structure 312 includes a corrugated steel plate 318, and the corrugated steel plate 318 is disposed between the upper and lower slabs 326 supported by the large beam 316 and the column 314. A vertical flange 320 is provided on the left and right edges of the corrugated steel sheet 318, and a horizontal flange 322 is provided along the upper and lower edges. The ends of the vertical flange 320 and the horizontal flange 322 are joined together to form a frame body 324 that surrounds the outer periphery of the corrugated steel plate 318. The corrugated steel plate 318 configured as described above is installed between the upper and lower slabs 326 by joining the horizontal flange 322 to the slab 326 with bolts 328A and nuts 328B. That is, in the earthquake-resistant structure 312 of Patent Document 2, the degree of freedom of the installation position of the corrugated steel sheet 318 is improved by installing the corrugated steel sheet 318 outside the frame structure.

ここで、地震荷重等によって架構を構成する上下のスラブ326に相対変位が生じると、波形鋼板318にせん断力が作用して波形鋼板318がせん断変形する。これにより、水平力に対して波形鋼板318が抵抗し、耐震効果を発揮する。また、水平力に対して波形鋼板318が降伏するように設計することで、振動エネルギーが塑性変形エネルギーに変換され、波形鋼板318が制振効果を発揮し得る。   Here, when a relative displacement occurs in the upper and lower slabs 326 constituting the frame due to an earthquake load or the like, a shearing force acts on the corrugated steel sheet 318 and the corrugated steel sheet 318 is sheared. Thereby, the corrugated steel plate 318 resists a horizontal force and exhibits an earthquake resistance effect. Further, by designing the corrugated steel sheet 318 to yield with respect to a horizontal force, the vibration energy is converted into plastic deformation energy, and the corrugated steel sheet 318 can exhibit a damping effect.

しかしながら、図26(B)の模式図に示すように、波形鋼板318が設置されるスラブや梁の鉛直剛性が小さく、早期に曲げヒンジやせん断破壊が生じてしまうと、波形鋼板318の剛体(回転)変形のみが増大してしまい、図26(A)のように、波形鋼板318をせん断変形させ、波形鋼板318が本来備えているせん断剛性及びせん断耐力を十分に発揮させることができない。即ち、梁やスラブの鉛直剛性によっては、波形鋼板318の設置位置が制限される場合がある。
特開2005−264713号公報 特開2008−7945号公報
However, as shown in the schematic diagram of FIG. 26 (B), if the vertical rigidity of the slab or beam on which the corrugated steel plate 318 is installed is small and bending hinge or shear failure occurs at an early stage, the rigid body of the corrugated steel plate 318 ( Rotation) deformation only increases, and as shown in FIG. 26A, the corrugated steel sheet 318 is shear deformed, and the shear rigidity and shear strength inherent to the corrugated steel sheet 318 cannot be fully exhibited. That is, the installation position of the corrugated steel sheet 318 may be limited depending on the vertical rigidity of the beam or slab.
JP 2005-264713 A JP 2008-7945 A

本発明は係る事実を考慮し、耐震部材の設置位置の自由度が向上された耐震構造、及び建物を提供することを目的とする。   In consideration of such facts, an object of the present invention is to provide a seismic structure and a building in which the degree of freedom of installation positions of seismic members is improved.

請求項1に記載の耐震構造は、建物の層を構成し且つ架構の構面外にある上部水平部材と下部水平部材との間に配置されると共に前記上部水平部材及び前記下部水平部材に接合される耐震部材を備え、前記耐震部材が接合される前記上部水平部材の接合部と前記耐震部材が配置された補強層の上層の上部水平部材とを連結する上部補剛手段、及び前記耐震部材が接合される前記下部水平部材の接合部と前記補強層の下層の下部水平部材とを連結する下部補剛手段、の少なくとも一方を備えている。   The earthquake-resistant structure according to claim 1 is disposed between an upper horizontal member and a lower horizontal member that constitute a layer of a building and is outside the frame structure, and is joined to the upper horizontal member and the lower horizontal member. An upper stiffening means for connecting a joint of the upper horizontal member to which the seismic member is joined and an upper horizontal member of an upper layer of the reinforcing layer on which the seismic member is disposed, and the seismic member Is provided with at least one of lower stiffening means for connecting the joint portion of the lower horizontal member to which the joint is joined and the lower horizontal member below the reinforcing layer.

上記の構成によれば、建物の層を構成し且つ架構の構面外にある上部水平部材と下部水平部材との間に耐震部材が配置されている。この耐震部材は、上部水平部材及び下部水平部材に接合されており、地震等により上部水平部材と下部水平部材との間に相対変形が生じたときに、上部水平部材及び下部水平部材から水平力が伝達される。   According to said structure, the earthquake-resistant member is arrange | positioned between the upper horizontal member and the lower horizontal member which comprise the layer of a building and are outside the construction surface of a frame. This seismic member is joined to the upper horizontal member and the lower horizontal member. When a relative deformation occurs between the upper horizontal member and the lower horizontal member due to an earthquake or the like, the horizontal force is applied from the upper horizontal member and the lower horizontal member. Is transmitted.

ここで、地震荷重等の水平力が建物に作用し、補強層に層間変形が生じると、耐震部材が水平力に抵抗すると共に上部水平部材及び下部水平部材に鉛直力を伝達する。この際、上部水平部材及び下部水平部材の鉛直剛性が小さいと上部水平部材及び下部水平部材が鉛直方向に変形して耐震部材の回転変形が卓越し、耐震部材が本来備えている耐震性能(抵抗力)を発揮できなくなる。   Here, when a horizontal force such as an earthquake load acts on the building and an interlayer deformation occurs in the reinforcing layer, the earthquake-resistant member resists the horizontal force and transmits a vertical force to the upper horizontal member and the lower horizontal member. At this time, if the vertical rigidity of the upper horizontal member and the lower horizontal member is small, the upper horizontal member and the lower horizontal member are deformed in the vertical direction, and the rotational deformation of the seismic member is excellent. Power).

これに対して本耐震構造は、上部補剛手段及び下部補剛手段の少なくとも一方を備えている。この上部補剛手段によって耐震部材が接合された上部水平部材の接合部と耐震部材が配置された補強層の上層の上部水平部材とが連結され、即ち、上部補剛手段によって補強層の上部水平部材の接合部に鉛直剛性が付与されている。また、下部補剛手段によって耐震部材が接合された下部水平部材の接合部と耐震部材が配置された補強層の下層の下部水平部材とが連結され、即ち、下部補剛手段によって補強層の下部水平部材の接合部に鉛直剛性が付与されている。これにより、耐震部材から伝達される鉛直力に対して補強層の上部水平部材と補強層の上層の上部水平部材とが一体となって当該鉛直力に抵抗し、また、補強層の下部水平部材と補強層の下層の下部水平部材とが一体となって当該鉛直力に抵抗する。   In contrast, the seismic structure includes at least one of an upper stiffening means and a lower stiffening means. The joint of the upper horizontal member to which the seismic member is joined by the upper stiffening means and the upper horizontal member of the upper layer of the reinforcing layer on which the seismic member is arranged are connected, that is, the upper horizontal member of the reinforcing layer is connected by the upper stiffening means. Vertical rigidity is given to the joint part of the member. Further, the joint of the lower horizontal member to which the seismic member is joined by the lower stiffening means and the lower horizontal member below the reinforcing layer on which the seismic member is arranged are connected, that is, the lower part of the reinforcing layer is connected by the lower stiffening means. Vertical rigidity is given to the joint portion of the horizontal member. As a result, the upper horizontal member of the reinforcing layer and the upper horizontal member of the upper layer of the reinforcing layer integrally resist the vertical force transmitted from the seismic member, and the lower horizontal member of the reinforcing layer. And the lower horizontal member below the reinforcing layer integrally resist the vertical force.

従って、補強層の上部水平部材、下部水平部材の接合部における鉛直方向の変形が抑止され、耐震部材が本来備えている耐震性能を発揮し得る。よって、架構の構面外に耐震部材を配置することが可能となり、耐震部材の設置位置の自由度が向上する。   Therefore, vertical deformation at the joint between the upper horizontal member and the lower horizontal member of the reinforcing layer is suppressed, and the seismic performance inherent in the seismic member can be exhibited. Therefore, it becomes possible to arrange an earthquake-resistant member outside the frame of the frame, and the degree of freedom of the installation position of the earthquake-resistant member is improved.

請求項2に記載の耐震構造は、請求項1に記載の耐震構造において、前記上部補剛手段及び前記下部補剛手段の少なくとも一方が、間柱部材である。   The earthquake-resistant structure according to claim 2 is the earthquake-resistant structure according to claim 1, wherein at least one of the upper stiffening means and the lower stiffening means is a stud member.

上記の構成によれば、上部補剛手段及び下部補剛手段の少なくとも一方を間柱部材で構成することで、単純な構造により上部水平部材、下部水平部材の接合部に鉛直剛性を付与することができる。   According to the above configuration, by configuring at least one of the upper stiffening means and the lower stiffening means with the stud member, it is possible to impart vertical rigidity to the joint portion of the upper horizontal member and the lower horizontal member with a simple structure. it can.

請求項3の記載の耐震構造は、請求項2に記載の耐震構造において、前記間柱部材が、第1柱部材と第2柱部材とを上下方向に相対変位可能に連結して構成されており、前記第1柱部材と前記第2柱部材との間に上下方向にせん断変形可能に設けられる粘弾性体と、前記第1柱部材又は前記第2柱部材に設けられ前記第1柱部材と前記第2柱部材との上下方向の相対変位を所定位置で止めるストッパ手段と、を備えている。   The seismic structure according to claim 3 is the seismic structure according to claim 2, wherein the spacer member is formed by connecting the first pillar member and the second pillar member in a vertically displaceable manner. A viscoelastic body provided between the first pillar member and the second pillar member so as to be shearable in the vertical direction; and the first pillar member provided on the first pillar member or the second pillar member; Stopper means for stopping the relative displacement in the vertical direction with the second column member at a predetermined position.

上記の構成によれば、間柱部材が、第1柱部材と第2柱部材とから構成され、これらの第1柱部材と第2柱部材とは上下方向に相対変位可能に連結されている。また、第1柱部材と第2柱部材との間には、粘弾性体が上下方向にせん断変形可能に設けられている。更に、第1柱部材又は第2柱部材にはストッパ手段が設けられている。このストッパ手段により、第1柱部材と第2柱部材との上下方向の相対変位が所定の位置で止まるように構成されている。   According to said structure, a stud member is comprised from the 1st pillar member and the 2nd pillar member, and these 1st pillar member and the 2nd pillar member are connected so that relative displacement is possible to an up-down direction. Further, a viscoelastic body is provided between the first column member and the second column member so as to be capable of shearing in the vertical direction. Further, stopper means is provided on the first pillar member or the second pillar member. By this stopper means, the vertical displacement of the first column member and the second column member is configured to stop at a predetermined position.

ここで、第1柱部材又は第2柱部材に耐震部材から鉛直力が伝達されると、第1部柱材と第2柱部材とが上下方向に相対変位し、この相対変位に伴って粘弾性体がせん断変形する。これにより、粘弾性体において振動エネルギーが熱エネルギーに変換され、振動が低減される。   Here, when a vertical force is transmitted from the seismic member to the first column member or the second column member, the first part column member and the second column member are displaced relative to each other in the vertical direction. The elastic body undergoes shear deformation. Thereby, vibration energy is converted into heat energy in the viscoelastic body, and vibration is reduced.

また、第1柱部材と第柱2部材との相対変位が所定量に達するとストッパ手段が機能して、第1柱部材と第2柱部材との相対変位が制限され、第1柱部材及び第2柱部材とが一体となって鉛直力に抵抗する。これにより、補強層を構成する上部水平部材及び下部水平部材に鉛直剛性が付与される。   Further, when the relative displacement between the first pillar member and the second pillar member reaches a predetermined amount, the stopper means functions to limit the relative displacement between the first pillar member and the second pillar member, and the first pillar member and Together with the second column member, it resists vertical force. Thereby, vertical rigidity is provided to the upper horizontal member and lower horizontal member which comprise a reinforcement layer.

従って、風荷重等の微振動に対しては、粘弾性体の減衰性能によって微振動を低減することができ、地震荷重等の大きな振動に対しては、ストッパ手段が機能することで耐震部材の回転変形が抑制されて、当該耐震部材に本来備えている耐震性能を発揮させることができる。よって、耐震部材の耐震性能を維持しつつ、風荷重等による微振動を低減することができ、建物の環境性能を向上させることができる。   Therefore, micro vibrations such as wind loads can be reduced by the damping performance of the viscoelastic body, and for large vibrations such as seismic loads, the stopper means functions so that Rotational deformation is suppressed, and the seismic performance inherent to the seismic member can be exhibited. Therefore, while maintaining the seismic performance of the seismic member, it is possible to reduce micro-vibration due to wind loads and the like, and to improve the environmental performance of the building.

請求項4に記載の耐震構造は、請求項1に記載の耐震構造において、前記上部補剛手段及び前記下部補剛手段の少なくとも一方が、折り筋を縦にして配置された補剛用波形鋼板である。   The seismic structure according to claim 4 is the seismic structure according to claim 1, wherein at least one of the upper stiffening means and the lower stiffening means is arranged with a folding line in the vertical direction. It is.

