JP2010037868A - Corrugated steel plate earthquake-resisting wall - Google Patents

Corrugated steel plate earthquake-resisting wall Download PDF

Info

Publication number
JP2010037868A
JP2010037868A JP2008203952A JP2008203952A JP2010037868A JP 2010037868 A JP2010037868 A JP 2010037868A JP 2008203952 A JP2008203952 A JP 2008203952A JP 2008203952 A JP2008203952 A JP 2008203952A JP 2010037868 A JP2010037868 A JP 2010037868A
Authority
JP
Japan
Prior art keywords
corrugated steel
vertical
vertical flange
steel plate
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008203952A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ota
義弘 太田
Mitsuru Takeuchi
満 竹内
Hideyuki Narita
秀幸 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2008203952A priority Critical patent/JP2010037868A/en
Publication of JP2010037868A publication Critical patent/JP2010037868A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Panels For Use In Building Construction (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrugated steel plate earthquake-resisting wall capable of reducing micro vibration due to traffic and wind. <P>SOLUTION: A corrugated steel plate 22 is provided with non-stiffened zones 22B, 22C in which vertical flanges 28, 30 are absent. The non-stiffened zones 22B, 22C are smaller in vertical rigidity than the other zone 22A of the corrugated steel plate 22. Therefore, the non-stiffened zones 22B, 22C are extended vertically by the vertical component of the shearing force generated due to the shearing deformation of the corrugated steel plate 22, and the vertical flanges 28, 30 are vertically displaced relative to a mounting plate 46. Since a viscoelastic body 56 provided between the vertical flanges 28, 30 and the mounting plate 46 is sheared and deformed, to absorb the vibration energy. Consequently, the micro vibration due to wind load and traffic vibration can be reduced by imparting damping to the corrugated steel plate earthquake-resisting wall 10 by the viscoelastic body 56, and the environmental performance of a building in which the corrugated steel plate earthquake-resisting wall 10 is installed can be increased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、架構を構成する上下の水平部材の間に、波形鋼板を配置して構成された波形鋼板耐震壁に関する。   The present invention relates to a corrugated steel earthquake resistant wall configured by arranging corrugated steel plates between upper and lower horizontal members constituting a frame.

構造物における耐震壁としては、特許文献1に示すように、波形に加工した波形鋼板を、波形の折筋の向きを横にして架構の構面に配置した波形鋼板耐震壁が提案されている。この波形鋼板耐震壁は、垂直方向にアコーディオンのように伸縮するため鉛直力を負担しないが、水平せん断力に対しては抵抗可能であり、せん断剛性・せん断耐力を確保しつつ優れた変形性能を有している。更に、せん断剛性及び強度については、鋼板の材質強度、板厚、重ね合わせ枚数、波形のピッチ、波高等を変えることにより調整可能であり、剛性及び設計強度の自由度が高い耐震壁を実現している。そして、地震荷重等の外力より架構を構成する上下の水平部材が相対移動すると、せん断力が波形鋼板に作用し、波形鋼板がせん断変形する。これにより、外力に対して波形鋼板が抵抗し、耐震効果を発揮する。また、外力に対して波形鋼板が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮させることができる。   As a seismic wall in a structure, as shown in Patent Document 1, a corrugated steel seismic wall in which a corrugated steel sheet processed into a corrugated shape is arranged on the frame surface of the frame with the direction of the corrugated crease in the direction is proposed. . This corrugated steel shear wall does not bear vertical force because it expands and contracts in the vertical direction like an accordion, but it can resist horizontal shearing force and has excellent deformation performance while ensuring shear rigidity and shear strength. Have. Furthermore, the shear rigidity and strength can be adjusted by changing the material strength, thickness, number of overlapping sheets, corrugation pitch, wave height, etc. of the steel sheet, realizing a shear wall with a high degree of freedom in rigidity and design strength. ing. When the upper and lower horizontal members constituting the frame are moved relative to each other by an external force such as an earthquake load, the shearing force acts on the corrugated steel sheet, and the corrugated steel sheet undergoes shear deformation. Thereby, a corrugated steel plate resists external force, and exhibits an earthquake resistance effect. In addition, by designing the corrugated steel sheet to yield with respect to external force, vibration energy is absorbed by the hysteresis energy of the steel sheet, and a damping effect can be exhibited.

ところで、近年、居住空間における環境性能が注目されるようになり、交通や風等による微振動に対しても性能満足が求められている。このような微振動の対策としては、建物の重量を増したり、剛性を高めたりすることが考えられるが、建物に減衰を付与することが効果的である。波形鋼板耐震壁について見ると、波形鋼板が降伏した後の塑性域では、鋼板の履歴エネルギーによって振動エネルギーを吸収できるが、波形鋼板が降伏する前の弾性域では、波形鋼板の剛性を高めて微振動を抑制することになる。しかしながら、微振動に対する居住性向上の観点からすると、建物剛性を高める対策は、減衰を付与する対策よりも効果が低い。   By the way, in recent years, environmental performance in a living space has attracted attention, and performance satisfaction is demanded even with respect to fine vibrations due to traffic, wind, and the like. As countermeasures against such micro-vibration, it is conceivable to increase the weight of the building or increase the rigidity. However, it is effective to impart damping to the building. Looking at the corrugated steel shear wall, in the plastic region after the corrugated steel plate yields, vibration energy can be absorbed by the hysteresis energy of the steel plate, but in the elastic region before the corrugated steel plate yields, the rigidity of the corrugated steel plate is increased. Vibration will be suppressed. However, from the viewpoint of improving habitability against slight vibrations, measures for increasing the building rigidity are less effective than measures for providing damping.

一方、架構の構面に配置されるブレースでは、微振動を抑制可能な複合型ダンパーが知られている(例えば、特許文献2)。この複合型ダンパーは、鋼製の大振幅用ダンパーと、粘弾性体で構成された小振幅用ダンパーを直列に結合し、小振幅用ダンパーの振幅範囲を制限するストッパーを設けている。しかしながら、耐震壁において、微振動を抑制する技術は開示されていない。   On the other hand, a composite damper that can suppress micro-vibration is known for braces arranged on a frame of a frame (for example, Patent Document 2). This composite damper is provided with a stopper that limits the amplitude range of the small-amplitude damper by connecting a steel-made large-amplitude damper and a small-amplitude damper made of a viscoelastic body in series. However, there is no disclosure of a technique for suppressing micro vibrations in a seismic wall.

また、特許文献3には、大振幅振動用の摩擦ダンパーと小振幅振動用の粘弾性ダンパーとを直列に結合して架構の構面に配置した壁部材が開示されている。この壁部材は、上側の梁に接合された上側鋼板と下側の床に接合された下側鋼板とに、粘弾性体シート(粘弾性ダンパー)が重ね合わせられた結合用鋼板をまたがるように当てがい、複数のボルトによって結合されている。ここで、上側鋼板と結合用鋼板とを結合するボルトとボルト孔との間には±2mm程度のクリアランスが設けられ、上側鋼板と結合用鋼板が相対変位可能とされている。また、結合用鋼板と下側鋼板とは、摩擦部材を間に挟んで高力ボルトによって摩擦接合され、摩擦ダンパーを構成している。この高力ボルトとボルト孔との間には±40mm程度のクリアランスが設けられ、結合用鋼板と下側鋼板とが相対変位可能とされている。そのため、風等の小振幅振動により架構に層間変形が生じた場合、先ず、結合用鋼板に重ね合わせられた粘弾性体シートがせん断変形して振動エネルギーを吸収し、地震等の大振幅振動により架構に層間変形が生じた場合は、高力ボルトで結合された結合用鋼板が摩擦部材上をスライドして振動エネルギーを吸収する。   Patent Document 3 discloses a wall member in which a friction damper for large-amplitude vibration and a viscoelastic damper for small-amplitude vibration are connected in series and arranged on the frame surface of the frame. The wall member straddles the bonding steel plate in which the upper steel plate joined to the upper beam and the lower steel plate joined to the lower floor are overlapped with a viscoelastic sheet (viscoelastic damper). It is attached and connected by multiple bolts. Here, a clearance of about ± 2 mm is provided between the bolt and the bolt hole for joining the upper steel plate and the joining steel plate so that the upper steel plate and the joining steel plate can be relatively displaced. Further, the coupling steel plate and the lower steel plate are friction-joined by high-strength bolts with a friction member interposed therebetween to constitute a friction damper. A clearance of about ± 40 mm is provided between the high-strength bolt and the bolt hole, and the coupling steel plate and the lower steel plate can be relatively displaced. Therefore, when interlayer deformation occurs in the frame due to small amplitude vibration such as wind, first, the viscoelastic sheet superimposed on the steel plate for bonding shears and absorbs vibration energy, and due to large amplitude vibration such as earthquake. When interlaminar deformation occurs in the frame, a steel plate for bonding, which is bonded with a high-strength bolt, slides on the friction member and absorbs vibration energy.

しかしながら、特許文献3の壁部材は、応力の伝達経路となる結合用鋼板に多数のボルト孔が形成されており、大振幅振動に抵抗する断面積が小さく、更に、充分な補剛処理が施されていないため、地震時に結合用鋼板がせん断座屈する恐れがある。
特開2005−264713号公報 特開平10−280727号公報 特開平2007−247733号公報
However, the wall member disclosed in Patent Document 3 has a large number of bolt holes formed in a steel plate for coupling serving as a stress transmission path, has a small cross-sectional area that resists large amplitude vibrations, and is subjected to sufficient stiffening treatment. Since this is not done, there is a risk that the steel plate for bonding will be shear buckled during an earthquake.
JP 2005-264713 A Japanese Patent Laid-Open No. 10-280727 Japanese Patent Laid-Open No. 2007-247733

本発明は、上記の事実を考慮し、地震に対する耐震性能を維持しつつ、交通や風等による微振動を低減できる波形鋼板耐震壁を提供することを目的とする。   In view of the above facts, an object of the present invention is to provide a corrugated steel shear wall that can reduce micro-vibration due to traffic or wind while maintaining earthquake resistance against earthquakes.

請求項1に記載の波形鋼板耐震壁は、架構を構成する上下の水平部材の間に折り筋を横にして配置された波形鋼板と、前記波形鋼板の上下の端部に設けられ、上下の前記水平部材に取り付けられる横フランジと、前記波形鋼板の左右の端部に設けられた縦フランジと、前記波形鋼板に設けられ、該波形鋼板の左右の端部に前記縦フランジが存在しない非補剛領域と、前記架構に取り付けられた取付部材と、前記取付部材と前記縦フランジとの間に上下方向にせん断変形可能に設けられた粘弾性体と、前記取付部材と前記縦フランジとの間に設けられ、前記取付部材と前記縦フランジとの上下方向の相対変位を所定位置で止めるストッパー手段と、を備えている。   The corrugated steel earthquake-resistant wall according to claim 1 is provided at the upper and lower end portions of the corrugated steel sheet, the corrugated steel sheet disposed with the crease between the upper and lower horizontal members constituting the frame. A horizontal flange attached to the horizontal member, a vertical flange provided at the left and right ends of the corrugated steel sheet, and a non-complement that is provided at the corrugated steel sheet and does not have the vertical flange at the left and right ends of the corrugated steel sheet. A rigid region, an attachment member attached to the frame, a viscoelastic body provided between the attachment member and the longitudinal flange so as to be shearable in the vertical direction, and between the attachment member and the longitudinal flange And stopper means for stopping the relative displacement in the vertical direction between the mounting member and the vertical flange at a predetermined position.

上記の構成によれば、風荷重や交通振動の水平力(微振動)が架構に作用すると、横フランジを介して波形鋼板に水平力が伝達され、波形鋼板がせん断変形を繰り返す。波形鋼板がせん断変形すると、波形鋼板に作用したせん断力が水平方向の力として発生すると共に、このせん断力によって波形鋼板に発生する曲げモーメントを縦フランジ間の距離で(横フランジの長さ)で除した力が鉛直方向の力として縦フランジに作用する(以下、水平方向の力を「せん断力の水平成分」とし、鉛直方向の力を「せん断力の鉛直成分」とする)。   According to said structure, when a horizontal load (fine vibration) of a wind load or traffic vibration acts on a frame, a horizontal force will be transmitted to a corrugated steel plate via a horizontal flange, and a corrugated steel plate will repeat a shear deformation. When the corrugated steel sheet undergoes shear deformation, the shearing force acting on the corrugated steel sheet is generated as a horizontal force, and the bending moment generated on the corrugated steel sheet by this shearing force is expressed by the distance between the vertical flanges (the length of the horizontal flange). The divided force acts on the vertical flange as a vertical force (hereinafter, the horizontal force is referred to as “horizontal component of shear force”, and the vertical force is referred to as “vertical component of shear force”).