上記の構成によれば、上部補剛手段及び下部補剛手段の少なくとも一方を補剛用波形鋼板で構成する。従って、地震荷重等の水平力が建物に作用し、補強層の上層又は下層に層間変形が生じたときに、補剛用波形鋼板が水平力に抵抗して耐震性能を発揮する。また、水平力に対して補剛用波形鋼板が降伏するように設計することで、地震エネルギーが鋼板の塑性変形エネルギーに変換され、大地震時等の振動が低減される。   According to said structure, at least one of an upper stiffening means and a lower stiffening means is comprised with a corrugated steel plate for stiffening. Therefore, when a horizontal force such as an earthquake load acts on the building and an interlayer deformation occurs in the upper layer or the lower layer of the reinforcing layer, the corrugated steel plate for stiffening resists the horizontal force and exhibits seismic performance. Moreover, by designing the corrugated steel sheet for stiffening to yield with respect to a horizontal force, the seismic energy is converted into the plastic deformation energy of the steel sheet, and vibration during a large earthquake is reduced.

更に、この耐震構造では、折り筋を縦にして補剛用波形鋼板を配置している。折り筋を横にして補剛用波形鋼板を配置した場合、耐震部材から伝達される鉛直力に対して補剛用波形鋼板がアコーディオンのように伸縮する。これに対して、折り筋を縦にして補剛用波形鋼板を配置した場合、耐震部材から伝達される鉛直力に対して補剛用波形鋼板がアコーディオンのように伸縮しない。即ち、折り筋を横にして補剛用波形鋼板を配置する場合と比較して、耐震部材が接合される補強層の上部水平部材又は下部水平部材の接合部に付与される鉛直剛性が大きくなる。従って、上部水平部材又は下部水平部材の接合部の鉛直方向の変形が抑止され、耐震部材に本来備えている耐震性能を発揮させることができる。   Further, in this seismic structure, corrugated steel plates for stiffening are arranged with the crease line in the vertical direction. When the corrugated steel sheet for stiffening is arranged with the folding line sideways, the corrugated steel sheet for stiffening expands and contracts like an accordion with respect to the vertical force transmitted from the earthquake-resistant member. On the other hand, when the corrugated steel sheet for stiffening is arranged with the crease line in the vertical direction, the corrugated steel sheet for stiffening does not expand and contract like the accordion with respect to the vertical force transmitted from the earthquake-resistant member. That is, the vertical rigidity given to the joint of the upper horizontal member or the lower horizontal member of the reinforcing layer to which the seismic member is joined becomes larger than when the corrugated steel plate for stiffening is placed with the crease sideways. . Therefore, the deformation | transformation of the orthogonal | vertical direction of the junction part of an upper horizontal member or a lower horizontal member is suppressed, and the seismic performance originally provided in the seismic member can be exhibited.

請求項5に記載の耐震構造は、請求項1〜4の何れか1項に記載の耐震構造において、前記耐震部材が、折り筋を横にして配置される波形鋼板と、前記波形鋼板の上下の端辺に沿って設けられ、前記第1水平部材又は前記第2水平部材に接合される横フランジと、前記波形鋼板の左右の端辺に沿って設けられ、前記第1水平部材及び前記第2水平部材に鉛直力を伝達する縦フランジと、を備えている。   The earthquake-resistant structure according to claim 5 is the earthquake-resistant structure according to any one of claims 1 to 4, wherein the earthquake-resistant member is disposed with a corrugated steel sheet placed with a folding line laterally, and upper and lower parts of the corrugated steel sheet. Provided along the side edges of the first horizontal member or the second horizontal member, and provided along the left and right side edges of the corrugated steel sheet, the first horizontal member and the first horizontal member. And a vertical flange that transmits a vertical force to the two horizontal members.

上記の構成によれば、耐震部材が波形鋼板とされている。この波形鋼板には、横フランジ及び縦フランジが設けられている。横フランジは、波形鋼板の上下の端辺に沿ってそれぞれ設けられており、この横フランジを補強層の上部水平部材又は下部水平部材に接合することで、補強層に波形鋼板が配置される。また、縦フランジは、波形鋼板の左右の端辺に沿ってそれぞれ設けられており、この縦フランジから波形鋼板が負担する水平力が補強層の上部水平部材及び下部水平部材の接合部に伝達される。   According to said structure, the earthquake-resistant member is made into the corrugated steel plate. The corrugated steel sheet is provided with a horizontal flange and a vertical flange. The horizontal flange is provided along the upper and lower edges of the corrugated steel sheet, and the corrugated steel sheet is disposed in the reinforcing layer by joining the horizontal flange to the upper horizontal member or the lower horizontal member of the reinforcing layer. The vertical flange is provided along the left and right edges of the corrugated steel sheet, and the horizontal force borne by the corrugated steel sheet is transmitted from the vertical flange to the joint between the upper horizontal member and the lower horizontal member of the reinforcing layer. The

地震荷重等の水平力が建物に作用し、補強層を構成する上部水平部材と下部水平部材との間に層間変形が生じると、波形鋼板が水平力に抵抗して耐震性能を発揮する。また、水平力に対して波形鋼板が降伏するように設計することで、地震エネルギーが鋼板の塑性変形エネルギーに変換され、大地震時の振動が低減される。この際、波形鋼板に発生したせん断力が、水平方向の力として当該波形鋼板に作用すると共に、せん断力によって生じる曲げモーメントを縦フランジ間の距離(横フランジの長さ)で除した力に相当する力が、鉛直方向の力(鉛直力)として縦フランジに作用する。この鉛直力は、縦フランジを介して上部水平部材及び下部水平部材の接合部に伝達される。ここで、一般的に構面外に波形鋼板を配置すると、この鉛直力によって上部水平部材、下部水平部材の接合部が鉛直方向に変形し、波形鋼板の回転変形が卓越してしまう。   When a horizontal force such as seismic load acts on the building and an interlayer deformation occurs between the upper horizontal member and the lower horizontal member constituting the reinforcing layer, the corrugated steel plate resists the horizontal force and exhibits seismic performance. In addition, by designing the corrugated steel sheet to yield with respect to the horizontal force, the seismic energy is converted into the plastic deformation energy of the steel sheet, and vibration during a large earthquake is reduced. At this time, the shear force generated in the corrugated steel plate acts on the corrugated steel plate as a horizontal force, and corresponds to the force obtained by dividing the bending moment generated by the shear force by the distance between the vertical flanges (the length of the horizontal flange). The acting force acts on the vertical flange as a vertical force (vertical force). This vertical force is transmitted to the joint between the upper horizontal member and the lower horizontal member via the vertical flange. Here, generally, when a corrugated steel plate is disposed outside the surface, the joint between the upper horizontal member and the lower horizontal member is deformed in the vertical direction by this vertical force, and the rotational deformation of the corrugated steel plate is outstanding.

これに対して本耐震構造では、上部補剛手段、下部補剛手段によって、上部水平部材又は下部水平部材の接合部に鉛直剛性が付与されている。従って、波形鋼板の回転変形が抑制され、波形鋼板に本来備えている耐震性能、制震性能を発揮させることができる。   On the other hand, in this seismic structure, vertical rigidity is given to the joint part of the upper horizontal member or the lower horizontal member by the upper stiffening means and the lower stiffening means. Therefore, the rotational deformation of the corrugated steel sheet is suppressed, and the seismic performance and vibration control performance originally provided for the corrugated steel sheet can be exhibited.

請求項6に記載の耐震構造は、請求項1〜4の何れか1項に記載の耐震構造において、前記耐震部材が、鉄筋コンクリート造の壁部材である。   The earthquake resistant structure according to claim 6 is the earthquake resistant structure according to any one of claims 1 to 4, wherein the earthquake resistant member is a wall member made of reinforced concrete.

上記の構成によれば、耐震部材が鉄筋コンクリート造の壁部材とされている。   According to said structure, the earthquake-resistant member is made into the wall member of a reinforced concrete structure.

地震荷重等の水平力が建物に作用し、補強層に層間変形が生じると、壁部材が水平力に抵抗して耐震性能を発揮する。この際、壁部材の幅方向両端部には、せん断力によって生じる曲げモーメントを壁部材の長さ(壁部材の幅)で除した力に相当する力が、鉛直方向の力として作用する。ここで、一般的に構面外にRC耐震壁を配置すると、この鉛直力によって、上部水平部材及び下部水平部材の接合部が鉛直方向に変形し、RC耐震壁の回転変形が卓越してしまう。   When horizontal force such as seismic load acts on the building and interlayer deformation occurs in the reinforcing layer, the wall member resists the horizontal force and exhibits seismic performance. At this time, a force corresponding to a force obtained by dividing the bending moment generated by the shearing force by the length of the wall member (the width of the wall member) acts as a vertical force at both ends in the width direction of the wall member. Here, generally, when the RC earthquake-resistant wall is arranged outside the structural surface, the joint of the upper horizontal member and the lower horizontal member is deformed in the vertical direction by this vertical force, and the rotational deformation of the RC earthquake-resistant wall is outstanding. .

これに対して本耐震構造では、上部補剛手段、下部補剛手段によって、上部水平部材又は下部水平部材の接合部に鉛直剛性が付与されている。従って、壁部材の回転変形が抑制され、壁部材に本来備えている耐震性能、制震性能を発揮させることができる。   On the other hand, in this seismic structure, vertical rigidity is given to the joint part of the upper horizontal member or the lower horizontal member by the upper stiffening means and the lower stiffening means. Therefore, the rotational deformation of the wall member is suppressed, and the seismic performance and vibration control performance originally provided in the wall member can be exhibited.

請求項7に記載の耐震構造は、請求項1〜4の何れか1項に記載の耐震構造において、前記耐震部材が、前記補強層の前記上部水平部材と前記下部水平部材との間に斜めに架け渡されるブレースである。   The earthquake-resistant structure according to claim 7 is the earthquake-resistant structure according to any one of claims 1 to 4, wherein the earthquake-resistant member is slanted between the upper horizontal member and the lower horizontal member of the reinforcing layer. It is a brace spanned over.

上記の構成によれば、耐震部材がブレースとされている。このブレースは、補強層の上部水平部材と下部水平部材との間に斜めに架け渡されている。   According to said structure, the earthquake-resistant member is made into the brace. The brace is bridged obliquely between the upper horizontal member and the lower horizontal member of the reinforcing layer.

地震荷重等の水平力が建物に作用し、補強層に層間変形が生じると、当該ブレースが抵抗して耐震性能を発揮する。ここで、一般的に構面外にブレースを配置すると、ブレースからの軸力によって上部水平部材及び下部水平部材の接合部が鉛直方向に変形し、ブレースの回転変形が卓越してしまう。   When a horizontal force such as seismic load acts on the building and interlayer deformation occurs in the reinforcing layer, the brace resists and exhibits seismic performance. Here, generally, when a brace is disposed outside the surface, the joint between the upper horizontal member and the lower horizontal member is deformed in the vertical direction by the axial force from the brace, and the rotational deformation of the brace is outstanding.

これに対して本耐震構造では、上部補剛手段、下部補剛手段によって、上部水平部材又は下部水平部材の接合部に鉛直剛性が付与されている。従って、ブレースの回転変形が抑制され、ブレースに本来備えている耐震性能、制震性能を発揮させることができる。更に、ブレースに、上部水平部材及び下部水平部材よりも降伏点が小さい鋼材を用いることで(いわゆるアンボンドブレース)、地震エネルギーが鋼板の塑性変形エネルギーに変換され、大地震時等の振動が低減される。   On the other hand, in this seismic structure, vertical rigidity is given to the joint part of the upper horizontal member or the lower horizontal member by the upper stiffening means and the lower stiffening means. Therefore, rotational deformation of the brace is suppressed, and the seismic performance and vibration control performance originally provided in the brace can be exhibited. Furthermore, by using a steel material with a lower yield point than the upper horizontal member and lower horizontal member (so-called unbonded brace) for the brace, the seismic energy is converted into the plastic deformation energy of the steel plate, reducing vibration during a large earthquake, etc. The

請求項8に記載の耐震構造は、請求項1〜7の何れか1項に記載の耐震構造において、前記耐震部材が配置された層の各下層には、平面視したときに前記下部補剛手段が重なるように配置され、前記建物の基礎部に鉛直力を伝達する。   The earthquake resistant structure according to claim 8 is the earthquake resistant structure according to any one of claims 1 to 7, wherein each lower layer of the layer where the earthquake resistant member is disposed has the lower stiffening when viewed in plan. The means are arranged so as to overlap and transmit a vertical force to the foundation of the building.

上記の構成によれば、耐震部材が配置された補強層の各下層には、下部補剛手段が配置されている。これらの下部補剛手段を平面視すると、各下部補剛手段が重なって配置されていている。   According to said structure, the lower stiffening means is arrange | positioned in each lower layer of the reinforcement layer in which the earthquake-resistant member is arrange | positioned. When these lower stiffening means are viewed in plan, the lower stiffening means are arranged to overlap each other.

このように各下層に配置された下部補剛手段によって、補強層の下部水平部材の接合部が建物の基礎部で支持され、耐震部材から伝達される鉛直力が建物の基礎部に伝達される。即ち、補強層の下部水平部材の接合部に鉛直剛性が付与され、耐震部材に本来備えている耐震性能を発揮させることができる。   In this way, the lower stiffening means arranged in each lower layer supports the joint of the lower horizontal member of the reinforcing layer at the foundation of the building, and the vertical force transmitted from the earthquake-resistant member is transmitted to the foundation of the building. . That is, vertical rigidity is given to the joint portion of the lower horizontal member of the reinforcing layer, and the seismic performance inherent to the seismic member can be exhibited.

請求項9に記載の建物は、請求項1〜8の何れか1項に記載の耐震構造を有している。   The building of Claim 9 has the earthquake-resistant structure of any one of Claims 1-8.