ここで、波形鋼板には、縦フランジが存在しない非補剛領域が設けられている。この非補剛領域は、他の波形鋼板の領域に比べて鉛直剛性が小さい。そのため、波形鋼板のせん断変形により生じるせん断力の鉛直成分によって非補剛領域が上下方向に伸縮し、取付部材に対して縦フランジが上下方向に相対変位する。これにより、縦フランジと取付部材との間に設けられた粘弾性体がせん断変形して、振動エネルギーを吸収する。このように、粘弾性体によって波形鋼板耐震壁に減衰を付与することで、風荷重や交通振動による微振動を低減することができ、波形鋼板耐震壁が設置された建物の環境性能を向上させることができる。更に、波形鋼板に非補剛領域を設けることにより、非補剛領域を設けない場合と比較して粘弾性体のせん断変形量が大きくなり、振動低減効果が向上する。   Here, the corrugated steel sheet is provided with a non-stiffening region where no vertical flange exists. This non-stiffening region has a lower vertical stiffness than other corrugated steel regions. Therefore, the non-stiffening region expands and contracts in the vertical direction due to the vertical component of the shearing force generated by the shear deformation of the corrugated steel sheet, and the vertical flange is displaced relative to the mounting member in the vertical direction. Thereby, the viscoelastic body provided between the vertical flange and the mounting member undergoes shear deformation to absorb vibration energy. In this way, by adding damping to the corrugated steel shear wall by the viscoelastic body, it is possible to reduce the fine vibration caused by wind load and traffic vibration, and improve the environmental performance of the building where the corrugated steel shear wall is installed. be able to. Furthermore, by providing the non-stiffening region on the corrugated steel sheet, the amount of shear deformation of the viscoelastic body is increased as compared with the case where the non-stiffening region is not provided, and the vibration reduction effect is improved.

一方、地震荷重等の水平力により、取付部材と縦フランジの上下方向の相対変位が所定位置に達すると、ストッパー手段によって縦フランジと取付部材との相対変位が止められ、ストッパー手段を介して縦フランジと取付部材との間で応力伝達が相互になされる。これにより、波形鋼板に生じるせん断力の鉛直成分が、ストッパー手段を介して縦フランジから取付部材へ伝達され、波形鋼板が耐震要素として水平力に抵抗し、耐震効果を発揮する。また、水平力に対して波形鋼板が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮させることができる。このように、風や交通振動等の微振動に対しては粘弾性体をせん断変形させて振動を低減することができ、一方、地震荷重の大きな振動に対しては、波形鋼板耐震壁が本来の耐震性能、制震性能を発揮する。従って、波形鋼板耐震壁の耐震性能、制震性能を維持しつつ、風や交通振動等の微振動を低減することができるため、環境性能を向上させることができる。   On the other hand, when the vertical displacement of the mounting member and the vertical flange reaches a predetermined position due to a horizontal force such as seismic load, the relative displacement between the vertical flange and the mounting member is stopped by the stopper means, and the vertical displacement is made via the stopper means. Stress is transmitted between the flange and the mounting member. Thereby, the vertical component of the shearing force generated in the corrugated steel sheet is transmitted from the vertical flange to the mounting member via the stopper means, and the corrugated steel sheet resists horizontal force as an earthquake-resistant element and exhibits an earthquake resistance effect. Further, by designing the corrugated steel sheet to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel sheet, and a damping effect can be exhibited. In this way, it is possible to reduce the vibration by shearing the viscoelastic body against fine vibration such as wind and traffic vibration. The seismic performance and vibration control performance. Therefore, while maintaining the seismic performance and seismic performance of the corrugated steel shear wall, it is possible to reduce micro-vibrations such as wind and traffic vibrations, thereby improving environmental performance.

更に、ストッパー手段により、取付部材と縦フランジとの上下方向に相対変位を所定位置で止めることで粘弾性体の変形範囲が制限され、粘弾性体の破損、損傷が防止される。   Furthermore, the stopper means limits the deformation range of the viscoelastic body by stopping the relative displacement between the mounting member and the vertical flange in the vertical direction at a predetermined position, thereby preventing the viscoelastic body from being damaged or damaged.

請求項2に記載の波形鋼板耐震壁は、請求項1に記載の波形鋼板耐震壁において、前記非補剛領域が、前記波形鋼板の上部及び下部に設けられ、前記取付部材が上及び下の前記水平部材にそれぞれ取り付けられ、前記縦フランジの上端部の側面及び下端部の側面と、該縦フランジの上端部の側面及び下端部の側面にそれぞれ対向する前記取付部材とに、前記粘弾性体を固定している。   The corrugated steel earthquake resistant wall according to claim 2 is the corrugated steel earthquake resistant wall according to claim 1, wherein the non-stiffening regions are provided at an upper part and a lower part of the corrugated steel sheet, and the mounting members are provided at the upper and lower parts. The viscoelastic body is attached to the horizontal member, and is attached to the side surfaces of the upper end portion and the lower end portion of the vertical flange and the attachment members respectively facing the upper end side surface and the lower end side surface of the vertical flange. Is fixed.

上記の構成によれば、波形鋼板の上部及び下部に非補剛領域が設けられている。また、取付部材が上及び下の水平部材にそれぞれ取り付けられている。そして、縦フランジの上端部の側面及び下端部の側面と、この縦フランジの上端部の側面及び下端部の側面にそれぞれ対向する取付部材とに、粘弾性体が固定されている。このように、縦フランジの上端部の側面及び下端部の側面に粘弾性体を設けることで、振動エネルギー吸収部位が増え、微小振動に対する振動減衰効果が向上する。更に、粘弾性体を縦フランジの中央部に設ける場合と比較して、上及び下の水平部材から粘弾性体までの距離が小さくなり、取付部材の高さを小さくすることができる。そのため、取付部材の設計強度を抑えることができる。   According to said structure, the non-stiffening area | region is provided in the upper part and the lower part of a corrugated steel plate. The attachment members are attached to the upper and lower horizontal members, respectively. And the viscoelastic body is being fixed to the side surface of the upper end part of a vertical flange, the side surface of a lower end part, and the attachment member respectively opposed to the side surface of the upper end part of this vertical flange, and the side surface of a lower end part. Thus, by providing the viscoelastic body on the side surface of the upper end portion and the lower end portion of the vertical flange, the number of vibration energy absorbing portions is increased, and the vibration damping effect against minute vibration is improved. Furthermore, compared with the case where a viscoelastic body is provided in the center part of a vertical flange, the distance from an upper and lower horizontal member to a viscoelastic body becomes small, and the height of an attachment member can be made small. Therefore, the design strength of the mounting member can be suppressed.

請求項3に記載の波形鋼板耐震壁は、請求項1に記載の波形鋼板耐震壁において、前記非補剛領域が、前記波形鋼板の上部又は下部に設けられ、前記取付部材が上又は下の前記水平部材にそれぞれ取り付けられ、前記縦フランジの上端部の側面又は下端部の側面と、該縦フランジの上端部の側面又は下端部の側面に対向する前記取付部材とに、前記粘弾性体を固定している。   The corrugated steel earthquake resistant wall according to claim 3 is the corrugated steel earthquake resistant wall according to claim 1, wherein the non-stiffening region is provided at an upper portion or a lower portion of the corrugated steel plate, and the mounting member is above or below. The viscoelastic body is attached to each of the horizontal members and is attached to the side surface of the upper end portion or the lower end portion of the vertical flange and the attachment member facing the side surface of the upper end portion or the lower end portion of the vertical flange. It is fixed.

上記の構成によれば、波形鋼板の上部又は下部に非補剛領域が設けられている。また、上又は下の水平部材に取付部材が取り付けられている。そして、縦フランジの上端部の側面又は下端部の側面と、この縦フランジの上端部の側面又は下端部の側面に対向する取付部材とに、粘弾性体が固定されている。このように、非補剛領域は、求められる環境性能(微振動減衰性能)に応じて、波形鋼板の上部又は下部に設けることができる。更に、粘弾性体を縦フランジの中央部に設ける場合と比較して、縦フランジの上端部又は下端部に粘弾性体を設けることで、上又は下の水平部材から粘弾性体までの距離が小さくなり、取付部材の高さを小さくすることができる。そのため、取付部材の設計強度を抑えることができる。   According to said structure, the non-stiffening area | region is provided in the upper part or the lower part of the corrugated steel plate. An attachment member is attached to the upper or lower horizontal member. And the viscoelastic body is being fixed to the side surface of the upper end part or lower end part of a vertical flange, and the attachment member facing the side surface of the upper end part or lower end part of this vertical flange. In this way, the non-stiffening region can be provided in the upper part or the lower part of the corrugated steel sheet according to the required environmental performance (fine vibration damping performance). Furthermore, the distance from the upper or lower horizontal member to the viscoelastic body can be increased by providing the viscoelastic body at the upper end or lower end of the vertical flange as compared with the case where the viscoelastic body is provided at the center of the vertical flange. It becomes small and the height of an attachment member can be made small. Therefore, the design strength of the mounting member can be suppressed.

請求項4に記載の波形鋼板耐震壁は、請求項1〜3の何れか1項に記載の波形鋼板耐震壁において、上下の前記水平部材の間に複数の前記波形鋼板が横方向に間隔を空けて配置され、対向する前記縦フランジの間に前記取付部材を配置し、該取付部材と前記縦フランジとの間にそれぞれ前記粘弾性体を設けている。   The corrugated steel earthquake resistant wall according to claim 4 is the corrugated steel earthquake resistant wall according to any one of claims 1 to 3, wherein a plurality of corrugated steel plates are spaced laterally between the upper and lower horizontal members. The mounting member is disposed between the vertical flanges that are arranged to be spaced from each other, and the viscoelastic body is provided between the mounting member and the vertical flange.

上記の構成によれば、上下の水平部材の間に、複数の波形鋼板が横方向に間隔を空けて配置され、対向する縦フランジの間に取付部材が配置されている。対向する縦フランジと取付部材との間には、それぞれ粘弾性体が固定されている。この場合、地震荷重等の水平力が架構に作用し、隣接する波形鋼板の各々が同一方向(同一の水平方向)にせん断変形すると、対向する縦フランジにそれぞれ逆向きのせん断力の鉛直成分が作用する。従って、これらの縦フランジと取付部材との上下方向の相対変位が所定位置に達してストッパー手段が機能すると、対向する縦フランジから逆向きのせん断力の鉛直成分が取付部材に伝達される。そのため、隣接する波形鋼板のせん断変形により生じるせん断力の鉛直成分が取付部材で打ち消され、取付部材を介して上下の水平部材に伝達される集中力が低減される。よって、上下の水平部材の設計強度を下げることができる。   According to said structure, the some corrugated steel plate is arrange | positioned at intervals in the horizontal direction between the upper and lower horizontal members, and the attachment member is arrange | positioned between the opposing vertical flanges. A viscoelastic body is fixed between the opposing vertical flange and the mounting member. In this case, when a horizontal force such as seismic load acts on the frame and each of the adjacent corrugated steel plates undergoes shear deformation in the same direction (the same horizontal direction), the vertical component of the opposite shearing force is applied to the opposite longitudinal flange. Works. Therefore, when the vertical displacement between the vertical flange and the mounting member reaches a predetermined position and the stopper means functions, the vertical component of the reverse shearing force is transmitted from the opposing vertical flange to the mounting member. Therefore, the vertical component of the shearing force generated by the shear deformation of the adjacent corrugated steel sheet is canceled by the mounting member, and the concentrated force transmitted to the upper and lower horizontal members via the mounting member is reduced. Therefore, the design strength of the upper and lower horizontal members can be lowered.

また、対向する縦フランジで1つの取付部材を共用することで部材数が減り、コスト削減を図ることができる。   Moreover, the number of members can be reduced by sharing one mounting member between the opposing vertical flanges, and the cost can be reduced.

請求項5に記載の波形鋼板耐震壁は、請求項1〜4の何れか1項に記載の波形鋼板耐震壁において、前記非補剛領域の波形形状が、他の前記波形鋼板の領域の波形形状よりも密とされている。   The corrugated steel earthquake resistant wall according to claim 5 is the corrugated steel earthquake resistant wall according to any one of claims 1 to 4, wherein the corrugated shape of the non-stiffened region is a corrugated shape of another corrugated steel plate region. It is denser than the shape.

上記の構成によれば、非補剛領域の波形形状を他の波形鋼板の領域の波形形状よりも密とすることで、波形鋼板の鉛直剛性が更に小さくなる。従って、取付部材に対する縦フランジの上下方向の相対変位が大きくなり、粘弾性体のエネルギー吸収効率が向上する。   According to said structure, the vertical rigidity of a corrugated steel sheet becomes still smaller by making the corrugated shape of a non-stiffening area | region denser than the corrugated shape of the area | region of another corrugated steel sheet. Accordingly, the vertical displacement of the vertical flange with respect to the mounting member is increased, and the energy absorption efficiency of the viscoelastic body is improved.