上記の構成によれば、請求項1〜8の何れか1項に記載の耐震構造を有することにより、耐震性能が向上された建物を構築することができる。   According to said structure, the building where the earthquake resistance performance was improved can be constructed | assembled by having the earthquake resistance structure of any one of Claims 1-8.

本発明は、上記の構成としたので、波形鋼板の設置位置の自由度を向上させることができる。   Since this invention was set as said structure, the freedom degree of the installation position of a corrugated steel plate can be improved.

図面を参照しながら、本発明の耐震構造について説明する。以下、本発明の耐震構造を鉄筋コンクリート造(以下、「RC造」という)の建物に適用した場合を例に説明するが、本発明の耐震構造は、鉄骨鉄筋コンクリート造、プレキャストコンクリート造、鉄骨造等の種々の構造の建物に適用可能である。   The earthquake-resistant structure of the present invention will be described with reference to the drawings. Hereinafter, the case where the seismic structure of the present invention is applied to a reinforced concrete structure (hereinafter referred to as “RC structure”) will be described as an example. However, the seismic structure of the present invention includes a steel reinforced concrete structure, a precast concrete structure, a steel structure, and the like. It is applicable to buildings with various structures.

先ず、本発明の第1の実施形態に係る耐震構造10が適用された建物12について説明する。図1は、複数層からなる建物12の補強層14を示す斜視図であり、図2は、補強層14を示す正面図である。   First, the building 12 to which the seismic structure 10 according to the first embodiment of the present invention is applied will be described. FIG. 1 is a perspective view showing a reinforcing layer 14 of a building 12 composed of a plurality of layers, and FIG. 2 is a front view showing the reinforcing layer 14.

耐震構造10は波形鋼板16(耐震部材)を備え、この波形鋼板16は補強層14に配置されている。補強層14は、上部水平部材18、下部水平部材20、及びRC造の柱22から構成されている。上部水平部材18はRC造の梁24、26とRC造のスラブ28とから構成されており、これらの梁24、26によってスラブ28が支持されている。また、下部水平部材20はRC造の梁30、32とRC造のスラブ34とから構成されており、これらの梁30、32によってスラブ34が支持されている。更に、これらの柱22と梁24、26、30、32によって複数の架構が構成されている。   The seismic structure 10 includes a corrugated steel plate 16 (seismic member), and the corrugated steel plate 16 is disposed on the reinforcing layer 14. The reinforcing layer 14 includes an upper horizontal member 18, a lower horizontal member 20, and RC pillars 22. The upper horizontal member 18 includes RC beams 24 and 26 and RC slabs 28, and the slab 28 is supported by these beams 24 and 26. The lower horizontal member 20 includes RC beams 30 and 32 and RC slabs 34, and the slab 34 is supported by these beams 30 and 32. Further, a plurality of frames are constituted by these columns 22 and beams 24, 26, 30 and 32.

次に、耐震部材としての波形鋼板16の構成について説明する。   Next, the configuration of the corrugated steel plate 16 as the earthquake resistant member will be described.

波形鋼板16は、上部水平部材18と下部水平部材20との間であって、柱22と梁24、26、30、32から構成される架構の構面外に配置されており、平面視にて当該波形鋼板16(波形鋼板16の壁面)が梁24、26、30、32と交差(略直交)するように配置されている。
なお、構面外とは、建物を構成する上下に配置された小梁、大梁又はスラブ等からなる水平部材の間の空間であり、かつ柱等の鉛直部材と水平部材とによって囲まれた架構の構面以外の空間を意味する。
The corrugated steel plate 16 is disposed between the upper horizontal member 18 and the lower horizontal member 20, and is disposed outside the frame of the frame composed of the column 22 and the beams 24, 26, 30, and 32. The corrugated steel plate 16 (the wall surface of the corrugated steel plate 16) is arranged so as to intersect (substantially orthogonal) the beams 24, 26, 30, 32.
The term “outside of the construction surface” refers to a space between horizontal members, such as small beams, large beams, or slabs, that are arranged above and below the building, and is surrounded by vertical members such as columns and horizontal members. It means a space other than the construction surface.

波形鋼板16の上下の端辺には、鋼製の横フランジ36A、36Bがそれぞれ設けられている。この横フランジ36A、36Bはプレート状に形成され、波形鋼板16の上下の端部に沿って溶接固定されている。また、波形鋼板16の左右の端部には鋼製の縦フランジ38A、38Bがそれぞれ設けられている。この縦フランジ38A、38Bはプレート状に形成され、波形鋼板16の左右の端部に沿って溶接固定されている。これらの横フランジ36A、36B及び縦フランジ38A、38Bは、各々の端部同士が溶接等によって接合されており、波形鋼板16の外周を囲む枠体40を構成している。この波形鋼板16と枠体40とによって、波形鋼板耐震壁17が構成されている。
なお、波形鋼板16は、梁24、26の間に配置され、梁24、26の内側側面に縦フランジ38A、38Bを接触または近接させて補強層14に配置されている。
Steel horizontal flanges 36 </ b> A and 36 </ b> B are respectively provided on the upper and lower ends of the corrugated steel plate 16. The lateral flanges 36A and 36B are formed in a plate shape, and are fixed by welding along the upper and lower ends of the corrugated steel plate 16. Further, steel vertical flanges 38A and 38B are provided at the left and right ends of the corrugated steel sheet 16, respectively. The vertical flanges 38 </ b> A and 38 </ b> B are formed in a plate shape and are fixed by welding along the left and right ends of the corrugated steel plate 16. These horizontal flanges 36 </ b> A and 36 </ b> B and vertical flanges 38 </ b> A and 38 </ b> B are joined to each other by welding or the like, and constitute a frame body 40 that surrounds the outer periphery of the corrugated steel plate 16. The corrugated steel plate seismic wall 17 is constituted by the corrugated steel plate 16 and the frame body 40.
The corrugated steel plate 16 is disposed between the beams 24 and 26, and is disposed on the reinforcing layer 14 with the vertical flanges 38 </ b> A and 38 </ b> B in contact with or close to the inner side surfaces of the beams 24 and 26.

波形鋼板16は、横フランジ36A、36Bをスラブ28又はスラブ34に接合することにより、上部水平部材18と下部水平部材20との間に、その折り筋16Aを横(折り筋16Aの向きを横方向)にして配置されている。具体的には、図3に示すように、横フランジ36Bにはボルト孔42が形成され、スラブ34の上面にはアンカーナット44が埋設されている。横フランジ36Bとスラブ34とは、接着剤Uによって接着されており、更に、ボルト46をアンカーナット44に捻じ込むことでせん断力を伝達可能に接合される。この方法と同様の方法により横フランジ36Aとスラブ28とがせん断力を伝達可能に接合されている。   The corrugated steel sheet 16 is formed by connecting the horizontal flanges 36A and 36B to the slab 28 or the slab 34 so that the fold line 16A is laterally placed between the upper horizontal member 18 and the lower horizontal member 20 (the direction of the fold line 16A is horizontal). Direction). Specifically, as shown in FIG. 3, a bolt hole 42 is formed in the lateral flange 36 </ b> B, and an anchor nut 44 is embedded in the upper surface of the slab 34. The lateral flange 36 </ b> B and the slab 34 are bonded by an adhesive U, and are further joined so as to transmit a shearing force by screwing a bolt 46 into the anchor nut 44. The horizontal flange 36A and the slab 28 are joined so as to be able to transmit a shearing force by a method similar to this method.

なお、横フランジ36A、36Bとスラブ28、34とはせん断力を伝達可能に接合できれば良く、種々の接合方法を採用し得る。例えば、せん断力伝達要素としてのスタッドが溶接された接合用プレートを、スタッドをスラブ34に埋設してスラブ34と一体化させ、この接合用プレートに横フランジ36Bを溶接又はボルト等により接合しても良い。また、接着工法を用いて、エポキシ樹脂等の接着剤により横フランジ36Bとスラブ34とを接着固定しても良い。更に、横フランジ36A、36B及び縦フランジ38A、38Bの形状は、プレート状に限らず、H型鋼やL型鋼等を使用しても良い。   The lateral flanges 36A and 36B and the slabs 28 and 34 may be joined so that shearing force can be transmitted, and various joining methods can be adopted. For example, a joining plate to which a stud as a shearing force transmission element is welded is embedded in the slab 34 by embedding the stud in the slab 34, and the lateral flange 36B is joined to the joining plate by welding or bolts. Also good. Alternatively, the lateral flange 36B and the slab 34 may be bonded and fixed by an adhesive such as an epoxy resin using an adhesive method. Furthermore, the shape of the horizontal flanges 36A and 36B and the vertical flanges 38A and 38B is not limited to a plate shape, and H-shaped steel, L-shaped steel, or the like may be used.

横フランジ36A、36Bの長手方向両側には、補強手段としての鋼製の板材48A、48Bがそれぞれ設けられ、梁30、32の上面又は梁24、26の下面に配置されている。この板材48A、48Bと縦フランジ38A、38Bとの間には、リブプレート50が設けられている。リブプレート50は、板材48A、48Bと縦フランジ38A、38Bとにまたがって溶接されており、これらのリブプレート50を介して縦フランジ38A、38Bから板材48A、48Bにせん断力(鉛直力)が伝達可能とされている。また、板材48A、48Bには貫通孔49が形成されており、後述するPC鋼棒52及びナット54によって、これらの板材48A、48Bが各梁24、26、30、32に固定される。
なお、波形鋼板16と上部水平部材18または下部水平部材20との接合部とは、横フランジ36A、36Bまたは板材48A、48Bから鉛直力が伝達される上部水平部材18、下部水平部材20の部位をいう。
Steel plates 48A and 48B as reinforcing means are provided on both sides in the longitudinal direction of the lateral flanges 36A and 36B, respectively, and are arranged on the upper surfaces of the beams 30 and 32 or the lower surfaces of the beams 24 and 26. A rib plate 50 is provided between the plate members 48A and 48B and the vertical flanges 38A and 38B. The rib plate 50 is welded across the plate members 48A and 48B and the vertical flanges 38A and 38B, and shear force (vertical force) is applied from the vertical flanges 38A and 38B to the plate members 48A and 48B via the rib plates 50. It can be transmitted. Further, through holes 49 are formed in the plate members 48A, 48B, and these plate members 48A, 48B are fixed to the beams 24, 26, 30, 32 by a PC steel rod 52 and a nut 54, which will be described later.
In addition, the junction part of the corrugated steel plate 16 and the upper horizontal member 18 or the lower horizontal member 20 is a part of the upper horizontal member 18 and the lower horizontal member 20 to which a vertical force is transmitted from the lateral flanges 36A and 36B or the plate members 48A and 48B. Say.

次に、上部補剛手段及び下部補剛手段の構成について説明する。   Next, the configuration of the upper stiffening means and the lower stiffening means will be described.

図2に示すように、補強層14の上層56を構成する上部水平部材70は、RC造の梁74、76とRC造のスラブ78とから構成され、補強層14の下層58の構成する下部水平部材72は、RC造の梁80、82とRC造のスラブ84とから構成されている。
なお、補強層14と上層56とは、上部水平部材18を共用しており、補強層14と下層58とは、下部水平部材20を共用している。
As shown in FIG. 2, the upper horizontal member 70 constituting the upper layer 56 of the reinforcing layer 14 includes RC beams 74 and 76 and an RC slab 78, and a lower portion constituting the lower layer 58 of the reinforcing layer 14. The horizontal member 72 includes RC beams 80 and 82 and an RC slab 84.
The reinforcing layer 14 and the upper layer 56 share the upper horizontal member 18, and the reinforcing layer 14 and the lower layer 58 share the lower horizontal member 20.

補強層14の梁24、26と上層56の梁74、76との間には、上部補剛手段としての間柱部材60、62がそれぞれ配置され、これらの間柱部材60、62によって補強層14の上部水平部材18の接合部と上層56の上部水平部材70とが連結されている。また、補強層14の梁30、32と下層58の梁80、82との間には、下部補剛手段としての間柱部材64、66がそれぞれ配置され、これらの間柱部材64、66によって補強層14の下部水平部材20の接合部と下層58の下部水平部材72とが連結されている。各間柱部材60、62、64、66は角型鋼管から構成されており、軸方向両端部には取付プレート68A、68Bが設けられている。   Between the beams 24 and 26 of the reinforcing layer 14 and the beams 74 and 76 of the upper layer 56, intermediate column members 60 and 62 are arranged as upper stiffening means, respectively. The joint of the upper horizontal member 18 and the upper horizontal member 70 of the upper layer 56 are connected. Further, between the beams 30 and 32 of the reinforcing layer 14 and the beams 80 and 82 of the lower layer 58, intermediate column members 64 and 66 are respectively disposed as lower stiffening means, and the reinforcing layer is formed by these intermediate column members 64 and 66. 14 of the lower horizontal member 20 and the lower horizontal member 72 of the lower layer 58 are connected. Each of the stud members 60, 62, 64, 66 is formed of a square steel pipe, and mounting plates 68A, 68B are provided at both axial ends.