請求項6に記載の波形鋼板耐震壁は、請求項1〜5の何れか1項に記載の波形鋼板耐震壁において、前記ストッパー手段は、前記取付部材及び前記縦フランジの一方に設けられた開口部と、前記縦フランジ及び前記取付部材の他方から突出し前記開口部に挿入されると共に該開口部の上縁部又は下縁部に当接して前記取付部材と前記縦フランジとの上下方向の相対変位を所定位置で止めるストッパーピンと、を備えている。   The corrugated steel earthquake-resistant wall according to claim 6 is the corrugated steel earthquake-resistant wall according to any one of claims 1 to 5, wherein the stopper means is an opening provided in one of the attachment member and the vertical flange. Projecting from the other of the vertical flange and the mounting member and inserted into the opening, and abuts against the upper edge or the lower edge of the opening, and the vertical relative of the mounting member and the vertical flange And a stopper pin for stopping the displacement at a predetermined position.

上記の構成によれば、地震荷重等の水平力により波形鋼板がせん断変形し、取付部材と縦フランジの上下方向の相対変位が所定位置に達すると、取付部材及び縦フランジの一方に設けられた開口部の上縁部又は下縁部に、取付部材及び縦フランジの他方に設けられたストッパーピンが当接して、取付部材と縦フランジとの相対変位が止められ、ストッパーピンを介して縦フランジと取付部材との間で相互に応力伝達がなされる。これにより、取付部材から縦フランジを介して波形鋼板に水平力が伝達され、波形鋼板が耐震要素として水平力に抵抗し、耐震効果を発揮する。また、水平力に対して波形鋼板が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮させることができる。   According to the above configuration, when the corrugated steel sheet undergoes shear deformation due to a horizontal force such as an earthquake load, and the relative displacement in the vertical direction of the mounting member and the vertical flange reaches a predetermined position, the corrugated steel plate is provided on one of the mounting member and the vertical flange. A stopper pin provided on the other of the mounting member and the vertical flange comes into contact with the upper edge portion or the lower edge portion of the opening, and the relative displacement between the mounting member and the vertical flange is stopped, and the vertical flange is interposed via the stopper pin. Stress is transmitted between the mounting member and the mounting member. Thereby, a horizontal force is transmitted to the corrugated steel plate from the mounting member via the vertical flange, and the corrugated steel plate resists the horizontal force as an earthquake resistant element, and exhibits an earthquake resistance effect. Further, by designing the corrugated steel sheet to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel sheet, and a damping effect can be exhibited.

本発明は、上記の構成としたので、地震に対する耐震性能を維持しつつ、交通や風等による微振動を低減できる。   Since the present invention is configured as described above, it is possible to reduce micro-vibration due to traffic, wind, or the like while maintaining earthquake resistance against earthquakes.

以下、図面を参照しながら本発明の実施形態に係る波形鋼板耐震壁について説明する。   Hereinafter, a corrugated steel shear wall according to an embodiment of the present invention will be described with reference to the drawings.

先ず、第1の実施形態に係る波形鋼板耐震壁10の構成について説明する。   First, the configuration of the corrugated steel shear wall 10 according to the first embodiment will be described.

図1に示すように、鉄筋コンクリート製の左右の柱12、14と鉄筋コンクリート製の上下の梁16、18とに囲まれた架構20の構面には、波形鋼板耐震壁10が設置されている。波形鋼板耐震壁10は、鋼板を折り曲げて波形形状に加工した波形鋼板22と、波形鋼板22の上下の端部の設けられた鋼製の横フランジ24、26と、波形鋼板22の左右の端部に設けられた縦フランジ28、30と、固定部材42と、を備えている。   As shown in FIG. 1, a corrugated steel earthquake resistant wall 10 is installed on the construction surface of a frame 20 surrounded by left and right columns 12 and 14 made of reinforced concrete and upper and lower beams 16 and 18 made of reinforced concrete. The corrugated steel shear wall 10 includes a corrugated steel plate 22 formed by bending a steel plate into a corrugated shape, steel horizontal flanges 24 and 26 provided at upper and lower ends of the corrugated steel plate 22, and left and right ends of the corrugated steel plate 22. Vertical flanges 28 and 30 provided in the section, and a fixing member 42.

板状の横フランジ24、26は、波形鋼板22の上端部(上端辺)又は下端部(下端辺)に沿って溶接等によって接合されており、この横フランジ24、26を梁16、18にそれぞれ取り付けることで、上の梁16と下の梁18の間に波形鋼板22が、その折り筋(折り目)を横にして配置されている。   The plate-like horizontal flanges 24 and 26 are joined together by welding or the like along the upper end (upper end side) or lower end (lower end side) of the corrugated steel plate 22, and the horizontal flanges 24 and 26 are joined to the beams 16 and 18. By attaching each, the corrugated steel plate 22 is disposed between the upper beam 16 and the lower beam 18 with the fold line (fold) being lateral.

具体的には図5に示すように、下の梁18の上面18Aに埋設された接合プレート32を介して、下の梁18に横フランジ26が取り付けられる。接合プレート32の下面には、埋め込み式のアンカーナット34及びせん断力伝達要素としてのスタッド36が交互に溶接されている。また、接合プレート32には、アンカーナット34に対応する位置に複数のボルト孔38が形成されている。一方、横フランジ26には、ボルト孔38に対応する複数のボルト孔40が形成され、この横フランジ26を接合プレート32の上に載置し、ボルト孔38、40に貫通されるボルト35をアンカーナット34に捻じ込むことで、横フランジ26が接合プレート32に接合されている。これにより、下の梁18と横フランジ26とが、波形鋼板22に作用するせん断力を伝達可能に接合される。なお、説明を省略するが、同様の方法によって横フランジ24と上の梁16とが接合されている。   Specifically, as shown in FIG. 5, a lateral flange 26 is attached to the lower beam 18 via a joining plate 32 embedded in the upper surface 18 </ b> A of the lower beam 18. On the lower surface of the joining plate 32, embedded anchor nuts 34 and studs 36 serving as shear force transmitting elements are alternately welded. Further, a plurality of bolt holes 38 are formed in the joining plate 32 at positions corresponding to the anchor nuts 34. On the other hand, a plurality of bolt holes 40 corresponding to the bolt holes 38 are formed in the horizontal flange 26, the horizontal flange 26 is placed on the joining plate 32, and the bolt 35 penetrating the bolt holes 38, 40 is installed. The lateral flange 26 is joined to the joining plate 32 by being screwed into the anchor nut 34. Thereby, the lower beam 18 and the horizontal flange 26 are joined so that the shearing force acting on the corrugated steel plate 22 can be transmitted. In addition, although description is abbreviate | omitted, the horizontal flange 24 and the upper beam 16 are joined by the same method.

また、下の梁18と横フランジ26とはせん断力を伝達可能に接合されていれば良く、上記した接合方法に限られない。例えば、横フランジ26と接合プレート32とを溶接接合しても良いし、また、エポキシ樹脂等の接着剤により、下の梁14の上面に直接横フランジ26を接着固定しても良い。   Moreover, the lower beam 18 and the horizontal flange 26 should just be joined so that shearing force can be transmitted, and it is not restricted to the above-mentioned joining method. For example, the lateral flange 26 and the joining plate 32 may be welded together, or the lateral flange 26 may be directly bonded and fixed to the upper surface of the lower beam 14 with an adhesive such as an epoxy resin.

図1に示すように、板状の縦フランジ28、30は、波形鋼板22の左端部(左端辺)及び右端部(右端辺)であって波形鋼板22の上部及び下部を除いた部分に、溶接等によって接合されている。縦フランジ28、30が存在しない波形鋼板22の上部及び下部の領域は非補剛領域22B、22Cとされ、縦フランジ28、30が取り付けられた領域22Aよりも鉛直剛性が小さくされている。なお、波形鋼板22の全体剛性、耐力を設計し易いように、非補剛領域22Bが左右の端部で同じ高さとなるように、縦フランジ28、30が取り付けられている。同様の理由により、非補剛領域22Cは、左右の端部で同じ高さとなっている。なお、波形鋼板22の非補剛領域22B、22Cの左右の端部は、必ずしも同じ高さである必要がない。   As shown in FIG. 1, the plate-like vertical flanges 28 and 30 are the left end portion (left end side) and the right end portion (right end side) of the corrugated steel plate 22 except for the upper and lower portions of the corrugated steel plate 22. Joined by welding or the like. Upper and lower regions of the corrugated steel plate 22 where the vertical flanges 28 and 30 do not exist are non-stiffening regions 22B and 22C, and the vertical rigidity is smaller than the region 22A where the vertical flanges 28 and 30 are attached. The vertical flanges 28 and 30 are attached so that the non-stiffening region 22B has the same height at the left and right ends so that the overall rigidity and proof stress of the corrugated steel plate 22 can be easily designed. For the same reason, the non-stiffening region 22C has the same height at the left and right ends. Note that the left and right end portions of the non-stiffening regions 22B and 22C of the corrugated steel plate 22 do not necessarily have the same height.

波形鋼板22の幅方向両側には、上の梁16の下面及び下の梁18の上面にそれぞれ取り付けられた合計4つの固定部材42が設けられている。これらの固定部材42は同一構造であるため、下の梁18に取り付けられ、且つ縦フランジ28の側方に設けられた固定部材42を例に説明する。図3又は図4に示すように、固定部材42は、鋼板からなる固定プレート44と、この固定プレート44の縁に沿って立設された鋼板からなる取付プレート46(取付部材)とによって断面L字型に形成されている。固定プレート44と取付プレート46との間には、固定プレート44と取付プレート46とにまたがるようにして、補強用の2枚の補剛リブ48が対向して溶接されている。   On both sides of the corrugated steel plate 22 in the width direction, a total of four fixing members 42 attached to the lower surface of the upper beam 16 and the upper surface of the lower beam 18 are provided. Since these fixing members 42 have the same structure, the fixing member 42 attached to the lower beam 18 and provided on the side of the vertical flange 28 will be described as an example. As shown in FIG. 3 or FIG. 4, the fixing member 42 has a cross section L by a fixing plate 44 made of a steel plate and a mounting plate 46 (mounting member) made of a steel plate erected along the edge of the fixing plate 44. It is formed in a letter shape. Between the fixed plate 44 and the mounting plate 46, two reinforcing stiffening ribs 48 are welded to face each other so as to straddle the fixed plate 44 and the mounting plate 46.

固定プレート44には、図5に示すように、接合プレート32に形成されたボルト孔38に対応する複数のボルト孔50が形成され、これらのボルト孔38、50にボルト35を貫通させてアンカーナット34に捻じ込むことで固定プレート44が接合プレート32に接合されている。これにより、梁18と固定部材42とが、架構20の作用する水平力を伝達可能に接合される。   As shown in FIG. 5, a plurality of bolt holes 50 corresponding to the bolt holes 38 formed in the joining plate 32 are formed in the fixing plate 44, and the bolts 35 are passed through these bolt holes 38, 50 to anchor them. The fixing plate 44 is joined to the joining plate 32 by being screwed into the nut 34. Thereby, the beam 18 and the fixing member 42 are joined so that the horizontal force which the frame 20 acts can be transmitted.

図3又は図4に示すように、対向する取付プレート46と縦フランジ28との間には、ストッパー手段が設けられている。このストッパー手段は、取付プレート46に形成された長孔52と、縦フランジ28の側面28Aに突設された鋼製のストッパーピン54と、から構成されている。   As shown in FIG. 3 or FIG. 4, stopper means is provided between the mounting plate 46 and the vertical flange 28 facing each other. The stopper means includes a long hole 52 formed in the mounting plate 46 and a steel stopper pin 54 protruding from the side surface 28A of the vertical flange 28.