図3に示すように、間柱部材66に設けられた取付プレート68A、68Bには貫通孔86が形成され、各梁32、82には貫通孔88が形成されている。これらの貫通孔86、88、及び板材48Aの貫通孔49に貫通されるPC鋼棒52及びナット54によって、取付プレート68Aが梁32に接合されている。一方、取付プレート68Bは、梁82の上面に載置され、この梁82の下面には鋼製の板材90が配置されている。この板材90には貫通孔が形成され、これらの貫通孔86、88等に貫通されるPC鋼棒52及びナット54によって、取付プレート68Bが梁82に接合されている。これにより、波形鋼板16が接合された梁32の接合部が間柱部材66によって支持されると共に、補強層14の下部水平部材20と下層58の下部水平部材72とが一体化され、梁32に鉛直剛性が付与されている。   As shown in FIG. 3, through holes 86 are formed in the mounting plates 68A and 68B provided in the stud member 66, and through holes 88 are formed in the beams 32 and 82, respectively. The mounting plate 68A is joined to the beam 32 by the PC steel rod 52 and the nut 54 that pass through the through holes 86 and 88 and the through hole 49 of the plate member 48A. On the other hand, the mounting plate 68B is placed on the upper surface of the beam 82, and a steel plate 90 is disposed on the lower surface of the beam 82. Through holes are formed in the plate member 90, and the mounting plate 68 </ b> B is joined to the beam 82 by the PC steel rod 52 and the nut 54 that pass through the through holes 86 and 88. As a result, the joint portion of the beam 32 to which the corrugated steel plate 16 is joined is supported by the stud member 66, and the lower horizontal member 20 of the reinforcing layer 14 and the lower horizontal member 72 of the lower layer 58 are integrated to form the beam 32. Vertical rigidity is given.

また、梁32、82の貫通孔88、梁32と板材48Aとの間、梁32と取付プレート68Aとの間、梁82と取付プレート68Bとの間、梁82と板材90との間には、それぞれグラウトGが充填され、このグラウトGにより間柱部材66の施工誤差の吸収、及び接合強度の確保が実現されている。また、PC鋼棒52により板材48Aと取付プレート68A、または取付プレート68Bと板材90とを緊結することで、梁32、82に曲げ耐力が付与されている。   Further, between the through holes 88 of the beams 32, 82, between the beam 32 and the plate material 48A, between the beam 32 and the mounting plate 68A, between the beam 82 and the mounting plate 68B, and between the beam 82 and the plate material 90. The grout G is filled, and the grout G realizes the absorption of the construction error of the stud member 66 and the securing of the bonding strength. Further, the plate member 48A and the mounting plate 68A or the mounting plate 68B and the plate member 90 are tightly coupled by the PC steel bar 52, whereby bending strength is imparted to the beams 32 and 82.

なお、間柱部材66は、梁32と梁82とを一体的に連結できれば良く、上記の接合方法に限らない。例えば、図4に示すように、梁32上面及び下面にアンカーナット44をそれぞれ埋設し、このアンカーナット44にボルト46を捻じ込むことで、梁32と板材48A及び梁32と取付プレート68Aとを接合しても良い。同様に、梁82の上面にアンカーナット44を埋設し、このアンカーナット44にボルト46を捻じ込むことで、梁82と取付プレート68Bとを接合しても良い。また、接着剤U及びグラウトG等は、必要に応じて適宜設ければ良く、必ずしも必要ではない。また、PC鋼棒52以外の棒材やPC鋼線等を用いても良い。   The stud member 66 only needs to be able to integrally connect the beam 32 and the beam 82 and is not limited to the above-described joining method. For example, as shown in FIG. 4, anchor nuts 44 are embedded in the upper and lower surfaces of the beam 32, and bolts 46 are screwed into the anchor nuts 44, so that the beam 32, the plate material 48A, the beam 32, and the mounting plate 68A are connected. You may join. Similarly, the anchor nut 44 may be embedded in the upper surface of the beam 82 and the bolt 46 may be screwed into the anchor nut 44 to join the beam 82 and the mounting plate 68B. Further, the adhesive U, the grout G, etc. may be appropriately provided as necessary and are not necessarily required. Further, a bar material other than the PC steel bar 52, a PC steel wire, or the like may be used.

また、間柱部材66を例に説明したが、間柱部材66と同様の方法により他の間柱部材60、62、64によって、補強層14の上部水平部材18と上層56の上部水平部材70とが連結され、または、補強層14の下部水平部材20と下層58の下部水平部材72とが連結されている。   Further, although the spacer member 66 has been described as an example, the upper horizontal member 18 of the reinforcing layer 14 and the upper horizontal member 70 of the upper layer 56 are connected by the other spacer members 60, 62, and 64 in the same manner as the spacer member 66. Alternatively, the lower horizontal member 20 of the reinforcing layer 14 and the lower horizontal member 72 of the lower layer 58 are connected.

次に、本発明の第1の実施形態に係る耐震構造10の作用について説明する。   Next, the operation of the earthquake resistant structure 10 according to the first embodiment of the present invention will be described.

地震荷重等の水平力が建物12に作用し、補強層14を構成する上部水平部材18と下部水平部材20との間に層間変形が生じると、波形鋼板16が水平力に抵抗して耐震性能を発揮する。また、水平力に対して波形鋼板16が降伏するように設計することで、地震エネルギーが鋼板の塑性変形エネルギーに変換され、大地震時等に振動が低減される。この際、波形鋼板16に発生したせん断力が、水平方向の力として波形鋼板16に作用すると共に、せん断力によって生じる曲げモーメントを縦フランジ38A、38Bの間の距離(横フランジ36A、36Bの長さ)で除した力に相当する力が、鉛直方向の力(図5における鉛直力F、F)として縦フランジ38A、38Bに作用する。この鉛直力F、Fは、リブプレート50、板材48A、48Bを介して、上部水平部材18又は下部水平部材20の接合部に伝達される。なお、図5では、この鉛直力Fによって下部水平部材20に生じる曲げモーメント図を示している。 When a horizontal force such as seismic load acts on the building 12 and an interlayer deformation occurs between the upper horizontal member 18 and the lower horizontal member 20 constituting the reinforcing layer 14, the corrugated steel plate 16 resists the horizontal force and seismic performance. Demonstrate. In addition, by designing the corrugated steel plate 16 to yield with respect to a horizontal force, the seismic energy is converted into the plastic deformation energy of the steel plate, and vibration is reduced during a large earthquake or the like. At this time, the shearing force generated in the corrugated steel plate 16 acts on the corrugated steel plate 16 as a horizontal force, and the bending moment generated by the shearing force is changed to the distance between the vertical flanges 38A and 38B (the length of the lateral flanges 36A and 36B). The force corresponding to the force divided by ( S ) acts on the vertical flanges 38A and 38B as vertical forces (vertical forces F A and F B in FIG. 5). The vertical forces F A and F B are transmitted to the joint portion of the upper horizontal member 18 or the lower horizontal member 20 through the rib plate 50 and the plate members 48A and 48B. In FIG. 5 shows a bending moment diagram occurs in the lower horizontal member 20 by the vertical force F B.

ここで、一般的に構面外に波形鋼板16を配置すると、この鉛直力F、Fによって上部水平部材18、下部水平部材20の接合部が鉛直方向に変形し、図26(B)で説明したように、波形鋼板16の回転変形が卓越してしまい、波形鋼板16に本来備えているせん断耐力及びせん断剛性を十分に発揮させることができない。 Here, generally, when the corrugated steel plate 16 is disposed outside the surface, the joint portions of the upper horizontal member 18 and the lower horizontal member 20 are deformed in the vertical direction by the vertical forces F A and F B , and FIG. As described above, the rotational deformation of the corrugated steel sheet 16 becomes prominent, and the shear strength and shear rigidity originally provided in the corrugated steel sheet 16 cannot be sufficiently exhibited.

これに対して耐震構造10では、間柱部材60、62、64、66によって上部水平部材18又は下部水平部材20の接合部に鉛直剛性が付与されている。即ち、間柱部材60、62によって上部水平部材18の接合部と上層56の上部水平部材70とが連結され、上部水平部材18の接合部に鉛直剛性が付与されている。これにより、波形鋼板16の縦フランジ38A、38Bから伝達される鉛直力Fに対して、補強層14の上部水平部材18と上層56の上部水平部材70とが一体となって抵抗する。 On the other hand, in the earthquake-resistant structure 10, vertical rigidity is imparted to the joint portion of the upper horizontal member 18 or the lower horizontal member 20 by the stud members 60, 62, 64, 66. In other words, the joint portion of the upper horizontal member 18 and the upper horizontal member 70 of the upper layer 56 are connected by the spacer members 60 and 62, and vertical rigidity is given to the joint portion of the upper horizontal member 18. As a result, the upper horizontal member 18 of the reinforcing layer 14 and the upper horizontal member 70 of the upper layer 56 integrally resist the vertical force F A transmitted from the vertical flanges 38A and 38B of the corrugated steel plate 16.

また、間柱部材64、66によって下部水平部材20の接合部と下層58の下部水平部材72とが連結され、下部水平部材20の接合部に鉛直剛性が付与されている。これにより、波形鋼板16の縦フランジ38A、38Bから伝達される鉛直力Fに対して、補強層14の下部水平部材20と下層58の下部水平部材72とが一体となって抵抗する。 Further, the joint portion of the lower horizontal member 20 and the lower horizontal member 72 of the lower layer 58 are connected by the spacer members 64 and 66, and vertical rigidity is given to the joint portion of the lower horizontal member 20. Thus, vertical flange 38A of corrugated steel 16, relative to a vertical force F B transmitted from 38B, the lower horizontal member 72 of the lower horizontal member 20 and the lower layer 58 of the reinforcing layer 14 to resist together.

このように耐震構造10では、波形鋼板16が接合された上部水平部材18又は下部水平部材20の接合部に鉛直剛性が付与されているため、波形鋼板16の回転変形が抑制され、波形鋼板16に本来備えているせん断耐力及びせん断剛性を発揮させることができる。   Thus, in the earthquake-resistant structure 10, since the vertical rigidity is given to the joint portion of the upper horizontal member 18 or the lower horizontal member 20 to which the corrugated steel plate 16 is joined, the rotational deformation of the corrugated steel plate 16 is suppressed, and the corrugated steel plate 16 It is possible to exhibit the shear strength and shear rigidity inherent in

また、耐震構造10では、図3に示すように、板材48Aと取付プレート68AとをPC鋼棒52によって緊結することで梁32に曲げ耐力を付与している。従って、当該部における曲げ降伏を防止し、梁32の曲げ変形を抑止することができる。   Further, in the earthquake-resistant structure 10, as shown in FIG. 3, the plate member 48 </ b> A and the mounting plate 68 </ b> A are fastened together by the PC steel rod 52 to give the beam 32 bending strength. Therefore, it is possible to prevent the bending yield at the portion and to suppress the bending deformation of the beam 32.

なお、梁32に対する補強については、図6に示すように、梁32の下面から側面かけて炭素繊維シート94を密着させ、これを梁32の下端部付近で後施工アンカー(不図示)等によって固定して、梁32に曲げ耐力を付与しても良い。この炭素繊維シート94は、その両端部を上方に引っ張り上げ、テンションをかけられた状態で後施工アンカーにより保持される。また、図7に示すように、取付プレート68Aを梁32の幅方向両側へそれぞれ延出させ、スラブ34を貫通するPC鋼棒52により板材48Aと取付プレート68Aとを接合しても良い。   In addition, as shown in FIG. 6, the carbon fiber sheet 94 is closely attached from the lower surface to the side surface of the beam 32, and the beam 32 is reinforced by a post-installed anchor (not shown) near the lower end of the beam 32. The beam 32 may be fixed and given bending strength. The carbon fiber sheet 94 is held by a post-construction anchor in a state in which both ends are pulled upward and tension is applied. Further, as shown in FIG. 7, the attachment plate 68 </ b> A may be extended to both sides in the width direction of the beam 32, and the plate material 48 </ b> A and the attachment plate 68 </ b> A may be joined by the PC steel rod 52 penetrating the slab 34.

更に、角型鋼管からなる間柱部材60、62、64、66を用いることで、単純な構造により補強層14の上部水平部材18及び下部水平部材20に鉛直剛性を付与することができる。   Furthermore, vertical rigidity can be given to the upper horizontal member 18 and the lower horizontal member 20 of the reinforcing layer 14 with a simple structure by using the stud members 60, 62, 64, 66 made of square steel pipes.

次に、本発明の第1の実施形態に係る耐震構造10の変形例について説明する。なお、第1の実施形態と同じ構成のものは同符号を付すると共に適宜省略して説明する。   Next, a modified example of the earthquake-resistant structure 10 according to the first embodiment of the present invention will be described. Note that the same components as those in the first embodiment are denoted by the same reference numerals and will be appropriately omitted.

本変形例では、図8に示すように、梁24、26から縦フランジ38A、38Bを離して波形鋼板16を補強層14に配置する。そして、間柱部材60、62によって補強層14のスラブ28と上層56のスラブ78とを連結し、間柱部材64、66によって補強層14のスラブ34と下層58のスラブ84とを連結する。   In the present modification, as shown in FIG. 8, the corrugated steel plate 16 is disposed in the reinforcing layer 14 with the vertical flanges 38 </ b> A and 38 </ b> B separated from the beams 24 and 26. Then, the slab 28 of the reinforcing layer 14 and the slab 78 of the upper layer 56 are connected by the spacer members 60 and 62, and the slab 34 of the reinforcing layer 14 and the slab 84 of the lower layer 58 are connected by the spacer members 64 and 66.

図9(A)に示すように、波形鋼板16の縦フランジ38Bの下方には、間柱部材66が配置されている。この間柱部材66は、当該間柱部材66の幅方向中央部に縦フランジ38Bが位置するように配置されている。波形鋼板16の横フランジ36Bは縦フランジ38Bの外側に延出されている。この縦フランジ38Bの延出部には貫通孔102が形成され、また、スラブ34には貫通孔104が形成されている。これらの貫通孔102、104、及び取付プレート68Aの貫通孔86に貫通されるPC鋼棒52及びナット54によって、取付プレート68Aがスラブ34に接合されている。これにより、波形鋼板16が接合されたスラブ34の接合部が間柱部材66によって支持されると共に、補強層14の下部水平部材20と下層58の下部水平部材72とが一体化され、スラブ34の接合部に鉛直剛性が付与されている。   As shown in FIG. 9A, a stud member 66 is disposed below the vertical flange 38 </ b> B of the corrugated steel plate 16. The stud member 66 is arranged so that the vertical flange 38 </ b> B is positioned at the center in the width direction of the stud member 66. The horizontal flange 36B of the corrugated steel plate 16 extends outside the vertical flange 38B. A through hole 102 is formed in the extending portion of the vertical flange 38 </ b> B, and a through hole 104 is formed in the slab 34. The mounting plate 68A is joined to the slab 34 by the PC steel rod 52 and the nut 54 that pass through the through holes 102 and 104 and the through hole 86 of the mounting plate 68A. As a result, the joint portion of the slab 34 to which the corrugated steel plate 16 is joined is supported by the stud member 66, and the lower horizontal member 20 of the reinforcing layer 14 and the lower horizontal member 72 of the lower layer 58 are integrated, and the slab 34 Vertical rigidity is imparted to the joint.

また、貫通孔104、横フランジ36Bとスラブ34との間、スラブ34と取付プレート68Aとの間にはそれぞれグラウトGが充填され、このグラウトGにより間柱部材66の接合強度が確保されている。   Further, a grout G is filled between the through-hole 104, the horizontal flange 36B and the slab 34, and between the slab 34 and the mounting plate 68A, and the joining strength of the stud member 66 is secured by this grout G.

なお、図9(B)に示すように、横フランジ36Bを梁32の上面まで延ばすと共に梁32の下面に鋼製の板材90を配置して、これらの横フランジ36Bと板材90とを、梁32を貫通するPC鋼棒52で緊結しても良く、また、取付プレート68Aを梁32の内側側面まで延ばしてスラブ34の下面に配置し、これらの取付プレート68Aと横フランジ36Bとを、スラブ34を貫通するPC鋼棒52で緊結しても良い。これにより、縦フランジ38Bと梁32との間のスラブ34の部位に曲げ剛性が付与される。なお、図9(B)に示す構成では、横フランジ36B及び取付プレート68Aをそれぞれ梁32側へ延出させたが、横フランジ36B及び取付プレート68Aとは別の板材を、縦フランジ38Bと梁32との間のスラブ34の上面及び下面に配置して、スラブ34に曲げ耐力を付与しても良い。   As shown in FIG. 9B, the horizontal flange 36B is extended to the upper surface of the beam 32, and a steel plate 90 is disposed on the lower surface of the beam 32. The horizontal flange 36B and the plate 90 are connected to the beam. The steel plate 52 may be fastened by a PC steel bar 52 penetrating through the slab 32. The mounting plate 68A extends to the inner side surface of the beam 32 and is disposed on the lower surface of the slab 34. The mounting plate 68A and the lateral flange 36B are connected to the slab. Alternatively, a PC steel rod 52 penetrating through 34 may be used. Thereby, bending rigidity is given to the part of the slab 34 between the vertical flange 38 </ b> B and the beam 32. In the configuration shown in FIG. 9B, the horizontal flange 36B and the mounting plate 68A are each extended to the beam 32 side. However, a plate material different from the horizontal flange 36B and the mounting plate 68A is used as the vertical flange 38B and the beam. The slab 34 may be disposed on the upper surface and the lower surface of the slab 34 between the slabs 34 and the slab 34 may be given bending strength.

更に、間柱部材66は、波形鋼板16とスラブ34との接合部を支持していれば良いが、波形鋼板16が負担するせん断力は、縦フランジ38Bを介して鉛直力としてスラブ34に伝達されるため、縦フランジ38Bの直下に間柱部材66を配置することが好ましい。縦フランジ38Bの直下に間柱部材66を配置しない場合は、縦フランジ38Bの直下から間柱部材66による支持部に至るまでのスラブ34の部位を鉄板や炭素繊維シート等で補強しても良い。   Furthermore, the stud member 66 only needs to support the joint between the corrugated steel plate 16 and the slab 34, but the shearing force borne by the corrugated steel plate 16 is transmitted to the slab 34 as a vertical force via the vertical flange 38B. For this reason, it is preferable to arrange the stud member 66 immediately below the vertical flange 38B. When the intermediate pillar member 66 is not disposed directly below the vertical flange 38B, the portion of the slab 34 from directly below the vertical flange 38B to the support portion by the intermediate pillar member 66 may be reinforced with an iron plate, a carbon fiber sheet, or the like.

また、間柱部材66を例に説明したが、間柱部材66と同様の方法より、他の間柱部材60、62、64によって、補強層14のスラブ28と上層56のスラブ78とが連結され、または、補強層14のスラブ34と下層58のスラブ84とが連結されている。   In addition, although the intermediate column member 66 has been described as an example, the slab 28 of the reinforcing layer 14 and the slab 78 of the upper layer 56 are connected to each other by the other intermediate column members 60, 62, and 64 by the same method as the intermediate column member 66, or The slab 34 of the reinforcing layer 14 and the slab 84 of the lower layer 58 are connected.

このように間柱部材60、62により補強層14のスラブ28と上層56のスラブ78とを連結し、間柱部材64、66により補強層14のスラブ34と下層58のスラブ84とを連結することで、第1の実施形態と同様の効果を得ることができる。   In this way, the slab 28 of the reinforcing layer 14 and the slab 78 of the upper layer 56 are connected by the spacer members 60 and 62, and the slab 34 of the reinforcing layer 14 and the slab 84 of the lower layer 58 are connected by the spacer members 64 and 66. The same effects as those of the first embodiment can be obtained.

また、図10に示すように、スラブ34と梁80、82との間に間柱部材64、66を斜めに架け渡し、補強層14のスラブ34と下層58の梁80、82とを連結することも可能である。   Further, as shown in FIG. 10, the intermediate pillar members 64 and 66 are obliquely bridged between the slab 34 and the beams 80 and 82, and the slab 34 of the reinforcing layer 14 and the beams 80 and 82 of the lower layer 58 are connected. Is also possible.

更に、図11(A)及び図11(B)に示すように、板材48A、48Bを梁24、26の側面または梁30、32の上面にまで延ばし、これらの梁24、26、30、32を間柱部材60、62、64、66で支持しても良い。この場合、図12に示すように、縦フランジ38Bと梁32との間のスラブ34の下面に鋼製の板材106を配置し、スラブ34を補強しても良い。この板材106と板材48AとをPC鋼棒52等によって連結することで、当該スラブ34の部位に曲げ耐力を付与することができる。
なお、板材48A、48Bは、横フランジ36A、36Bと一体化させても良いし、横フランジ36A、36Bと別の部材として構成しても良い。
Further, as shown in FIGS. 11A and 11B, the plate members 48A and 48B are extended to the side surfaces of the beams 24 and 26 or the upper surfaces of the beams 30 and 32, and these beams 24, 26, 30, and 32 are extended. May be supported by the spacer members 60, 62, 64, 66. In this case, as shown in FIG. 12, a steel plate 106 may be disposed on the lower surface of the slab 34 between the vertical flange 38B and the beam 32 to reinforce the slab 34. By connecting the plate material 106 and the plate material 48 </ b> A by the PC steel rod 52 or the like, bending strength can be imparted to the portion of the slab 34.
The plate members 48A and 48B may be integrated with the horizontal flanges 36A and 36B, or may be configured as separate members from the horizontal flanges 36A and 36B.

次に、本発明の第2の実施形態に係る耐震構造110について説明する。なお、第1の実施形態と同じ構成のものは同符号を付すると共に適宜省略して説明する。   Next, the earthquake-resistant structure 110 which concerns on the 2nd Embodiment of this invention is demonstrated. Note that the same components as those in the first embodiment are denoted by the same reference numerals and will be appropriately omitted.

図13(A)〜図13(C)及び図14(A)〜図14(C)に示すように、耐震構造110は間柱部材64、66に替えて制震間柱部材112、114を備えている。なお、下部補剛手段としての制震間柱部材112、114について説明するが、上部補剛手段としての間柱部材60、62にも適用可能である。また、制震間柱部材112(間柱部材)と制震間柱部材114(間柱部材)とは、同一構成であるため制震間柱部材114を例に説明する。   As shown in FIGS. 13 (A) to 13 (C) and FIGS. 14 (A) to 14 (C), the earthquake-resistant structure 110 is provided with the damping pillar members 112 and 114 in place of the pillar members 64 and 66. Yes. In addition, although the damping damping column members 112 and 114 as the lower stiffening means will be described, the present invention can also be applied to the stud members 60 and 62 as the upper stiffening means. Moreover, since the seismic control column member 112 (intermediate column member) and the seismic control column member 114 (intermediate column member) have the same configuration, the seismic suppression interphase member 114 will be described as an example.

制震間柱部材114は、上部柱部材116(第1柱部材)及び下部柱部材118(第2柱部材)を備えている。上部柱部材116の上端部には取付プレート68Aが設けられており、この取付プレート68Aを梁32の下面に接合することにより上部柱部材116が梁32に接合されている。また、上部柱部材116の下端部には開口部120が設けられている。更に、上部柱部材116の下端部の側壁には、開口部120に通じる一対の貫通孔122が形成されている。   The seismic control column member 114 includes an upper column member 116 (first column member) and a lower column member 118 (second column member). A mounting plate 68A is provided at the upper end portion of the upper column member 116, and the upper column member 116 is joined to the beam 32 by joining the attachment plate 68A to the lower surface of the beam 32. An opening 120 is provided at the lower end of the upper column member 116. Further, a pair of through-holes 122 communicating with the opening 120 are formed in the side wall at the lower end of the upper column member 116.

下部柱部材118の下端部には、取付プレート68Bが設けられている。この取付プレート68Bを梁82(図2参照)の上面に接合することにより下部柱部材118が梁82に接合されている。また、下部柱部材118には連結板124が設けられている。この連結板124は下部柱部材118の上端面に突設されており、開口部120に挿入されている。また、連結板124には上下方向に延びる長孔126(ストッパ手段)が形成されており、この長孔126及び一対の貫通孔122に貫通されるストッパピン128(ストッパ手段)によって上部柱部材116と下部柱部材118とが上下方向に相対変位可能に連結されている。更に、開口部120の内壁と連結板124との間には、粘弾性体130がそれぞれ設けられている。この粘弾性体130はシート状に形成され、開口部120の内壁及び連結板124の側面に接着固定されており、上部柱部材116と下部柱部材118とが上下方向に相対変位することで上下方向にせん断変形可能とされている。なお、粘弾性体130には、長孔126とほぼ同一形状、大きさの長孔130Aが形成されており、この長孔130Aにストッパピン128が貫通されている。また、長孔126の上縁部126Aまたは下縁部126Bにストッパピン128が当接することで、上部柱部材116と下部柱部材118との上下方向に相対変位が所定の位置で止まるように構成されている。
なお、粘弾性体130の材料としては、例えば、ジエン系ゴム、ブチル系ゴム、アクリル系、ウレタンアスファルト系ゴム等を用いられる。
A mounting plate 68 </ b> B is provided at the lower end of the lower column member 118. The lower column member 118 is joined to the beam 82 by joining the mounting plate 68B to the upper surface of the beam 82 (see FIG. 2). The lower column member 118 is provided with a connecting plate 124. The connecting plate 124 protrudes from the upper end surface of the lower column member 118 and is inserted into the opening 120. In addition, a long hole 126 (stopper means) extending in the vertical direction is formed in the connecting plate 124, and the upper column member 116 is formed by a stopper pin 128 (stopper means) penetrating the long hole 126 and the pair of through holes 122. And the lower column member 118 are connected so as to be relatively displaceable in the vertical direction. Furthermore, a viscoelastic body 130 is provided between the inner wall of the opening 120 and the connecting plate 124. The viscoelastic body 130 is formed in a sheet shape, and is bonded and fixed to the inner wall of the opening 120 and the side surface of the connecting plate 124. The upper column member 116 and the lower column member 118 are displaced relative to each other in the vertical direction. Shear deformation is possible in the direction. The viscoelastic body 130 is formed with a long hole 130A having substantially the same shape and size as the long hole 126, and a stopper pin 128 is passed through the long hole 130A. Further, the stopper pin 128 is in contact with the upper edge portion 126A or the lower edge portion 126B of the long hole 126, so that the relative displacement between the upper column member 116 and the lower column member 118 is stopped at a predetermined position. Has been.
In addition, as a material of the viscoelastic body 130, for example, diene rubber, butyl rubber, acrylic, urethane asphalt rubber, or the like is used.

次に、本発明の第2の実施形態に係る耐震構造110の作用について説明する。   Next, the operation of the earthquake resistant structure 110 according to the second embodiment of the present invention will be described.

図14(A)〜図14(C)は、上部柱部材116と下部柱部材118との上下方向の相対変位を示す作動図であり、図14(A)は停止状態を示しており、図14(B)及び図14(C)は上部柱部材116に対して下部柱部材118が上方または下方に相対変位した後の状態を示している。   14 (A) to 14 (C) are operation diagrams showing the vertical displacement of the upper column member 116 and the lower column member 118, and FIG. 14 (A) shows a stopped state. 14B and 14C show a state after the lower column member 118 is relatively displaced upward or downward with respect to the upper column member 116. FIG.