取付プレート46には、対向する補剛リブ48の間に長孔52(開口部)が形成され、縦フランジ28の下端部の側面28Aに突設された円柱形のストッパーピン54が挿入可能となっている。この長孔52は上下方向に延びる楕円とされ、楕円の長軸に沿ってストッパーピン54が上下方向に相対変位可能となっている。また、長孔52の内壁には、取付プレート46に対して縦フランジ28が上方に相対変位したときにストッパーピン54が当接する上縁部52Aと、取付プレート46に対して縦フランジ28が下方に相対変位したときにストッパーピン54が当接する下縁部52Bとされている。これらの上縁部52A及び下縁部52Bにストッパーピン54が当接することでストッパー手段が機能し、取付プレート46と縦フランジ28との相対変位が所定位置で止められ、取付プレート46と縦フランジ28との間で応力伝達が相互になされる。これにより、波形鋼板22に生じるせん断力の鉛直成分が、ストッパーピン54を介して縦フランジ28から固定部材42へ伝達され、波形鋼板22が耐震要素として水平力に抵抗し、耐震効果を発揮する。この際、波形鋼板22のせん断力の鉛直成分の大部分が固定部材42に伝達されるように固定部材42の剛性が非補剛領域22Cの剛性よりも大きくされている。また、長孔52の長軸の長さを変えることで、後述する粘弾性体56のせん断変形量が調整される。   A long hole 52 (opening) is formed between the opposing stiffening ribs 48 in the mounting plate 46, and a cylindrical stopper pin 54 protruding from the side surface 28A at the lower end of the vertical flange 28 can be inserted. It has become. The long hole 52 is an ellipse extending in the vertical direction, and the stopper pin 54 can be relatively displaced in the vertical direction along the long axis of the ellipse. Further, on the inner wall of the long hole 52, an upper edge portion 52A with which the stopper pin 54 abuts when the vertical flange 28 is relatively displaced upward with respect to the mounting plate 46, and the vertical flange 28 on the lower side with respect to the mounting plate 46. The lower edge portion 52B with which the stopper pin 54 abuts when it is relatively displaced. The stopper pin 54 abuts against the upper edge 52A and the lower edge 52B so that the stopper means functions, the relative displacement between the mounting plate 46 and the vertical flange 28 is stopped at a predetermined position, and the mounting plate 46 and the vertical flange are stopped. Stress transmission to and from 28 is mutually performed. Thereby, the vertical component of the shearing force generated in the corrugated steel plate 22 is transmitted from the vertical flange 28 to the fixing member 42 via the stopper pin 54, and the corrugated steel plate 22 resists horizontal force as an earthquake resistant element and exhibits an earthquake resistance effect. . At this time, the rigidity of the fixing member 42 is made larger than the rigidity of the non-stiffening region 22 </ b> C so that most of the vertical component of the shearing force of the corrugated steel plate 22 is transmitted to the fixing member 42. Further, by changing the length of the long axis of the long hole 52, the shear deformation amount of the viscoelastic body 56 described later is adjusted.

対向する縦フランジ28と取付プレート46との間には、厚さ1〜2mm程度の粘弾性体56が設けられている。この粘弾性体56の中央部には、取付プレート46の長孔52と略同一形状の楕円とされた長孔58が形成され、この長孔58に挿入されたストッパーピン54が楕円の長軸に沿って上下方向に相対変位可能となっている。この粘弾性体56は、縦フランジ28の下端部の側面28Aと取付プレート46の取付面46Aとに接着材等で固定され、取付プレート46と縦フランジ28とが相対変位したときにせん断変形可能とされている。   A viscoelastic body 56 having a thickness of about 1 to 2 mm is provided between the opposing vertical flange 28 and the mounting plate 46. At the center of the viscoelastic body 56, an elongated hole 58 having an approximately same shape as the elongated hole 52 of the mounting plate 46 is formed, and the stopper pin 54 inserted into the elongated hole 58 has an elliptical long axis. Can be displaced relative to each other in the vertical direction. The viscoelastic body 56 is fixed to the side surface 28A of the lower end portion of the vertical flange 28 and the mounting surface 46A of the mounting plate 46 with an adhesive or the like, and can be sheared when the mounting plate 46 and the vertical flange 28 are relatively displaced. It is said that.

このように縦フランジ28、30の上端部及び下端部の側面28A、30Aには、取付プレート46の取付面46Aが対向して配置され、各縦フランジ28、30の側面28A、30Aと取付プレート46の取付面46Aとの間に粘弾性体56が上下方向にせん断変形可能に固定されている。   As described above, the mounting surfaces 46A of the mounting plates 46 are arranged to face the side surfaces 28A and 30A of the upper and lower ends of the vertical flanges 28 and 30, and the side surfaces 28A and 30A of the vertical flanges 28 and 30 and the mounting plates. A viscoelastic body 56 is fixed to the mounting surface 46A of the 46 so as to be shearable in the vertical direction.

なお、粘弾性体56の厚さ、形状、材質等は、波形鋼板耐震壁10が設置される建物に求められる環境性能(微振動減衰性能)に応じて適宜設計される。粘弾性体56の材料としては、例えば、ジエン系ゴム、ブチル系ゴム、アクリル系、ウレタンアスファルト系ゴム等を用いることができ、ジエン系ゴムを用いれば、せん断弾性係数G=2.0kg/cm、等価減衰定数heq=0.30程度を実現し得る。また、粘弾性体56に必要なせん断変形量から、長孔52とストッパーピン54とが当接して縦フランジ28と取付プレート46との相対変位を止める位置(所定位置)が決定される。 The thickness, shape, material, and the like of the viscoelastic body 56 are appropriately designed according to the environmental performance (fine vibration damping performance) required for the building where the corrugated steel seismic wall 10 is installed. As the material of the viscoelastic body 56, for example, diene rubber, butyl rubber, acrylic, urethane asphalt rubber or the like can be used. If diene rubber is used, the shear elastic modulus G = 2.0 kg / cm. 2 It is possible to realize an equivalent attenuation constant heq = 0.30. Further, the position (predetermined position) at which the long hole 52 and the stopper pin 54 come into contact with each other to stop the relative displacement between the vertical flange 28 and the mounting plate 46 is determined from the amount of shear deformation required for the viscoelastic body 56.

次に、第1の実施形態に係る波形鋼板耐震壁10の作用及び効果について説明する。   Next, the operation and effect of the corrugated steel shear wall 10 according to the first embodiment will be described.

図6は、風荷重や地震荷重等の水平力が波形鋼板耐震壁10に作用したときの、波形鋼板耐震壁10の変形状態を誇張して表した説明図あり、図6(A)は、ストッパー手段が機能する前の波形鋼板耐震壁10の変形状態を示し、図6(B)は、ストッパー手段が機能したときの波形鋼板耐震壁10の変形状態を示している。なお、説明の便宜上、非補剛領域22B及び上の梁16の取り付けられた固定部材42を省略している。また、縦フランジ28と対向する取付プレート46を取付プレート46Lとし、縦フランジ30と対向する取付プレート46を取付プレート46Rとする。図6(B)では、縦フランジ28、30から取付プレート46R、46Lにせん断力の鉛直成分が伝達されることを視覚化するために、取付プレート46R、46Lの変形状態を誇張して表している。また、図6(A)及び図6(B)中の2点鎖線は、上下の梁16、18及び波形鋼板耐震壁10の変形前の状態を示している。   FIG. 6 is an explanatory diagram exaggeratingly illustrating the deformation state of the corrugated steel shear wall 10 when a horizontal force such as wind load or seismic load is applied to the corrugated steel shear wall 10, and FIG. The deformed state of the corrugated steel shear wall 10 before the stopper means functions is shown, and FIG. 6B shows the deformed state of the corrugated steel shear wall 10 when the stopper means functions. For convenience of explanation, the non-stiffening region 22B and the fixing member 42 to which the upper beam 16 is attached are omitted. Further, the mounting plate 46 facing the vertical flange 28 is a mounting plate 46L, and the mounting plate 46 facing the vertical flange 30 is a mounting plate 46R. In FIG. 6B, in order to visualize that the vertical component of the shearing force is transmitted from the vertical flanges 28 and 30 to the mounting plates 46R and 46L, the deformation state of the mounting plates 46R and 46L is exaggeratedly shown. Yes. Moreover, the two-dot chain line in FIG. 6 (A) and FIG. 6 (B) has shown the state before the deformation | transformation of the upper and lower beams 16 and 18 and the corrugated steel earthquake-resistant wall 10. FIG.

図6(A)に示すように、風や交通振動等により架構20(図1参照)に水平力Fが作用すると、架構20に層間変形が生じて上下の梁16、18が相対変位する。これにより、横フランジ24、26(図1参照)を介して波形鋼板22に水平力が伝達され、波形鋼板22がせん断変形を繰り返す。波形鋼板22がせん断変形すると、波形鋼板22に作用したせん断力が水平方向の力(せん断力の水平成分Q)として発生すると共に、このせん断力によって波形鋼板22に発生する曲げモーメントを縦フランジ28、30間の距離(横フランジ24、26の長さ)が鉛直方向の力(せん断力の鉛直成分T、T)として縦フランジ28、30に作用する。 As shown in FIG. 6A, when a horizontal force F acts on the frame 20 (see FIG. 1) due to wind, traffic vibration, or the like, interlayer deformation occurs in the frame 20, and the upper and lower beams 16, 18 are relatively displaced. Thereby, a horizontal force is transmitted to the corrugated steel plate 22 via the lateral flanges 24 and 26 (see FIG. 1), and the corrugated steel plate 22 repeats shear deformation. When the corrugated steel plate 22 undergoes shear deformation, a shearing force acting on the corrugated steel plate 22 is generated as a horizontal force (horizontal component Q of the shearing force), and a bending moment generated in the corrugated steel plate 22 by this shearing force is generated by the vertical flange 28. , acts on the vertical flange 28, 30 as the distance between 30 (vertical component T 1 of the shearing force, T 2) is vertical force (the length of the horizontal flange 24, 26).

このせん断力の鉛直成分T、Tにより、領域22Aよりも鉛直剛性が小さい波形鋼板22の非補剛領域22Cが集中的に伸縮する。即ち、非補剛領域22Cの左側の端部付近がアコーディオンのように伸びたり、縦フランジ28が上方へ移動すると共に、非補剛領域22Cの右側の端部付近がアコーディオンのように縮んだりして、縦フランジ30が下方へ移動する。これにより、縦フランジ28が取付プレート46Lに対して上方に相対変位すると共に、縦フランジ30が取付プレート46Rに対して下方に相対変位する。一方、水平力Fが逆向き(図6(A)において右から左)に作用した場合は、縦フランジ28が取付プレート46Lに対して下方に相対変位すると共に、縦フランジ30が取付プレート46Rに対して上方に相対変位する。 Due to the vertical components T 1 and T 2 of the shearing force, the non-stiffening region 22C of the corrugated steel sheet 22 having a smaller vertical stiffness than the region 22A expands and contracts intensively. That is, the vicinity of the left end of the non-stiffening region 22C extends like an accordion, the vertical flange 28 moves upward, and the vicinity of the right end of the non-stiffening region 22C contracts like an accordion. Thus, the vertical flange 30 moves downward. As a result, the vertical flange 28 is relatively displaced upward with respect to the mounting plate 46L, and the vertical flange 30 is relatively displaced downward with respect to the mounting plate 46R. On the other hand, when the horizontal force F acts in the opposite direction (from right to left in FIG. 6A), the vertical flange 28 is relatively displaced downward with respect to the mounting plate 46L, and the vertical flange 30 is moved to the mounting plate 46R. On the other hand, it is displaced upward.

従って、図7(B)又は図7(C)に示すように、取付プレート46Lと縦フランジ28との間に設けられた粘弾性体56がせん断変形を繰り返し、振動エネルギーが熱エネルギーに変換されて風や交通振動等による微振動が低減される。このように、波形鋼板耐震壁10では、単に波形鋼板22のせん断変形を利用して粘弾性体56を変形させるのではなく、鉛直剛性が小さいという波形鋼板22の機械的性質を利用し、波形鋼板22に非補剛領域22B、22Cを設けてせん断力の鉛直成分T、Tによる波形鋼板22の上下方向の変形量を大きくし、粘弾性体56によるエネルギー吸収効率を向上させたものである。従って、単に壁式の鋼材系ダンパーのせん断変形を利用して粘弾性体を変形させる複合型ダンパーと比較して、風や交通振動等の微振動に対する振動低減効果を高めることができる。 Therefore, as shown in FIG. 7B or 7C, the viscoelastic body 56 provided between the mounting plate 46L and the vertical flange 28 repeats shear deformation, and vibration energy is converted into heat energy. The slight vibration caused by wind and traffic vibrations is reduced. As described above, the corrugated steel shear wall 10 does not simply deform the viscoelastic body 56 by using shear deformation of the corrugated steel plate 22, but utilizes the mechanical property of the corrugated steel plate 22 that has low vertical rigidity. Non-stiffening regions 22B and 22C are provided in the steel plate 22 to increase the amount of vertical deformation of the corrugated steel plate 22 due to the vertical components T 1 and T 2 of the shear force, thereby improving the energy absorption efficiency by the viscoelastic body 56. It is. Therefore, compared with a composite damper that simply deforms a viscoelastic body by utilizing shear deformation of a wall-type steel damper, it is possible to enhance the vibration reduction effect against fine vibrations such as wind and traffic vibration.

このように、粘弾性体56によって波形鋼板耐震壁10に減衰を付与することで、風荷重や交通振動による微振動を低減することができ、波形鋼板耐震壁10が設置された建物の環境性能を向上させることができる。更に、波形鋼板22に非補剛領域22Cを設けることにより、非補剛領域22Cを設けない場合と比較して、粘弾性体56のせん断変形量が大きくなり、振動低減効果が向上する。   In this way, by applying attenuation to the corrugated steel shear wall 10 by the viscoelastic body 56, it is possible to reduce fine vibrations due to wind loads and traffic vibrations, and the environmental performance of the building in which the corrugated steel shear wall 10 is installed. Can be improved. Further, by providing the corrugated steel sheet 22 with the non-stiffening region 22C, the shear deformation amount of the viscoelastic body 56 is increased and the vibration reduction effect is improved as compared with the case where the non-stiffening region 22C is not provided.

一方、図6(B)に示すように、地震荷重等の水平力により、縦フランジ28と取付プレート46Lとの相対変位が大きくなると、図7(B)又は図7(C)に示すように、ストッパーピン54が長孔52の上縁部52A又は下縁部52Bに当接し、縦フランジ28と取付プレート46Lとの相対変位が所定位置で止められ、縦フランジ28と取付プレート46Lとの間で、剛性の高いストッパーピン54を介して、応力伝達が相互になされる。これにより、波形鋼板耐震壁10が耐震要素として水平力に抵抗し、耐震効果を発揮する。また、水平力に対して波形鋼板22が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮させることができる。なお、説明を省略するが、ストッパー手段が機能することで、縦フランジ30と取付プレート46Rとの間で応力伝達が相互になされる。   On the other hand, as shown in FIG. 7 (B) or 7 (C), when the relative displacement between the vertical flange 28 and the mounting plate 46L increases due to a horizontal force such as an earthquake load, as shown in FIG. 6 (B). The stopper pin 54 comes into contact with the upper edge portion 52A or the lower edge portion 52B of the long hole 52, and the relative displacement between the vertical flange 28 and the mounting plate 46L is stopped at a predetermined position, and between the vertical flange 28 and the mounting plate 46L. Thus, stress is transmitted to each other via the highly rigid stopper pin 54. Thereby, the corrugated steel shear wall 10 resists horizontal force as an earthquake resistant element, and exhibits an earthquake resistance effect. In addition, by designing the corrugated steel plate 22 to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel plate, and a damping effect can be exhibited. In addition, although description is abbreviate | omitted, stress transmission is made | formed mutually between the vertical flange 30 and the attachment plate 46R because a stopper means functions.

なお、取付プレート46Lと波形鋼板22の非補剛領域22Cは、波形鋼板22の領域22Aに対して力学的に並列バネとして接合されている。従って、せん断力の鉛直成分の大部分が取付プレート46Lを経由して、架構20を構成する梁18等の構造部材へ伝達される。   The attachment plate 46L and the non-stiffening region 22C of the corrugated steel plate 22 are mechanically joined to the region 22A of the corrugated steel plate 22 as a parallel spring. Therefore, most of the vertical component of the shearing force is transmitted to the structural member such as the beam 18 constituting the frame 20 via the mounting plate 46L.

このように、風や交通振動等の微振動に対しては、粘弾性体56の減衰性能によって微振動を低減することができ、一方、地震荷重の大きな振動に対しては、波形鋼板耐震壁10が本来の耐震性能、制震性能を発揮して振動を低減することができる。従って、波形鋼板耐震壁10の耐震性能、制震性能を維持しつつ、風や交通振動等の微振動を低減することができ、波形鋼板耐震壁10が設置された建物の環境性能を向上させることができる。更に、ストッパー手段を設けることで、粘弾性体56の変形範囲が制限され、粘弾性体56の破損、損傷が防止される。   As described above, the microvibration can be reduced by the damping performance of the viscoelastic body 56 against microvibration such as wind and traffic vibration, while the corrugated steel shear wall is against the vibration with a large seismic load. 10 can reduce vibration by exhibiting the original seismic performance and damping performance. Therefore, while maintaining the seismic performance and vibration control performance of the corrugated steel shear wall 10, it is possible to reduce fine vibrations such as wind and traffic vibration, and to improve the environmental performance of the building where the corrugated steel shear wall 10 is installed. be able to. Furthermore, by providing the stopper means, the deformation range of the viscoelastic body 56 is limited, and breakage and damage of the viscoelastic body 56 are prevented.

また、図1に示すように、非補剛領域22Cを波形鋼板22の下部に設けることで、縦フランジ28、30の下端部と梁18との距離が短くなり、取付プレート46の高さを小さくすることができる。これにより、取付プレート46の設計強度を下げることができる。   Further, as shown in FIG. 1, by providing the non-stiffening region 22C at the lower portion of the corrugated steel plate 22, the distance between the lower end portions of the vertical flanges 28 and 30 and the beam 18 is shortened, and the height of the mounting plate 46 is increased. Can be small. Thereby, the design strength of the mounting plate 46 can be lowered.

なお、一般的に建物に振動(揺れ)が生じると、建物の頂上で加速度(揺れ)が最大となる。この加速度は、建物の一次モード減衰係数hのルートに反比例する。従って、波形鋼板耐震壁10に粘弾性体56を設けない場合の減衰係数を1%と仮定し、波形鋼板耐震壁10に粘弾性体56を設けた場合の付加減衰を1%と仮定すると、1/√2≒0.7となり、建物の頂上に発生する加速度を30%程度減衰することができる。また、粘弾性体56は、Voigtモデルを用いてモデル化することができ、粘弾性体56のバネ定数Kは、K=G×A/t(G:せん断弾性係数、A:断面積、t:厚み)で求められ、減衰定数Cは、C=K×h/(π×f)(h:一次モード減衰係数、f:1次固有振動数)で求められる。また、粘弾性体56、固定部材42、非補剛領域22Cの振動モデル59は、図8のようになる。図8中のKは、固定部材42の剛性であり、Kは非補剛領域22Cの剛性である。このような振動モデル59を建物の振動モデルに組み込み、複素固有値解析や非線形応答解析を行うことで粘弾性体56による付加減衰を適宜設計することができる。 Generally, when vibration (swing) occurs in a building, acceleration (swing) is maximized at the top of the building. This acceleration is inversely proportional to the route of the first-order mode attenuation coefficient h of the building. Therefore, assuming that the damping coefficient when the viscoelastic body 56 is not provided on the corrugated steel shear wall 10 is 1%, and the additional attenuation when the viscoelastic body 56 is provided on the corrugated steel shear wall 10 is 1%, Since 1 / √2≈0.7, the acceleration generated at the top of the building can be attenuated by about 30%. The viscoelastic body 56 can be modeled using a Voigt model, and the spring constant K of the viscoelastic body 56 is K = G × A / t (G: shear modulus, A: cross-sectional area, t : Thickness), and the damping constant C is obtained by C = K × h / (π × f) (h: first-order mode damping coefficient, f: first-order natural frequency). Further, a vibration model 59 of the viscoelastic body 56, the fixing member 42, and the non-stiffening region 22C is as shown in FIG. K 1 in FIG. 8 is a rigidity of the fixing member 42, K 2 is the stiffness of the Hiho rigid region 22C. By adding such a vibration model 59 to a building vibration model and performing complex eigenvalue analysis or nonlinear response analysis, it is possible to appropriately design additional damping by the viscoelastic body 56.

次に、第2の実施形態に係る波形鋼板耐震壁60の構成について説明する。なお、第1の実施形態と同じ構成のものは、同符号を付すると共に適宜省略して説明する。   Next, the configuration of the corrugated steel shear wall 60 according to the second embodiment will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

図9に示すように、波形鋼板耐震壁60は、2枚の波形鋼板22、62を備えている。
波形鋼板62は波形鋼板22と同一の構成とされ、この波形鋼板62の上端部(上端辺)又は下端部(下端辺)に設けられた板状の横フランジ24、26を介して上下の梁16、18に取り付けられている。また、波形鋼板62には、この波形鋼板62の左端部(左端辺)及び右端部(右端辺)であって波形鋼板62の上部及び下部を除いた部分に、縦フランジ64、66が溶接等によって取り付けられている。縦フランジ64、66が存在しない波形鋼板62の上部及び下部の領域は、それぞれ非補剛領域62B、62Cとされ、縦フランジ64、66が取り付けられた領域62Aよりも鉛直剛性が小さくされている。
As shown in FIG. 9, the corrugated steel earthquake resistant wall 60 includes two corrugated steel plates 22 and 62.
The corrugated steel plate 62 has the same configuration as the corrugated steel plate 22, and the upper and lower beams are arranged via plate-like horizontal flanges 24 and 26 provided at the upper end (upper end side) or lower end (lower end side) of the corrugated steel plate 62. 16 and 18 are attached. Further, on the corrugated steel sheet 62, vertical flanges 64 and 66 are welded to the left end portion (left end side) and the right end portion (right end side) of the corrugated steel sheet 62 except for the upper part and the lower part of the corrugated steel sheet 62. Is attached by. The upper and lower regions of the corrugated steel sheet 62 where the vertical flanges 64 and 66 do not exist are non-stiffening regions 62B and 62C, respectively, and the vertical rigidity is smaller than the region 62A where the vertical flanges 64 and 66 are attached. .

波形鋼板22と波形鋼板62とは、横方向に間を空けて上下の梁16、18の間に配置され、対向する縦フランジ30と縦フランジ64との間に、2つの固定部材68が配置されている。固定部材68は、上下の梁16、18にそれぞれ固定され、縦フランジ30と固定部材68との間、及び縦フランジ64と固定部材68との間にそれぞれ粘弾性体56が設けられている。なお、固定部材68は、固定部材42と同様の方法によって、上下の梁16、18に取り付けられている。   The corrugated steel plate 22 and the corrugated steel plate 62 are arranged between the upper and lower beams 16 and 18 with a gap in the horizontal direction, and two fixing members 68 are arranged between the vertical flange 30 and the vertical flange 64 facing each other. Has been. The fixing member 68 is fixed to the upper and lower beams 16 and 18, and viscoelastic bodies 56 are provided between the vertical flange 30 and the fixing member 68 and between the vertical flange 64 and the fixing member 68, respectively. The fixing member 68 is attached to the upper and lower beams 16 and 18 by the same method as the fixing member 42.

下の梁18に取り付けられた固定部材68を例に説明すると、図10に示すように、固定部材68は、固定プレート44とこの固定プレート44の上に立設された鋼板からなる取付プレート70とによって、断面T字型に形成されている。取付プレート70の両面は、それぞれ粘弾性体56が接着される取付面70A、70Bとされている。また、取付面70A、70Bには、鋼製からなる円柱形のストッパーピン72、74がそれぞれ縦フランジ30、64に向かって突設されている。なお、固定部材68は、補剛リブ等で適宜補強しても良い。   The fixing member 68 attached to the lower beam 18 will be described as an example. As shown in FIG. 10, the fixing member 68 includes a fixing plate 44 and a mounting plate 70 made of a steel plate standing on the fixing plate 44. Are formed in a T-shaped cross section. Both surfaces of the mounting plate 70 are mounting surfaces 70A and 70B to which the viscoelastic body 56 is bonded. In addition, columnar stopper pins 72 and 74 made of steel project toward the vertical flanges 30 and 64 on the mounting surfaces 70A and 70B, respectively. Note that the fixing member 68 may be appropriately reinforced with a stiffening rib or the like.

一方、縦フランジ30には、ストッパーピン72が挿入される長孔76(開口部)が形成されている。この長孔76は上下方向に延びる楕円とされ、楕円の長軸に沿ってストッパーピン72が上下方向に相対変位可能となっている。また、長孔76の内壁には、取付プレート70に対して縦フランジ30が上方に相対変位したときにストッパーピン72が当接する上縁部76Aと、取付プレート46に対して縦フランジ30が下方に相対変位したときにストッパーピン72が当接する下縁部76Bとされている。これらの上縁部76A及び下縁部76Bにストッパーピン72が当接することでストッパー手段が機能し、取付プレート70と縦フランジ30との相対変位が止められ、取付プレート70と縦フランジ30との間で、剛性が高いストッパーピン72を介して応力伝達が相互になされる。   On the other hand, the longitudinal flange 30 is formed with a long hole 76 (opening) into which the stopper pin 72 is inserted. The long hole 76 is an ellipse extending in the vertical direction, and the stopper pin 72 can be relatively displaced in the vertical direction along the long axis of the ellipse. Further, on the inner wall of the long hole 76, the upper edge portion 76 </ b> A with which the stopper pin 72 abuts when the vertical flange 30 is relatively displaced upward with respect to the mounting plate 70, and the vertical flange 30 is downward with respect to the mounting plate 46. The lower edge portion 76B with which the stopper pin 72 abuts when the relative displacement occurs. The stopper pin 72 abuts against the upper edge portion 76A and the lower edge portion 76B so that the stopper means functions, the relative displacement between the attachment plate 70 and the vertical flange 30 is stopped, and the attachment plate 70 and the vertical flange 30 are separated. In the meantime, stress is transmitted to each other via the stopper pin 72 having high rigidity.