風や小規模の地震等によって建物12に水平力が作用し、波形鋼板16の縦フランジ38Bから制震間柱部材114に鉛直力F、F(図5参照)が伝達されると、上部柱部材116と下部柱部材118とが、長孔126が許容する範囲内で上下方向に相対変位し、これにより粘弾性体130がせん断変形する。従って、粘弾性体130において振動エネルギーが熱エネルギーに変換され、微振動が低減される。よって、建物12の居住性が向上する。 When a horizontal force acts on the building 12 due to wind, a small earthquake, etc., and the vertical forces F A and F B (see FIG. 5) are transmitted from the vertical flange 38B of the corrugated steel plate 16 to the seismic control column member 114, the upper part The column member 116 and the lower column member 118 are relatively displaced in the vertical direction within the range allowed by the long hole 126, whereby the viscoelastic body 130 is shear-deformed. Therefore, vibration energy is converted into thermal energy in the viscoelastic body 130, and fine vibration is reduced. Therefore, the habitability of the building 12 is improved.

また、上部柱部材116と下部柱部材118との相対変位が所定量に達して、長孔126の上縁部126Aまたは下縁部126Bにストッパピン128が当接すると、上部柱部材116と下部柱部材118との相対変位が止められ(制限され)、上部柱部材116及び下部柱部材118が一体となって鉛直力F、Fに抵抗する。これにより、梁30、32に鉛直剛性が付与される。 Further, when the relative displacement between the upper column member 116 and the lower column member 118 reaches a predetermined amount and the stopper pin 128 contacts the upper edge portion 126A or the lower edge portion 126B of the long hole 126, the upper column member 116 and the lower column member 118 The relative displacement with the column member 118 is stopped (restricted), and the upper column member 116 and the lower column member 118 are integrated to resist the vertical forces F A and F B. Thereby, vertical rigidity is provided to the beams 30 and 32.

従って、風荷重等の微振動に対しては、粘弾性体130が減衰性能によって微振動を低減することができ、地震荷重等の大きな振動に対しては、波形鋼板16の回転変形が抑制されて、波形鋼板16に本来備えている耐震性能、制震性能を発揮させることができる。よって、波形鋼板16の耐震性能を維持しつつ、風荷重等による微振動を低減することができ、建物12の環境性能を向上させることができる。   Accordingly, the viscoelastic body 130 can reduce the fine vibration due to the damping performance with respect to the fine vibration such as wind load, and the rotational deformation of the corrugated steel plate 16 is suppressed with respect to the large vibration such as the earthquake load. Thus, the seismic performance and the seismic performance inherent in the corrugated steel sheet 16 can be exhibited. Therefore, while maintaining the seismic performance of the corrugated steel sheet 16, it is possible to reduce micro-vibration due to wind loads and the like, and to improve the environmental performance of the building 12.

また、ストッパピン128によって、上部柱部材116と下部柱部材118との相対変位が所定範囲内に制限されているため、粘弾性体130の破損、損傷が防止される。   Further, since the relative displacement between the upper column member 116 and the lower column member 118 is limited within a predetermined range by the stopper pin 128, the viscoelastic body 130 is prevented from being damaged or damaged.

次に、本発明の第3の実施形態に係る耐震構造140について説明する。なお、第1、第2の実施形態と同じ構成のものは同符号を付すると共に適宜省略して説明する。   Next, an earthquake resistant structure 140 according to a third embodiment of the present invention will be described. In addition, the thing of the same structure as 1st, 2nd embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

図15に示すように、第3の実施形態では下部補剛手段として補剛用波形鋼板142を用いる。なお、下部補剛手段を例に説明するが、補剛用波形鋼板142は上部補剛手段にも適用可能である。   As shown in FIG. 15, in the third embodiment, a corrugated steel plate 142 for stiffening is used as the lower stiffening means. Although the lower stiffening means is described as an example, the corrugated steel plate 142 for stiffening can be applied to the upper stiffening means.

補強層14の下層58には、補剛用波形鋼板142が、その折り筋142Aを縦(折り筋142Aの向きを上下方向)にして配置されている。補剛用波形鋼板142の外周部には、横フランジ36A、36B及び縦フランジ38A、38Bからなる枠体40が設けられている。補剛用波形鋼板142は、横フランジ36A、36Bを梁32またはスラブ84に接合するにより、補強層14の梁32と下層58のスラブ84とを連結している。この補剛用波形鋼板142と枠体40とによって波形鋼板耐震壁143が構成されている。   On the lower layer 58 of the reinforcing layer 14, a corrugated steel plate 142 for stiffening is arranged with the fold line 142 </ b> A being vertical (the direction of the fold line 142 </ b> A is the vertical direction). On the outer peripheral portion of the corrugated steel plate 142 for stiffening, a frame body 40 including horizontal flanges 36A and 36B and vertical flanges 38A and 38B is provided. The corrugated steel plate 142 for stiffening connects the beam 32 of the reinforcing layer 14 and the slab 84 of the lower layer 58 by joining the lateral flanges 36A and 36B to the beam 32 or the slab 84. A corrugated steel shear wall 143 is constituted by the corrugated steel plate 142 for stiffening and the frame body 40.

波形鋼板耐震壁143は、波形鋼板耐震壁17の縦フランジ38Bの直下に配置され、また、平面視にてその壁面が波形鋼板耐震壁17の壁面と略直交するように配置されている。波形鋼板耐震壁17の板材48Aと波形鋼板耐震壁143の横フランジ36AとはPC鋼棒52によって連結されている。これにより、補剛用波形鋼板142が下部水平部材20の接合部に鉛直剛性を付与するだけでなく、下部水平部材20の接合部に曲げ耐力が付与されている。また、波形鋼板耐震壁143は、下層58の左右の柱22とは接合されておらず、縦フランジ38A、38Bと柱22との間に開口が設けられている。   The corrugated steel seismic wall 143 is disposed immediately below the vertical flange 38B of the corrugated steel seismic wall 17 and is disposed so that its wall surface is substantially orthogonal to the wall surface of the corrugated steel seismic wall 17 in plan view. The plate material 48 </ b> A of the corrugated steel shear wall 17 and the lateral flange 36 </ b> A of the corrugated steel earthquake resistant wall 143 are connected by a PC steel rod 52. Thereby, the corrugated steel plate 142 for stiffening not only gives the vertical rigidity to the joint part of the lower horizontal member 20, but also the bending strength is given to the joint part of the lower horizontal member 20. Further, the corrugated steel shear wall 143 is not joined to the left and right columns 22 of the lower layer 58, and an opening is provided between the vertical flanges 38 </ b> A and 38 </ b> B and the column 22.

次に、本発明の第3の実施形態に係る耐震構造140の作用について説明する。   Next, the operation of the earthquake resistant structure 140 according to the third embodiment of the present invention will be described.

地震荷重等の水平力が建物12に作用し、補強層14の下層58に層間変形が生じると、補剛用波形鋼板142が水平力に抵抗して耐震性能を発揮する。また、水平力に対して補剛用波形鋼板142が降伏するように設計することで、地震エネルギーが鋼板の塑性変形エネルギーに変換され、大地震時等の振動が低減される。   When a horizontal force such as an earthquake load acts on the building 12 and an interlayer deformation occurs in the lower layer 58 of the reinforcing layer 14, the corrugated steel plate 142 for stiffening resists the horizontal force and exhibits seismic performance. Moreover, by designing the corrugated steel plate 142 for stiffening to yield with respect to a horizontal force, the seismic energy is converted into the plastic deformation energy of the steel plate, and vibration during a large earthquake is reduced.

更に、この耐震構造140では、折り筋142Aを縦(折り筋142Aの向きを上下方向)にして補剛用波形鋼板142を下層58に配置している。折り筋142Aを横にして補剛用波形鋼板142を配置した場合、補強層14に配置された波形鋼板耐震壁17の縦フランジ38Bから伝達される鉛直力Fに対して補剛用波形鋼板142がアコーディオンのように伸縮する。これに対して、折り筋142Aを縦にして補剛用波形鋼板142を配置した場合、波形鋼板耐震壁17の縦フランジ38Bから伝達される鉛直力Fに対して補剛用波形鋼板142がアコーディオンのように伸縮しない。即ち、折り筋142Aを横にして補剛用波形鋼板142を配置する場合と比較して、波形鋼板16が接合される補強層14の下部水平部材20の接合部に付与される鉛直剛性が大きくなる。従って、波形鋼板16の回転変形が抑止され、波形鋼板16に本来備えている耐震性能を発揮させることができる。 Further, in the seismic structure 140, the corrugated steel plate 142 for stiffening is disposed in the lower layer 58 with the fold line 142A being vertical (the direction of the fold line 142A is the vertical direction). If the crease 142A on its side was placed stiffening corrugated steel 142, corrugated steel for stiffening with respect to the vertical force F B from vertical flange 38B is transmitted in the corrugated steel disposed in the reinforcing layer 14 Walls 17 142 expands and contracts like an accordion. In contrast, if the crease 142A and vertically to place the stiffening corrugated steel 142, corrugated steel shear wall stiffening corrugated steel 142 with respect to the vertical force F B which is transmitted from the vertical flange 38B of 17 Does not stretch like an accordion. That is, as compared with the case where the corrugated steel plate 142 for stiffening is arranged with the crease 142A lying sideways, the vertical rigidity imparted to the joint portion of the lower horizontal member 20 of the reinforcing layer 14 to which the corrugated steel plate 16 is joined is large. Become. Therefore, the rotational deformation of the corrugated steel plate 16 is suppressed, and the seismic performance inherent to the corrugated steel plate 16 can be exhibited.

このように下部補剛手段を補剛用波形鋼板142で構成することで、補強層14の下部水平部材20の接合部に鉛直剛性を付与しつつ、補剛用波形鋼板142自体が耐震要素として機能するため、建物12全体の耐震性能が向上する。   By configuring the lower stiffening means with the corrugated steel plate 142 for stiffening as described above, the corrugated steel plate 142 for stiffening itself serves as an earthquake-resistant element while giving vertical rigidity to the joint portion of the lower horizontal member 20 of the reinforcing layer 14. Because it functions, the seismic performance of the entire building 12 is improved.

なお、波形鋼板耐震壁143の施工においては、補剛用波形鋼板142に軸力が導入されないように、補剛用波形鋼板142を下部水平部材20に接合する時期を考慮することが望ましい。具体的な対策の1つとして、施工中の柱部材等の軸変形が収束する、施工の最終段階で補剛用波形鋼板142を設置することが望ましい。   In the construction of the corrugated steel shear wall 143, it is desirable to consider the time when the corrugated steel plate 142 for stiffening is joined to the lower horizontal member 20 so that axial force is not introduced into the corrugated steel plate 142 for stiffening. As one specific measure, it is desirable to install the corrugated steel plate 142 for stiffening at the final stage of construction, in which axial deformation of the column member or the like under construction converges.

また、波形鋼板耐震壁143は、図16に示すように、波形鋼板耐震壁143と下層58の柱22との間に開口を設けずに、縦フランジ38A、38Bを柱22に接近させ、または接合させても良い。また、補剛用波形鋼板142に替えて、RC造の耐震壁や後述する鋼材系、鉄筋コンクリート造、プレキャストコンクリート造等のブレースを上部補剛手段または下部補剛手段として用いても良い。   Further, as shown in FIG. 16, the corrugated steel seismic wall 143 has vertical flanges 38A and 38B approaching the pillar 22 without providing an opening between the corrugated steel shear wall 143 and the pillar 22 of the lower layer 58, or It may be joined. Further, instead of the corrugated steel plate 142 for stiffening, an RC earthquake-resistant wall or a brace such as a steel material system, a reinforced concrete structure, or a precast concrete structure, which will be described later, may be used as the upper stiffening means or the lower stiffening means.

また、第1〜第3の実施形態における耐震構造10、110、140は、上部補剛手段及び下部補剛手段の少なくとも一方を備えていれば良い。例えば、第1の実施形態において、補強層14の上層56に間柱部材60、62を配置せずに、補強層14の下層58にのみ間柱部材64、66を配置しても良いし、間柱部材66のみを配置しても良い。   Moreover, the seismic structures 10, 110, 140 in the first to third embodiments may include at least one of the upper stiffening means and the lower stiffening means. For example, in the first embodiment, the pillar members 64 and 66 may be disposed only in the lower layer 58 of the reinforcing layer 14 without disposing the spacer members 60 and 62 in the upper layer 56 of the reinforcing layer 14. Only 66 may be arranged.