縦フランジ30と同様に、縦フランジ64には、ストッパーピン74が挿入される長孔78(開口部)が形成されている。この長孔78は上下方向に延びる楕円とされ、楕円の長軸に沿ってストッパーピン74が上下方向に相対変位可能となっている。また、長孔78の内壁には、取付プレート70に対して縦フランジ64が上方に相対変位したときにストッパーピン74が当接する上縁部78Aと、取付プレート46に対して縦フランジ64が下方に相対変位したときにストッパーピン74が当接する下縁部78Bとされている。これらの上縁部78A及び下縁部78Bにストッパーピン74が当接することでストッパー手段が機能し、取付プレート70と縦フランジ64との相対変位が止められ、取付プレート70と縦フランジ64との間で、剛性が高いストッパーピン74を介して応力伝達が相互になされる。この際、波形鋼板62のせん断力の鉛直成分の大部分が固定部材68に伝達されるように、固定部材68の剛性が非補剛領域62Cの剛性よりも大きくされている。更に、長孔76、78の長軸の長さを変えることで、粘弾性体56のせん断変形量が調整される。   Similar to the vertical flange 30, a long hole 78 (opening) into which the stopper pin 74 is inserted is formed in the vertical flange 64. The long hole 78 is an ellipse extending in the vertical direction, and the stopper pin 74 can be relatively displaced in the vertical direction along the long axis of the ellipse. Further, on the inner wall of the long hole 78, an upper edge portion 78A with which the stopper pin 74 abuts when the vertical flange 64 is relatively displaced upward with respect to the mounting plate 70, and the vertical flange 64 with respect to the mounting plate 46 is below. The lower edge portion 78B is brought into contact with the stopper pin 74 when it is relatively displaced. When the stopper pin 74 comes into contact with the upper edge portion 78A and the lower edge portion 78B, the stopper means functions, and the relative displacement between the mounting plate 70 and the vertical flange 64 is stopped. In the meantime, stress is transmitted to each other via the highly rigid stopper pin 74. At this time, the rigidity of the fixing member 68 is made larger than the rigidity of the non-stiffening region 62 </ b> C so that most of the vertical component of the shearing force of the corrugated steel sheet 62 is transmitted to the fixing member 68. Furthermore, the amount of shear deformation of the viscoelastic body 56 is adjusted by changing the lengths of the long axes of the long holes 76 and 78.

縦フランジ30と取付プレート70との間に設けられた粘弾性体56は、縦フランジ30の下端部の側面30Aと取付プレート70の取付面70Aとに接着材等で固定され、取付プレート70と縦フランジ30とが相対変位したときにせん断変形可能とされている。また、縦フランジ64と取付プレート70との間に設けられた粘弾性体56は、縦フランジ64の下端部の側面64Aと取付プレート70の取付面70Bとに接着材等で固定され、取付プレート70と縦フランジ64とが相対変位したときにせん断変形可能とされている。   The viscoelastic body 56 provided between the vertical flange 30 and the mounting plate 70 is fixed to the side surface 30A of the lower end portion of the vertical flange 30 and the mounting surface 70A of the mounting plate 70 with an adhesive or the like. Shear deformation is possible when the longitudinal flange 30 is relatively displaced. The viscoelastic body 56 provided between the vertical flange 64 and the mounting plate 70 is fixed to the side surface 64A of the lower end portion of the vertical flange 64 and the mounting surface 70B of the mounting plate 70 with an adhesive or the like. Shear deformation is possible when 70 and the longitudinal flange 64 are relatively displaced.

次に、第2の実施形態に係る波形鋼板耐震壁60の作用及び効果について説明する。   Next, operations and effects of the corrugated steel shear wall 60 according to the second embodiment will be described.

第1の実施形態と同様に、風や交通振動等の水平力が架構20(図9参照)に作用すると、架構20に層間変形が生じて上下の梁16、18が相対変位し、波形鋼板22、62がせん断変形を繰り返す。これにより、取付プレート70に対して縦フランジ30、64がそれぞれ相対変位し、取付プレート70と縦フランジ30との間に設けられた粘弾性体56、及び取付プレート70と縦フランジ64との間に設けられた粘弾性体56がそれぞれせん断変形して振動エネルギーが吸収される。従って、風や交通振動等によって建物に生じる微振動が低減される。   Similar to the first embodiment, when a horizontal force such as wind or traffic vibration acts on the frame 20 (see FIG. 9), interlayer deformation occurs in the frame 20, and the upper and lower beams 16, 18 are relatively displaced, and the corrugated steel plate 22 and 62 repeat shear deformation. Thereby, the vertical flanges 30 and 64 are relatively displaced with respect to the mounting plate 70, respectively, and the viscoelastic body 56 provided between the mounting plate 70 and the vertical flange 30, and the space between the mounting plate 70 and the vertical flange 64. Each of the viscoelastic bodies 56 provided in the plate is subjected to shear deformation to absorb vibration energy. Therefore, the slight vibration generated in the building due to wind or traffic vibration is reduced.

一方、地震荷重等の水平力が架構20に作用し、縦フランジ30と取付プレート70との相対変位が大きくなると、図10(B)又は図10(C)に示すように、ストッパーピン72が長孔76の上縁部76A又は下縁部76Bに当接し、縦フランジ30と取付プレート70との相対変位が止められ、縦フランジ30と取付プレート70との間で応力伝達が相互になされる。これと同様に、縦フランジ64と取付プレート70との相対変位が大きくなると、ストッパーピン74が長孔78の上縁部78A又は下縁部78Bに当接し、縦フランジ64と取付プレート70との相対変位が止められ、縦フランジ64と取付プレート70との間で応力伝達が相互になされる。これにより、波形鋼板耐震壁60(図9参照)が耐震要素として水平力に抵抗し、耐震効果を発揮する。また、水平力に対して波形鋼板22、62が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮させることができる。   On the other hand, when a horizontal force such as an earthquake load acts on the frame 20, and the relative displacement between the vertical flange 30 and the mounting plate 70 becomes large, the stopper pin 72 is moved as shown in FIG. 10 (B) or FIG. 10 (C). Abutting against the upper edge portion 76A or the lower edge portion 76B of the long hole 76, the relative displacement between the vertical flange 30 and the mounting plate 70 is stopped, and the stress transmission is performed between the vertical flange 30 and the mounting plate 70. . Similarly, when the relative displacement between the vertical flange 64 and the mounting plate 70 increases, the stopper pin 74 comes into contact with the upper edge 78A or the lower edge 78B of the elongated hole 78, and the vertical flange 64 and the mounting plate 70 are brought into contact with each other. The relative displacement is stopped, and the stress is transmitted between the vertical flange 64 and the mounting plate 70. Thereby, the corrugated steel shear wall 60 (see FIG. 9) resists horizontal force as an earthquake resistant element, and exhibits an earthquake resistance effect. Further, by designing the corrugated steel plates 22 and 62 to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel plates, and a damping effect can be exhibited.

また、波形鋼板22と波形鋼板62とは、同一方向(同一の水平方向)にせん断変形するため、対向する縦フランジ30、64に逆向きのせん断力の鉛直成分が作用する。即ち、図10(B)に示すように、水平力Fが波形鋼板22から波形鋼板62へ向って作用した場合、波形鋼板22の縦フランジ30には、波形鋼板22に作用したせん断力の鉛直成分Tが下向きに作用し、波形鋼板62の縦フランジ64には、波形鋼板62に作用したせん断力の鉛直成分Tが上向きに作用する。一方、図10(C)に示すように、水平力Fが波形鋼板62から波形鋼板22へ向って作用した場合、波形鋼板22の縦フランジ30には、波形鋼板22に作用したせん断力の鉛直成分Tが上向きに作用し、波形鋼板62の縦フランジ64には、波形鋼板62に作用したせん断力の鉛直成分Tが下向きに作用する。従って、取付プレート70には、縦フランジ30、64から逆向きのせん断力の鉛直成分T、Tが作用して打ち消し合う。そのため、取付プレート70の設計強度を下げることができ、また、取付プレート70を介して下の梁18に作用する集中力が低減されるため、梁18の設計強度を下げることができる。なお、説明を省略するが、上の梁16に固定された取付プレート70にも、同様に縦フランジ30、64からそれぞれ逆向きのせん断力の鉛直成分が作用する。 Further, since the corrugated steel plate 22 and the corrugated steel plate 62 undergo shear deformation in the same direction (the same horizontal direction), the vertical component of the opposite shearing force acts on the opposing longitudinal flanges 30 and 64. That is, as shown in FIG. 10B, when the horizontal force F acts from the corrugated steel plate 22 toward the corrugated steel plate 62, the vertical flange 30 of the corrugated steel plate 22 has a vertical shear force acting on the corrugated steel plate 22. The component T 2 acts downward, and the vertical component T 1 of the shearing force acting on the corrugated steel plate 62 acts upward on the vertical flange 64 of the corrugated steel plate 62. On the other hand, as shown in FIG. 10C, when the horizontal force F acts from the corrugated steel plate 62 toward the corrugated steel plate 22, the vertical flange 30 of the corrugated steel plate 22 has a vertical shearing force acting on the corrugated steel plate 22. component T 2 acts upward, the vertical flange 64 of the corrugated steel 62, the vertical component T 1 of the shearing forces acting on the corrugated steel 62 acts downward. Accordingly, the vertical components T 1 and T 2 of the shearing force in the opposite direction act on the mounting plate 70 from the vertical flanges 30 and 64 to cancel each other. Therefore, the design strength of the mounting plate 70 can be lowered, and the concentration force acting on the lower beam 18 via the mounting plate 70 is reduced, so that the design strength of the beam 18 can be lowered. In addition, although description is abbreviate | omitted, the vertical component of the shearing force of the reverse direction acts on the attachment plate 70 fixed to the upper beam 16 similarly from the vertical flanges 30 and 64, respectively.

更に、対向する縦フランジ30、64で1つの取付プレート70を共用することで部材数が減り、コスト削減を図ることができる。   Furthermore, the number of members can be reduced by sharing one mounting plate 70 between the vertical flanges 30 and 64 facing each other, and the cost can be reduced.

なお、本実施形態では、架構20の上下の梁16、18の間に2枚の波形鋼板22、62を配置したが、2枚上の波形鋼板を配置しても良い。この場合、隣接する各波形鋼板における対向する縦フランジの間に取付プレート70を配置すれば良い。   In this embodiment, the two corrugated steel plates 22 and 62 are disposed between the upper and lower beams 16 and 18 of the frame 20, but two corrugated steel plates may be disposed. In this case, what is necessary is just to arrange | position the attachment plate 70 between the vertical flanges which oppose in each adjacent corrugated steel plate.

次に、ストッパー手段の変形例について説明する。   Next, a modified example of the stopper means will be described.

第1の実施形態では、取付プレート46に形成された長孔52と、縦フランジ28の側面28Aに突設されたストッパーピン54と、からストッパー手段を構成したが、図11(A)又は図11(B)に示すように、取付プレート46の取付面46Aにストッパーピン54を突設し、縦フランジ28に長孔52を形成しても良い。更に、複数のストッパーピン54を設けても良い。例えば、図11(B)に示すように、波形鋼板22を両側から挟むように2本のストッパーピン54を設け、これらのストッパーピン54がそれぞれ挿入される長孔52を縦フランジ28の形成しても良い。   In the first embodiment, the stopper means is composed of the long hole 52 formed in the mounting plate 46 and the stopper pin 54 protruding from the side surface 28A of the vertical flange 28. FIG. 11A or FIG. 11 (B), a stopper pin 54 may protrude from the mounting surface 46A of the mounting plate 46, and a long hole 52 may be formed in the vertical flange 28. Further, a plurality of stopper pins 54 may be provided. For example, as shown in FIG. 11B, two stopper pins 54 are provided so as to sandwich the corrugated steel plate 22 from both sides, and a long hole 52 into which these stopper pins 54 are respectively inserted is formed in the vertical flange 28. May be.

また、ストッパーピン54は、必ずしも粘弾性体56を貫通させる必要はなく、図12(A)に示すように、取付プレート46から縦フランジ28側へ向かって突出する突設部80と、縦フランジ28の側面28Aに突設され、突設部80を上下方向から間を空けて挟み込む一対のストッパー部材82A、82Bと、でストッパー手段を構成しても良い。このストッパー手段は、図12(B)又は図12(C)に示すように、取付プレート46と縦フランジ28とに相対変位が生じると、突設部80の下端部80Bとストッパー部材82Bとが当接し、又は突設部80の上端部80Aとストッパー部材82Aとが当接することで、取付プレート46と縦フランジ28との相対変位が所定位置で止められる。このストッパー手段では、粘弾性体56に長孔58を形成しないため、粘弾性体56の形状が簡単になり、粘弾性体56の設計がし易くなる。   Moreover, the stopper pin 54 does not necessarily have to penetrate the viscoelastic body 56, and as shown in FIG. 12A, a protruding portion 80 protruding from the mounting plate 46 toward the vertical flange 28 side, and a vertical flange The stopper means may be constituted by a pair of stopper members 82A and 82B that protrude from the side surface 28A of the 28 and sandwich the protruding portion 80 in the vertical direction. As shown in FIG. 12 (B) or FIG. 12 (C), when the relative displacement occurs between the mounting plate 46 and the vertical flange 28, the stopper means causes the lower end portion 80B of the projecting portion 80 and the stopper member 82B to move. The relative displacement between the mounting plate 46 and the vertical flange 28 is stopped at a predetermined position by the contact or the upper end portion 80A of the projecting portion 80 and the stopper member 82A. In this stopper means, since the elongated hole 58 is not formed in the viscoelastic body 56, the shape of the viscoelastic body 56 is simplified, and the design of the viscoelastic body 56 is facilitated.

更に、図13の示すように、取付プレート46及び縦フランジ28にそれぞれ長孔52を形成し、この長孔52にストッパーピン84を挿入しても良い。このストッパーピン84の軸方向両端部に抜止めプレート86を一体形成し、長孔52からストッパーピン84が抜け出さないよう構成されている。   Further, as shown in FIG. 13, long holes 52 may be formed in the attachment plate 46 and the vertical flange 28, and the stopper pins 84 may be inserted into the long holes 52. A stopper plate 86 is integrally formed at both axial ends of the stopper pin 84 so that the stopper pin 84 does not come out of the elongated hole 52.

また、第1の実施形態では、取付プレート46を上下の梁16、18に固定したが、図14に示すように架構20(図1参照)としての柱12に取付プレート88を取り付けても良い。取付プレート88は、この取付プレート88の上部及び下部に形成されたボルト孔90にボルト92を貫通させ、柱12に埋め込まれたアンカーナット94に捻じ込むことで柱12に接合されている。更に、柱12の取付プレート88を固定せずに、柱12の側面に長孔52を形成し、ストッパーピン54を挿入することもできる。   In the first embodiment, the mounting plate 46 is fixed to the upper and lower beams 16, 18. However, as shown in FIG. 14, the mounting plate 88 may be attached to the column 12 as the frame 20 (see FIG. 1). . The mounting plate 88 is joined to the column 12 by passing bolts 92 through bolt holes 90 formed in the upper and lower portions of the mounting plate 88 and screwing them into anchor nuts 94 embedded in the column 12. Furthermore, without fixing the mounting plate 88 of the pillar 12, the long hole 52 can be formed in the side surface of the pillar 12, and the stopper pin 54 can be inserted.

なお、上記の第1の実施形態では、非補剛領域22B、22Cを波形鋼板22の上部及び下部に設けたがこれに限らず、波形鋼板22の上部にのみ設けて良いし、図6(A)又は図6(B)に示す模式図のように、波形鋼板22の下部にのみ設けても良い。また、図15に示すように、非補剛領域22Cの下側に縦フランジ28が設けられた領域22Aを設けても良い。   In the first embodiment described above, the non-stiffening regions 22B and 22C are provided on the upper and lower portions of the corrugated steel plate 22. However, the present invention is not limited to this. A) or a schematic diagram shown in FIG. 6B may be provided only at the lower portion of the corrugated steel plate 22. Further, as shown in FIG. 15, a region 22A in which a vertical flange 28 is provided below the non-stiffening region 22C may be provided.

また、固定部材42の設計強度を考慮すると、梁16、18からストッパーピン54までの距離が小さい方が好ましい。梁16、18からストッパーピン54までの距離が離れていると、縦フランジ28、30から伝達されるせん断力によって固定部材42に生じる曲げモーメント等の付加応力が大きくなるためである。このような付加応力を抑えるためには、ストッパーピン54の取付高さを波形鋼板22の部材高さの1/3以下程度に抑えることが望ましい。ただし、必ずしもストッパーピン54の取付高さを波形鋼板22の部材高さの1/3以下に抑える必要はなく、ストッパーピン54の取付高さが波形鋼板22の部材高さの1/3を超える場合には、上記した付加応力を適切に考慮して固定部材42を設計すれば良い。   In consideration of the design strength of the fixing member 42, it is preferable that the distance from the beams 16 and 18 to the stopper pin 54 is small. This is because when the distance from the beams 16 and 18 to the stopper pin 54 is increased, an additional stress such as a bending moment generated in the fixing member 42 due to the shearing force transmitted from the vertical flanges 28 and 30 increases. In order to suppress such an added stress, it is desirable to suppress the mounting height of the stopper pin 54 to about 1/3 or less of the member height of the corrugated steel plate 22. However, the mounting height of the stopper pin 54 is not necessarily limited to 1/3 or less of the member height of the corrugated steel plate 22, and the mounting height of the stopper pin 54 exceeds 1/3 of the member height of the corrugated steel plate 22. In this case, the fixing member 42 may be designed in consideration of the above-described additional stress.

更に、図16(A)又は図16(B)に示すように、波形鋼板22の非補剛領域22Cの波形形状を、他の波形鋼板22の領域22Aの波形形状よりも密に形成することで、非補剛領域22Cの鉛直剛性を小さくすることができる。ここで、波形鋼板22の軸方向弾性係数Eは、式(1)によって与えられる。 Further, as shown in FIG. 16A or 16B, the corrugated shape of the non-stiffened region 22C of the corrugated steel plate 22 is formed more densely than the corrugated shape of the region 22A of the other corrugated steel plate 22. Thus, the vertical rigidity of the non-stiffening region 22C can be reduced. Here, the axial elastic modulus E w of the corrugated steel sheet 22 is given by the equation (1).

Figure 2010037868
なお、α:波形形状係数(α=(a+c)/(3a+b))、a:山の頂面部の折り目長さ、b:斜辺部の折り目長さ、c:斜辺部の折り目の投影長さ、E:波形鋼板のヤング係数E0:鋼板のヤング係数、t:波形鋼板の板厚、h:波の高さ、である。
Figure 2010037868
Where α: waveform shape factor (α = (a + c) / (3a + b)), a: crease length at the top of the mountain, b: crease length at the oblique side, c: projection length at the crease at the oblique side, E 0 : Young's modulus of corrugated steel sheet E0: Young's modulus of corrugated steel sheet, t: thickness of corrugated steel sheet, h: height of wave.

従って、例えば、縦フランジ28が存在しない非補剛領域22Cの山の頂面部の折り目長さaを、縦フランジ28が設けられた波形鋼板22の領域22Aよりも小さくする(波形形状を密にする)とすることで、領域22Aに比べて非補剛領域22Cの軸方向弾性係数Eが小さくなるため、非補剛領域22Cの鉛直剛性を更に小さくすることができる。このように、非補剛領域22Cの鉛直剛性を小さくすることで、取付プレート46(図1参照)に対する縦フランジ28の相対変位を大きくすることができるため、粘弾性体56による振動低減効果を高めることができる。 Therefore, for example, the crease length a of the crest surface portion of the non-stiffening region 22C where the vertical flange 28 does not exist is made smaller than the region 22A of the corrugated steel plate 22 provided with the vertical flange 28 (the waveform shape is made dense). it is to be), because the axial modulus of elasticity E w of the non-stiffening region 22C is smaller than the area 22A, the vertical stiffness of the non-stiffening region 22C can be further reduced. Thus, since the relative displacement of the vertical flange 28 with respect to the mounting plate 46 (see FIG. 1) can be increased by reducing the vertical rigidity of the non-stiffening region 22C, the vibration reducing effect of the viscoelastic body 56 is reduced. Can be increased.

なお、上記第1、第2の実施形態では、横フランジ24、26及び縦フランジ28、30、64、66を板状に形成したがこれに限らず、H型鋼、L型鋼、アングル鋼、丸棒鋼等を使用しても良い。また、ストッパー手段を構成する長孔52、76、78は、楕円に限らず長方形等の多角形の孔でも良い。また、ストッパーピン54、72、74は円柱に限らず、角柱等で構成しても良い。   In the first and second embodiments, the horizontal flanges 24 and 26 and the vertical flanges 28, 30, 64, and 66 are formed in a plate shape. However, the present invention is not limited to this, and H-shaped steel, L-shaped steel, angle steel, round Steel bars or the like may be used. Further, the long holes 52, 76 and 78 constituting the stopper means are not limited to an ellipse but may be a polygonal hole such as a rectangle. Further, the stopper pins 54, 72, 74 are not limited to cylinders, and may be constituted by prisms or the like.

また、上記第1、第2の実施形態における柱12、14、梁16、18は、鉄筋コンクリート造に限らず、鉄骨鉄筋コンクリート造、プレストレスコンクリート造、鉄骨造、更には現場打ち工法、プレキャスト工法等の種々の工法を用いた構造部材に適用可能である。例えば、第1の実施形態において、梁16に替えてコンクリートスラブ又は小梁等であっても良い。   Further, the columns 12 and 14 and the beams 16 and 18 in the first and second embodiments are not limited to reinforced concrete structures, but are steel reinforced concrete structures, prestressed concrete structures, steel structures, on-site casting methods, precast methods, and the like. The present invention can be applied to structural members using various methods. For example, in the first embodiment, a concrete slab or a small beam may be used instead of the beam 16.

また、説明の都合上、柱12、14、梁16、18に配筋される、鉄筋、せん断補強筋等は省略したが、鉄筋、せん断補強筋は、各部材に求められる強度に応じて適宜設ければよい。更に、本発明の波形鋼板耐震壁10、60は、建物の一部に用いても良いし、全てに用いても良い。更に、波形鋼板22、62は、図17(A)〜(D)に示すような断面形状をした波形鋼板を用いても良い。   Further, for the convenience of explanation, reinforcing bars, shear reinforcing bars and the like arranged in the columns 12, 14, and beams 16, 18 are omitted, but reinforcing bars and shear reinforcing bars are appropriately selected according to the strength required for each member. What is necessary is just to provide. Furthermore, the corrugated steel earthquake resistant walls 10 and 60 of the present invention may be used for a part of a building or for all. Furthermore, the corrugated steel plates 22 and 62 may be corrugated steel plates having a cross-sectional shape as shown in FIGS.

以上、本発明の第1、第2の実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1、第2の実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first and second embodiments of the present invention have been described above. However, the present invention is not limited to such embodiments, and the first and second embodiments may be used in combination. Of course, various embodiments can be implemented without departing from the scope of the invention.

本発明の第1の実施形態に係る波形鋼板耐震壁を示す正面図である。It is a front view which shows the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁を示す、図1の1−1線断面図である。It is the 1-1 sectional view taken on the line of FIG. 1 which shows the corrugated steel shear wall according to the first embodiment of the present invention. 本発明の第1の実施形態に係るストッパー手段を示す斜視図である。It is a perspective view which shows the stopper means which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るストッパー手段を示す分解斜視図である。It is a disassembled perspective view which shows the stopper means which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の脚部を示す説明図である。It is explanatory drawing which shows the leg part of the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 図6は、本発明の第1の実施形態に係る波形鋼板耐震壁の変形状態を誇張して表した説明図あり、(A)は、ストッパー手段が機能する前の変形状態を示し、(B)は、ストッパー手段が機能したときの変形状態を示している。FIG. 6 is an explanatory view exaggeratingly showing the deformation state of the corrugated steel shear wall according to the first embodiment of the present invention, (A) shows the deformation state before the stopper means functions, (B ) Shows a deformed state when the stopper means functions. 本発明の第1の実施形態に係るストッパー手段の動作を示す作動図であり、(A)は停止状態を示し、(B)、(C)はストッパー手段が機能した状態を示している。It is an operation | movement figure which shows operation | movement of the stopper means which concerns on the 1st Embodiment of this invention, (A) shows a stop state, (B), (C) has shown the state which the stopper means functioned. 本発明の第1の実施形態に係る波形鋼板耐震壁の脚部の振動モデルである。It is a vibration model of the leg part of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る波形鋼板耐震壁を示す正面図である。It is a front view which shows the corrugated steel earthquake-resistant wall which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るストッパー手段の動作を示す作動図であり、(A)は停止状態を示し、(B)、(C)はストッパー手段が機能した状態を示している。It is an operation | movement figure which shows operation | movement of the stopper means which concerns on the 2nd Embodiment of this invention, (A) shows a stop state, (B), (C) has shown the state which the stopper means functioned. (A)は本発明の第1、第2の実施形態に係るストッパー手段の変形例を示す正面図であり、(B)は図10(A)の2−2線断面図である。(A) is a front view which shows the modification of the stopper means which concerns on the 1st, 2nd embodiment of this invention, (B) is 2-2 sectional view taken on the line of FIG. 10 (A). 本発明の第1、第2の実施形態に係るストッパー手段の変形例の動作を示す作動図であり、(A)は停止状態を示し、(B)、(C)はストッパー手段が機能した状態を示している。It is an operation | movement figure which shows the operation | movement of the modification of the stopper means which concerns on the 1st, 2nd embodiment of this invention, (A) shows a stop state, (B), (C) is the state which the stopper means functioned Is shown. 本発明の第1、第2の実施形態に係るストッパー手段の変形例を示す正面図である。It is a front view which shows the modification of the stopper means which concerns on the 1st, 2nd embodiment of this invention. 本発明の第1、第2の実施形態に係るストッパー手段の変形例を示す正面図である。It is a front view which shows the modification of the stopper means which concerns on the 1st, 2nd embodiment of this invention. 本発明の第1、第2の実施形態に係るストッパー手段の変形例を示す正面図である。It is a front view which shows the modification of the stopper means which concerns on the 1st, 2nd embodiment of this invention. (A)は本発明の第1の実施形態に係る波形鋼板耐震壁の断片を示す正面図であり、(B)は図10(A)の3−3線断面図である。(A) is a front view which shows the fragment | piece of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention, (B) is 3-3 sectional view taken on the line of FIG. 10 (A). 本発明の第1、第2の実施形態に係る波形鋼板の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the corrugated steel plate which concerns on the 1st, 2nd embodiment of this invention.