また、建物12には、複数層に渡って上下方向に隣接して波形鋼板16を設置することができる。例えば、図17に示す構成では、3つの層に渡って上下方向に隣接するように波形鋼板16(合計3つ)を配置している。なお、説明の便宜上、波形鋼板16が配置された層を上から順に補強層14A、14B、14Cとして説明する。この場合、補強層14Bには、補強層14Aの下部水平部材20に鉛直剛性を付与する下部補強手段としての間柱部材64、66と、波形鋼板16とを併設して配置することができる。また、補強層14Bに配置された間柱部材64、66は、補強層14Cの上部水平部材18に鉛直剛性を付与する上部補強手段としても機能する。このように本発明における補強層の上層とは、波形鋼板が配置された補強層の直上層を意味し、補強層の下層とは波形鋼板が配置された補強層の直上層を意味する。この場合、補強層の上層又は下層に波形鋼板が配置されていても良いし、波形鋼板が配置されていなくても良い。   Moreover, the corrugated steel plate 16 can be installed in the building 12 adjacent to the up-down direction over several layers. For example, in the configuration shown in FIG. 17, the corrugated steel plates 16 (three in total) are arranged so as to be adjacent in the vertical direction across three layers. For convenience of explanation, the layer in which the corrugated steel plate 16 is disposed will be described as reinforcing layers 14A, 14B, and 14C in order from the top. In this case, the reinforcing layer 14B can be provided with side pillar members 64 and 66 as lower reinforcing means for imparting vertical rigidity to the lower horizontal member 20 of the reinforcing layer 14A, and the corrugated steel plate 16. Further, the stud members 64 and 66 arranged in the reinforcing layer 14B also function as an upper reinforcing means for imparting vertical rigidity to the upper horizontal member 18 of the reinforcing layer 14C. Thus, the upper layer of the reinforcing layer in the present invention means a layer immediately above the reinforcing layer on which the corrugated steel plate is arranged, and the lower layer of the reinforcing layer means an upper layer on the reinforcing layer on which the corrugated steel plate is arranged. In this case, the corrugated steel sheet may be disposed in the upper layer or the lower layer of the reinforcing layer, or the corrugated steel sheet may not be disposed.

また、図18に示すように、複数層に渡って波形鋼板16を複数配置する場合において、波形鋼板16を上下方向に隣接させずに配置することも可能である。この場合、各波形鋼板16を基準として相対的に補強層14、補強層の上層56、補強層の下層58を決定すれば良い。例えば、図18に示す構成では、左側に配置された波形鋼板16を基準とすると3層のうち真中の層が補強層14となり、右側に配置された波形鋼板16を基準とすると、3層のうち一番の上の層が補強層14となる。   Moreover, as shown in FIG. 18, in the case where a plurality of corrugated steel plates 16 are arranged over a plurality of layers, it is possible to arrange the corrugated steel plates 16 without being adjacent to each other in the vertical direction. In this case, the reinforcing layer 14, the upper layer 56 of the reinforcing layer, and the lower layer 58 of the reinforcing layer may be determined relative to each corrugated steel plate 16. For example, in the configuration shown in FIG. 18, when the corrugated steel plate 16 arranged on the left is used as a reference, the middle layer of the three layers becomes the reinforcing layer 14, and when the corrugated steel plate 16 arranged on the right is used as a reference, three layers The uppermost layer is the reinforcing layer 14.

また、図19に示すように、補強層14から建物12の基礎部132までの各下層58に間柱部材64、66や制震間柱部材112、114(不図示)、補剛用波形鋼板142(不図示)等を配置しても良い。この場合、波形鋼板16が接合された補強層14の下部水平部材20の接合部が、間柱部材64、66等を介して基礎部132に連結支持される。具体的には、図20に示すように、平面視にて各下層58の間柱部材66、波形鋼板耐震壁143等が互いに重なるように配置する。これにより、波形鋼板耐震壁17の縦フランジ38A、38Bから下部水平部材20に伝達される鉛直力が基礎部132へ伝達される。従って、下部水平部材20の接合部に付与される鉛直剛性が大きくなり、下部水平部材20の接合部の鉛直方向の変形を更に抑制することができる。   In addition, as shown in FIG. 19, each of the lower layers 58 from the reinforcing layer 14 to the foundation portion 132 of the building 12 has intercolumn members 64 and 66, vibration control intermediary column members 112 and 114 (not shown), and corrugated steel plates 142 for stiffening ( (Not shown) or the like may be arranged. In this case, the joint portion of the lower horizontal member 20 of the reinforcing layer 14 to which the corrugated steel plate 16 is joined is connected and supported to the base portion 132 via the stud members 64 and 66 and the like. Specifically, as shown in FIG. 20, the pillar members 66, the corrugated steel shear walls 143, and the like are arranged so as to overlap each other in plan view. Thereby, the vertical force transmitted from the vertical flanges 38 </ b> A and 38 </ b> B of the corrugated steel shear wall 17 to the lower horizontal member 20 is transmitted to the base portion 132. Therefore, the vertical rigidity imparted to the joint portion of the lower horizontal member 20 is increased, and the vertical deformation of the joint portion of the lower horizontal member 20 can be further suppressed.

更に、第1〜3の実施形態における耐震構造10、110、140では、耐震部材としての波形鋼板16(波形鋼板耐震壁17)を補強層14に配置したがこれに限らない。例えば、図21に示すように、波形鋼板16に替えてRC造のRC耐震壁134(壁部材)を補強層14に配置しても良い。   Furthermore, in the earthquake-resistant structures 10, 110, and 140 in the first to third embodiments, the corrugated steel plate 16 (corrugated steel plate earthquake-resistant wall 17) as the earthquake-resistant member is disposed in the reinforcing layer 14, but the invention is not limited thereto. For example, as shown in FIG. 21, an RC earthquake-resistant wall 134 (wall member) made of RC may be disposed on the reinforcing layer 14 instead of the corrugated steel plate 16.

この場合、地震荷重等の水平力が建物12に作用し、補強層14に層間変形が生じると、RC耐震壁134が水平力に抵抗して耐震性能を発揮する。この際、RC耐震壁134の幅方向両端部には、せん断力によって生じる曲げモーメントをRC耐震壁134の長さ(耐震壁134の幅)で除した力に相当する力が鉛直方向の力(鉛直力)としてスラブ28、34の接合部に集中して作用する。従って、RC耐震壁134の幅方向両端部とスラブ28、34との接合部に間柱部材60、62、64、66と接合することが望ましい。これにより、スラブ28、34の接合部に鉛直剛性が付与され、当該接合部の鉛直方向の変形が抑制される。よって、RC耐震壁134の回転変形が抑制され、RC耐震壁134に本来備えている耐震性能、制震性能を発揮させることができる。   In this case, when a horizontal force such as a seismic load acts on the building 12 and an interlayer deformation occurs in the reinforcing layer 14, the RC seismic wall 134 resists the horizontal force and exhibits seismic performance. At this time, a force corresponding to a force obtained by dividing the bending moment generated by the shearing force by the length of the RC earthquake-resistant wall 134 (width of the earthquake-resistant wall 134) is applied to both ends in the width direction of the RC earthquake-resistant wall 134. As a vertical force, the slabs 28 and 34 are concentrated and act on the joint. Therefore, it is desirable to join the spacer members 60, 62, 64, 66 to the joints between the both ends in the width direction of the RC seismic wall 134 and the slabs 28, 34. Thereby, vertical rigidity is provided to the joint part of the slabs 28 and 34, and the deformation | transformation of the perpendicular direction of the said joint part is suppressed. Therefore, the rotational deformation of the RC seismic wall 134 is suppressed, and the seismic performance and damping performance originally provided in the RC seismic wall 134 can be exhibited.

更にまた、図22に示すように、耐震部材としての鋼材ブレース136A、136Bを補強層14に配置しても良い。これらの鋼材ブレース136A、136Bは、スラブ28とスラブ34との間に斜めに架け渡され、X型に交差されてスラブ28、34の間に配置されている。また、これらの鋼材ブレース136A、136Bは、スラブ28、34に固定されたガゼットプレート138にボルトまたは溶接等によって固定されている。   Furthermore, as shown in FIG. 22, steel braces 136 </ b> A and 136 </ b> B as earthquake-resistant members may be arranged on the reinforcing layer 14. These steel braces 136A and 136B are bridged diagonally between the slab 28 and the slab 34, and are arranged between the slabs 28 and 34 so as to intersect with each other in an X shape. These steel braces 136A and 136B are fixed to a gusset plate 138 fixed to the slabs 28 and 34 by bolts or welding.

この場合、地震荷重等の水平力が建物12に作用し、補強層14に層間変形が生じると、鋼材ブレース136A、136Bが水平力に抵抗して耐震性能を発揮する。この際、鋼材ブレース136A、136Bからの軸力によって、鋼材ブレース136A、136Bとスラブ28、34との接合部に鉛直力が集中して作用する。このようなスラブ28、34との接合部を間柱部材60、62、64、66等で連結支持し、鉛直剛性を付与することで、当該接合部の鉛直方向の変形が抑制される。よって、鋼材ブレース136A、136Bの回転変形が抑制され、鋼材ブレース136A、136Bに本来備えている耐震性能、制震性能を発揮させることができる。   In this case, when a horizontal force such as an earthquake load acts on the building 12 and an interlayer deformation occurs in the reinforcing layer 14, the steel braces 136A and 136B resist the horizontal force and exhibit seismic performance. At this time, the vertical force concentrates on the joint between the steel braces 136A and 136B and the slabs 28 and 34 due to the axial force from the steel braces 136A and 136B. By connecting and supporting the joint portions with the slabs 28 and 34 by the inter-column members 60, 62, 64, and 66 and imparting vertical rigidity, deformation of the joint portions in the vertical direction is suppressed. Therefore, the rotational deformation of the steel braces 136A and 136B is suppressed, and the seismic performance and damping performance originally provided in the steel braces 136A and 136B can be exhibited.

なお、鋼材ブレース136A、136Bの配置の方法は上記したX型に限らない。例えば、図23に示すように、V字型に配置しても良いし、逆V字型に配置しても良い。また、鋼材ブレース136A、136Bの一部または全部を低降伏点鋼等で構成したアンボンドブレースを用いても良い。この場合、地震エネルギーが鋼板の塑性変形エネルギーに変換され、大地震等による振動等が低減される。更に、鋼材系のブレースに限らず、鉄筋コンクリート造やプレキャストコンクリート造のブレース等も補強層14に配置することができる。   In addition, the arrangement method of the steel braces 136A and 136B is not limited to the X-type described above. For example, as shown in FIG. 23, it may be arranged in a V shape or in an inverted V shape. Moreover, you may use the unbonded brace which comprised a part or all of steel braces 136A, 136B with the low yield point steel. In this case, the seismic energy is converted into the plastic deformation energy of the steel sheet, and vibrations caused by a large earthquake or the like are reduced. Furthermore, not only steel braces but also braces made of reinforced concrete or precast concrete can be arranged in the reinforcing layer 14.

また、第1〜第3の実施形態では、折り筋16Aを横(折り筋16Aを横方向)にして波形鋼板16を補強層14に配置した場合の例について説明したが、折り筋16Aを縦(折り筋16Aを上下方向)にして補強層14に配置しても良い。折り筋16Aを縦にして補強層14に配置する場合は、波形鋼板16に軸力が導入されないように、波形鋼板16を上部水平部材18及び下部水平部材20に接合する時期を考慮することが望ましい。また、波形鋼板16及び補剛用波形鋼板142には、図24(A)〜図24(D)に示すような断面形状をした波形鋼板を用いても良い。   In the first to third embodiments, an example in which the corrugated steel plate 16 is disposed on the reinforcing layer 14 with the fold line 16A being horizontal (the fold line 16A is in the lateral direction) has been described. You may arrange | position in the reinforcement layer 14 by making the crease 16A into the up-down direction. When the fold line 16A is arranged vertically in the reinforcing layer 14, it is necessary to consider the time when the corrugated steel plate 16 is joined to the upper horizontal member 18 and the lower horizontal member 20 so that axial force is not introduced into the corrugated steel plate 16. desirable. Further, the corrugated steel plate 16 and the corrugated steel plate 142 for stiffening may be corrugated steel plates having a cross-sectional shape as shown in FIGS. 24 (A) to 24 (D).

更に、第1〜第3の実施形態で示した耐震構造10、110、140は、建物12の一部に用いても、全てに用いても良い。本発明の耐震構造を用いることにより、耐震部材の設置位置の自由度が大きい耐震構造を有する建物(建築物)を構築することができる。また、第1〜第3の実施形態は、新設及び改修建物の両方に適用可能である。また、本発明の耐震構造では、波形鋼板、RC造の壁部材、ブレース等の耐震要素で耐震部材、上部補剛手段、及び下部補剛手段を構成することができ、更に、これらの耐震要素を組み合せて、耐震部材、上部補剛手段、及び下部補剛手段を構成しても良い。   Furthermore, the seismic structures 10, 110 and 140 shown in the first to third embodiments may be used for a part of the building 12 or for all of them. By using the earthquake resistant structure of the present invention, it is possible to construct a building (building) having an earthquake resistant structure with a high degree of freedom in the installation position of the earthquake resistant member. In addition, the first to third embodiments can be applied to both new and renovated buildings. Further, in the earthquake-resistant structure of the present invention, the earthquake-resistant member, the upper stiffening means, and the lower stiffening means can be constituted by a seismic element such as a corrugated steel plate, an RC wall member, and a brace. The seismic member, the upper stiffening means, and the lower stiffening means may be configured in combination.

以上、本発明の第1〜第3の実施形態について説明したが、本発明はこうした実施形態に限定されるものではなく、第1〜第3の実施形態を組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first to third embodiments of the present invention have been described above, but the present invention is not limited to such embodiments, and the first to third embodiments may be used in combination. Of course, various embodiments can be implemented without departing from the scope of the invention.