符号の説明Explanation of symbols

10 波形鋼板耐震壁
16 梁(水平部材)
18 梁(水平部材)
20 架構
22 波形鋼板
22B 非補剛領域
22C 非補剛領域
24 横フランジ
26 横フランジ
28 縦フランジ
30 縦フランジ
46 取付プレート(取付部材)
52 長孔(開口部)
52A 上縁部
52B 下縁部
54 ストッパーピン(ストッパー手段)
54A 上縁部
54B 下縁部
56 粘弾性体
60 波形鋼板耐震壁
62 波形鋼板
62B 非補剛領域
62C 非補剛領域
64 縦フランジ
66 縦フランジ
70 取付プレート(取付部材)
72 ストッパーピン(ストッパー手段)
74 ストッパーピン(ストッパー手段)
76 長孔(ストッパー手段、開口部)
76A 上縁部
76B 下縁部
78 長孔(ストッパー手段、開口部)
78A 上縁部
78B 下縁部
80 突設部(ストッパー手段)
82A ストッパー部材(ストッパー手段)
82B ストッパー部材(ストッパー手段)
84 ストッパーピン(ストッパー手段)
88 取付プレート(取付部材)
10 Corrugated steel shear wall 16 Beam (horizontal member)
18 Beam (horizontal member)
20 frame 22 corrugated steel plate 22B non-stiffening region 22C non-stiffening region 24 horizontal flange 26 horizontal flange 28 vertical flange 30 vertical flange 46 mounting plate (mounting member)
52 Long hole (opening)
52A Upper edge 52B Lower edge 54 Stopper pin (stopper means)
54A Upper edge portion 54B Lower edge portion 56 Viscoelastic body 60 Corrugated steel plate earthquake resistant wall 62 Corrugated steel plate 62B Non-stiffening region 62C Non-stiffening region 64 Vertical flange 66 Vertical flange 70 Mounting plate (mounting member)
72 Stopper pin (stopper means)
74 Stopper pin (stopper means)
76 Long hole (stopper means, opening)
76A Upper edge portion 76B Lower edge portion 78 Long hole (stopper means, opening)
78A Upper edge part 78B Lower edge part 80 Projection part (stopper means)
82A Stopper member (stopper means)
82B Stopper member (stopper means)
84 Stopper pin (stopper means)
88 Mounting plate (Mounting member)

Claims (6)

架構を構成する上下の水平部材の間に折り筋を横にして配置された波形鋼板と、
前記波形鋼板の上下の端部に設けられ、上下の前記水平部材に取り付けられる横フランジと、
前記波形鋼板の左右の端部に設けられた縦フランジと、
前記波形鋼板に設けられ、該波形鋼板の左右の端部に前記縦フランジが存在しない非補剛領域と、
前記架構に取り付けられた取付部材と、
前記取付部材と前記縦フランジとの間に上下方向にせん断変形可能に設けられた粘弾性体と、
前記取付部材と前記縦フランジとの間に設けられ、前記取付部材と前記縦フランジとの上下方向の相対変位を所定位置で止めるストッパー手段と、
を備える波形鋼板耐震壁。
Corrugated steel sheets arranged with the fold line between the upper and lower horizontal members constituting the frame;
A horizontal flange provided at the upper and lower ends of the corrugated steel sheet and attached to the upper and lower horizontal members;
Vertical flanges provided at the left and right ends of the corrugated steel sheet;
A non-stiffening region provided on the corrugated steel sheet, wherein the vertical flange does not exist at left and right ends of the corrugated steel sheet;
An attachment member attached to the frame;
A viscoelastic body provided between the mounting member and the vertical flange so as to be shearable in the vertical direction;
Stopper means provided between the mounting member and the vertical flange, and stopping the relative displacement in the vertical direction between the mounting member and the vertical flange at a predetermined position;
Corrugated steel shear wall with
前記非補剛領域が、前記波形鋼板の上部及び下部に設けられ、
前記取付部材が上及び下の前記水平部材にそれぞれ取り付けられ、
前記縦フランジの上端部の側面及び下端部の側面と、該縦フランジの上端部の側面及び下端部の側面にそれぞれ対向する前記取付部材とに、前記粘弾性体を固定した請求項1に記載の波形鋼板耐震壁。
The non-stiffening regions are provided at the top and bottom of the corrugated steel sheet,
The attachment members are respectively attached to the upper and lower horizontal members;
2. The viscoelastic body is fixed to a side surface of an upper end portion and a lower end portion of the vertical flange, and the attachment member facing the side surface of the upper end portion and the lower end portion of the vertical flange, respectively. Corrugated steel shear wall.
前記非補剛領域が、前記波形鋼板の上部又は下部に設けられ、
前記取付部材が上又は下の前記水平部材にそれぞれ取り付けられ、
前記縦フランジの上端部の側面又は下端部の側面と、該縦フランジの上端部の側面又は下端部の側面に対向する前記取付部材とに、前記粘弾性体を固定した請求項1に記載の波形鋼板耐震壁。
The non-stiffening region is provided at the top or bottom of the corrugated steel sheet;
The attachment members are respectively attached to the horizontal members above or below;
2. The viscoelastic body according to claim 1, wherein the viscoelastic body is fixed to a side surface of an upper end portion or a lower end portion of the vertical flange and a mounting member facing the side surface of the upper end portion or the lower end portion of the vertical flange. Corrugated steel shear wall.
上下の前記水平部材の間に複数の前記波形鋼板が横方向に間隔を空けて配置され、対向する前記縦フランジの間に前記取付部材を配置し、該取付部材と前記縦フランジとの間にそれぞれ前記粘弾性体を設けた請求項1〜3の何れか1項に記載の波形鋼板耐震壁。   A plurality of the corrugated steel plates are disposed between the upper and lower horizontal members at intervals in the lateral direction, the mounting member is disposed between the opposing vertical flanges, and the mounting member and the vertical flange are disposed between the mounting members and the vertical flanges. The corrugated steel earthquake-resistant wall according to any one of claims 1 to 3, wherein each of the viscoelastic bodies is provided. 前記非補剛領域の波形形状が、他の前記波形鋼板の領域の波形形状よりも密とされた請求項1〜4の何れか1項に記載の波形鋼板耐震壁。   The corrugated steel earthquake-resistant wall according to any one of claims 1 to 4, wherein the corrugated shape of the non-stiffening region is made denser than the corrugated shape of the other corrugated steel plate regions. 前記ストッパー手段は、前記取付部材及び前記縦フランジの一方に設けられた開口部と、前記縦フランジ及び前記取付部材の他方から突出し前記開口部に挿入されると共に該開口部の上縁部又は下縁部に当接して前記取付部材と前記縦フランジとの上下方向の相対変位を所定位置で止めるストッパーピンと、を備える請求項1〜5の何れか1項に記載の波形鋼板耐震壁。   The stopper means includes an opening provided in one of the mounting member and the vertical flange, and protrudes from the other of the vertical flange and the mounting member, and is inserted into the opening. A corrugated steel shear wall according to any one of claims 1 to 5, further comprising a stopper pin that comes into contact with an edge portion and stops a relative displacement in a vertical direction between the mounting member and the vertical flange at a predetermined position.
JP2008203952A 2008-08-07 2008-08-07 Corrugated steel plate earthquake-resisting wall Pending JP2010037868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203952A JP2010037868A (en) 2008-08-07 2008-08-07 Corrugated steel plate earthquake-resisting wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203952A JP2010037868A (en) 2008-08-07 2008-08-07 Corrugated steel plate earthquake-resisting wall

Publications (1)

Publication Number Publication Date
JP2010037868A true JP2010037868A (en) 2010-02-18

Family

ID=42010696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203952A Pending JP2010037868A (en) 2008-08-07 2008-08-07 Corrugated steel plate earthquake-resisting wall

Country Status (1)

Country Link
JP (1) JP2010037868A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017174A (en) * 2009-07-08 2011-01-27 Nippon Steel Corp Joint structure of members in steel panel including steel frame member and folding plate made of thin steel plate, steel panel, and building
JP2011184983A (en) * 2010-03-10 2011-09-22 Toyota Home Kk Bearing wall and building
JP2013117156A (en) * 2011-11-02 2013-06-13 Nippon Steel & Sumitomo Metal Earthquake-resistant wall and aseismic structure
KR101378700B1 (en) 2012-10-09 2014-03-28 한국기술교육대학교 산학협력단 Unit modular seismic absorbing apparatus for rahmen structures
JP2014145174A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumitomo Metal Earthquake-resisting wall and earthquake-resisting structure
KR101933870B1 (en) * 2018-05-04 2019-01-02 조청환 Earthquake proof reinforcing method having seismic design for lower parts of apartment structure
JP2019019516A (en) * 2017-07-14 2019-02-07 Jfeスチール株式会社 Compound damper, viscoelastic damper
CN110453938A (en) * 2019-08-20 2019-11-15 苏州嘉谷环保科技有限公司 A kind of moveable house lifting auxiliary device and application method
CN111851788A (en) * 2020-08-06 2020-10-30 同济大学 Design method of adjustable corrugated steel plate-lead composite dual-function component
JP2020200711A (en) * 2019-06-12 2020-12-17 株式会社竹中工務店 building

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017174A (en) * 2009-07-08 2011-01-27 Nippon Steel Corp Joint structure of members in steel panel including steel frame member and folding plate made of thin steel plate, steel panel, and building
JP2011184983A (en) * 2010-03-10 2011-09-22 Toyota Home Kk Bearing wall and building
JP2013117156A (en) * 2011-11-02 2013-06-13 Nippon Steel & Sumitomo Metal Earthquake-resistant wall and aseismic structure
KR101378700B1 (en) 2012-10-09 2014-03-28 한국기술교육대학교 산학협력단 Unit modular seismic absorbing apparatus for rahmen structures
JP2014145174A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumitomo Metal Earthquake-resisting wall and earthquake-resisting structure
JP2019019516A (en) * 2017-07-14 2019-02-07 Jfeスチール株式会社 Compound damper, viscoelastic damper
KR101933870B1 (en) * 2018-05-04 2019-01-02 조청환 Earthquake proof reinforcing method having seismic design for lower parts of apartment structure
JP2020200711A (en) * 2019-06-12 2020-12-17 株式会社竹中工務店 building
JP7363000B2 (en) 2019-06-12 2023-10-18 株式会社竹中工務店 building
CN110453938A (en) * 2019-08-20 2019-11-15 苏州嘉谷环保科技有限公司 A kind of moveable house lifting auxiliary device and application method
CN111851788A (en) * 2020-08-06 2020-10-30 同济大学 Design method of adjustable corrugated steel plate-lead composite dual-function component
CN111851788B (en) * 2020-08-06 2021-11-16 同济大学 Adjustable corrugated steel plate-lead composite dual-functional component

Similar Documents

Publication Publication Date Title
JP2010037868A (en) Corrugated steel plate earthquake-resisting wall
JP5336145B2 (en) Damping structure and building with damping structure
KR101263078B1 (en) Connection metal fitting and building with the same
US20110