本発明の第1の実施形態に係る耐震構造を示す斜視図である。It is a perspective view which shows the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造を示す正面図である。It is a front view which shows the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造の梁付近を示す拡大図である。It is an enlarged view which shows the beam vicinity of the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造の梁付近を示す拡大図である。It is an enlarged view which shows the beam vicinity of the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造を示す側面図である。It is a side view which shows the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造の梁付近を示す拡大図である。It is an enlarged view which shows the beam vicinity of the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造の梁付近を示す拡大図である。It is an enlarged view which shows the beam vicinity of the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造の変形例を示す正面図である。It is a front view which shows the modification of the seismic structure which concerns on the 1st Embodiment of this invention. (A)、(B)本発明の第1の実施形態に係る耐震構造の変形例の梁付近を示す拡大図である。(A), (B) It is an enlarged view which shows the beam vicinity of the modification of the seismic structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る耐震構造の変形例を示す正面図である。It is a front view which shows the modification of the seismic structure which concerns on the 1st Embodiment of this invention. (A)は本発明の第1の実施形態に係る耐震構造の変形例を示す正面図であり、(B)は図11(A)の8−8線断面図である。(A) is a front view which shows the modification of the seismic structure which concerns on the 1st Embodiment of this invention, (B) is the 8-8 sectional view taken on the line of FIG. 11 (A). 本発明の第1の実施形態に係る耐震構造の変形例の梁付近を示す拡大図である。It is an enlarged view which shows the beam vicinity of the modification of the earthquake-resistant structure which concerns on the 1st Embodiment of this invention. (A)は、本発明の第2の実施形態に係る耐震構造を示す正面図であり、(B)は、上部補剛手段及び下部補剛手段の正面図であり、(C)は、上部補剛手段及び下部補剛手段の側面図である。(A) is a front view which shows the earthquake-resistant structure which concerns on the 2nd Embodiment of this invention, (B) is a front view of an upper stiffening means and a lower stiffening means, (C) is upper part It is a side view of a stiffening means and a lower stiffening means. 本発明の第2の実施形態に係る第1柱部材と第2柱部材との上下方向の相対変位を示す作動図であり、(A)は停止状態を示しており、(B)及び(C)は第1柱部材と第2柱部材とが上下方向に相対変位した後の状態を示している。It is an operation | movement figure which shows the relative displacement of the up-down direction of the 1st pillar member which concerns on the 2nd Embodiment of this invention, and a 2nd pillar member, (A) has shown the stop state, (B) and (C ) Shows a state after the first column member and the second column member are relatively displaced in the vertical direction. 本発明の第3の実施形態に係る耐震構造を示す正面図である。It is a front view which shows the earthquake-resistant structure which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る耐震構造を示す正面図である。It is a front view which shows the earthquake-resistant structure which concerns on the 3rd Embodiment of this invention. 本発明の実施例に係る耐震構造の変形例を示す正面図である。It is a front view which shows the modification of the seismic structure which concerns on the Example of this invention. 本発明の実施例に係る耐震構造の変形例を示す正面図である。It is a front view which shows the modification of the seismic structure which concerns on the Example of this invention. 本発明の実施例に係る耐震構造の変形例を示す正面図である。It is a front view which shows the modification of the seismic structure which concerns on the Example of this invention. 図17の9−9線断面図である。FIG. 9 is a sectional view taken along line 9-9 in FIG. 17. 本発明の実施例に係る耐震部材の変形例を示す正面図である。It is a front view which shows the modification of the earthquake-resistant member which concerns on the Example of this invention. 本発明の実施例に係る耐震部材の変形例を示す正面図である。It is a front view which shows the modification of the earthquake-resistant member which concerns on the Example of this invention. 本発明の実施例に係る耐震部材の変形例を示す正面図である。It is a front view which shows the modification of the earthquake-resistant member which concerns on the Example of this invention. 本発明の実施例に係る波形鋼板の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the corrugated steel plate which concerns on the Example of this invention. 従来の耐震構造を示す正面図である。It is a front view which shows the conventional earthquake-resistant structure. (A)、(B)は、従来の耐震構造を示す説明図である。(A), (B) is explanatory drawing which shows the conventional earthquake-resistant structure.

符号の説明Explanation of symbols

10 耐震構造
12 建物
14 補強層
16 波形鋼板
16A 折り筋
18 上部水平部材
20 下部水平部材
24 梁(上部水平部材)
26 梁(上部水平部材)
28 スラブ(上部水平部材)
30 梁(下部水平部材)
32 梁(下部水平部材)
34 スラブ(下部水平部材)
36A 横フランジ
36B 横フランジ
38A 縦フランジ
38B 縦フランジ
56 上層(補強層の上層)
58 下層(補強層の下層)
60 間柱部材
62 間柱部材
64 間柱部材
66 間柱部材
70 上部水平部材(上層の上部水平部材)
72 下部水平部材(下層の下部水平部材)
74 梁(上層の上部水平部材)
76 梁(上層の上部水平部材)
78 スラブ(上層の上部水平部材)
80 梁(下層の下部水平部材)
82 梁(下層の下部水平部材)
84 スラブ(下層の下部水平部材)
110 耐震構造
112 制震間柱部材(間柱部材)
114 制震間柱部材(間柱部材)
116 上部柱部材(第1柱部材)
118 下部柱部材(第2柱部材)
126 長孔(ストッパ手段)
128 ストッパピン長孔(ストッパ手段)
130 粘弾性体
132 基礎部
134 RC耐震壁(壁部材)
136A 鋼材ブレース(ブレース)
136B 鋼材ブレース(ブレース)
140 耐震構造
142 補剛用波形鋼板
142A 折り筋
DESCRIPTION OF SYMBOLS 10 Seismic structure 12 Building 14 Reinforcement layer 16 Corrugated steel plate 16A Folding line 18 Upper horizontal member 20 Lower horizontal member 24 Beam (upper horizontal member)
26 Beam (upper horizontal member)
28 Slab (upper horizontal member)
30 Beam (lower horizontal member)
32 Beam (lower horizontal member)
34 Slab (lower horizontal member)
36A Horizontal flange 36B Horizontal flange 38A Vertical flange 38B Vertical flange 56 Upper layer (upper layer of reinforcing layer)
58 Lower layer (lower layer of reinforcement layer)
60 Intermediate column member 62 Intermediate column member 64 Intermediate column member 66 Intermediate column member 70 Upper horizontal member (upper upper horizontal member)
72 Lower horizontal member (lower lower horizontal member)
74 Beam (upper horizontal member on upper layer)
76 Beam (Upper upper horizontal member)
78 Slab (Upper upper horizontal member)
80 Beam (lower horizontal member below)
82 Beam (lower horizontal member in the lower layer)
84 Slab (lower horizontal member in the lower layer)
110 Seismic structure 112 Seismic control column member (intermediate column member)
114 Seismic control stud member
116 Upper column member (first column member)
118 Lower pillar member (second pillar member)
126 Long hole (stopper means)
128 Stopper pin oblong hole (stopper means)
130 Viscoelastic body 132 Foundation part 134 RC earthquake resistant wall (wall member)
136A Steel Brace (Brace)
136B Steel Brace (Brace)
140 Earthquake Resistant Structure 142 Corrugated Steel Sheet 142A Stiffening

Claims (9)

建物の層を構成し且つ架構の構面外にある上部水平部材と下部水平部材との間に配置されると共に前記上部水平部材及び前記下部水平部材に接合される耐震部材を備え、
前記耐震部材が接合される前記上部水平部材の接合部と前記耐震部材が配置された補強層の上層の上部水平部材とを連結する上部補剛手段、及び前記耐震部材が接合される前記下部水平部材の接合部と前記補強層の下層の下部水平部材とを連結する下部補剛手段、の少なくとも一方を備える耐震構造。
An earthquake-resistant member that constitutes a layer of the building and is disposed between the upper horizontal member and the lower horizontal member that are outside the frame structure and is joined to the upper horizontal member and the lower horizontal member;
Upper stiffening means for connecting the joint of the upper horizontal member to which the seismic member is joined and the upper horizontal member of the upper layer of the reinforcing layer on which the seismic member is disposed, and the lower horizontal to which the seismic member is joined An earthquake-resistant structure comprising at least one of lower stiffening means for connecting a joint portion of a member and a lower horizontal member below the reinforcing layer.
前記上部補剛手段及び前記下部補剛手段の少なくとも一方が、間柱部材である請求項1に記載の耐震構造。   The earthquake-resistant structure according to claim 1, wherein at least one of the upper stiffening means and the lower stiffening means is a stud member. 前記間柱部材が、第1柱部材と第2柱部材とを上下方向に相対変位可能に連結して構成されており、前記第1柱部材と前記第2柱部材との間に上下方向にせん断変形可能に設けられる粘弾性体と、前記第1柱部材又は前記第2柱部材に設けられ前記第1柱部材と前記第2柱部材との上下方向の相対変位を所定位置で止めるストッパ手段と、を備える請求項2に記載の耐震構造。   The inter-column member is configured by connecting the first column member and the second column member so as to be relatively displaceable in the vertical direction, and is sheared in the vertical direction between the first column member and the second column member. A viscoelastic body provided in a deformable manner, and a stopper means provided in the first column member or the second column member, which stops relative displacement in the vertical direction between the first column member and the second column member at a predetermined position; The earthquake-resistant structure according to claim 2, comprising: 前記上部補剛手段及び前記下部補剛手段の少なくとも一方が、折り筋を縦にして配置された補剛用波形鋼板である請求項1に記載の耐震構造。   2. The earthquake-resistant structure according to claim 1, wherein at least one of the upper stiffening means and the lower stiffening means is a corrugated steel sheet for stiffening arranged with a folding line vertically. 前記耐震部材が、折り筋を横にして配置される波形鋼板と、前記波形鋼板の上下の端辺に沿って設けられ、前記第1水平部材又は前記第2水平部材に接合される横フランジと、前記波形鋼板の左右の端辺に沿って設けられ、前記第1水平部材及び前記第2水平部材に鉛直力を伝達する縦フランジと、を備える請求項1〜4の何れか1項に記載の耐震構造。   The seismic member is a corrugated steel plate disposed with the crease beside, and a lateral flange provided along the upper and lower edges of the corrugated steel plate and joined to the first horizontal member or the second horizontal member; A vertical flange that is provided along the left and right edges of the corrugated steel plate and transmits a vertical force to the first horizontal member and the second horizontal member. Earthquake-resistant structure. 前記耐震部材が、鉄筋コンクリート造の壁部材である請求項1〜4の何れか1項に記載の耐震構造。   The earthquake-resistant structure according to any one of claims 1 to 4, wherein the earthquake-resistant member is a reinforced concrete wall member. 前記耐震部材が、前記補強層の前記上部水平部材と前記下部水平部材との間に斜めに架け渡されるブレースである請求項1〜4の何れか1項に記載の耐震構造。   The earthquake-resistant structure according to any one of claims 1 to 4, wherein the earthquake-resistant member is a brace that is obliquely bridged between the upper horizontal member and the lower horizontal member of the reinforcing layer. 前記耐震部材が配置された層の各下層には、平面視したときに前記下部補剛手段が重なるように配置され、前記建物の基礎部に鉛直力を伝達する請求項1〜7の何れか1項に記載の耐震構造。   The lower layer of the layer in which the seismic member is disposed is disposed so that the lower stiffening means overlaps when viewed in plan, and transmits vertical force to the foundation of the building. Seismic structure as described in item 1. 請求項1〜8の何れか1項に記載の耐震構造を有する建物。   The building which has an earthquake-resistant structure of any one of Claims 1-8.
JP2008242730A 2008-09-22 2008-09-22 Seismic structure and building Expired - Fee Related JP5132503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242730A JP5132503B2 (en) 2008-09-22 2008-09-22 Seismic structure and building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242730A JP5132503B2 (en) 2008-09-22 2008-09-22 Seismic structure and building

Publications (2)

Publication Number Publication Date
JP2010071044A JP2010071044A (en) 2010-04-02
JP5132503B2 true JP5132503B2 (en) 2013-01-30

Family

ID=42203080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242730A Expired - Fee Related JP5132503B2 (en) 2008-09-22 2008-09-22 Seismic structure and building

Country Status (1)

Country Link
JP (1) JP5132503B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5424761B2 (en) * 2009-07-23 2014-02-26 株式会社竹中工務店 Seismic reinforcement method for existing buildings
JP5726675B2 (en) * 2011-08-10 2015-06-03 大成建設株式会社 Reinforcement structure of existing building
JP6306407B2 (en) * 2014-04-15 2018-04-04 株式会社免制震ディバイス Vibration suppression device
JP6967859B2 (en) * 2017-03-08 2021-11-17 株式会社竹中工務店 Seismic retrofitting structure
JP2020066847A (en) * 2018-10-22 2020-04-30 東急建設株式会社 Reinforcement structure of building

Also Published As

Publication number Publication date
JP2010071044A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP3618722B2 (en) Reinforced concrete structure with brace type damper
WO2009093712A1 (en) Connection metal fitting and building with the same
JP2010037868A (en) Corrugated steel plate earthquake-resisting wall
JP5132503B2 (en) Seismic structure and building
JP2017082532A (en) Braced column frame
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP4719119B2 (en) Seismic retrofitting method for existing building structures
JP5338050B2 (en) Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP2010007235A (en) Corrugated steel plate mounting structure, and building with the same
JP4563872B2 (en) Seismic wall
JP4414833B2 (en) Seismic walls using corrugated steel
JPH10140873A (en) Vibration damping structure of building
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP3931944B2 (en) Damping damper and its installation structure
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP2010121383A (en) Seismic retrofitting method and building
JPH10220062A (en) Vibration damping structure for building
JP5654060B2 (en) Damper brace and damping structure
JP5254767B2 (en) Seismic structure, building with seismic structure, and repair method.
JP4698054B2 (en) Damping stud and its construction method
JP5095492B2 (en) Corrugated steel shear wall
JP4242673B2 (en) Damping device and damping structure using the same
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP4752382B2 (en) Steel frame structure low-rise building, load-bearing wall panel, load-bearing wall panel mounting member, load-bearing wall panel mounting method
JP3826355B2 (en) Seismic control structure of structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees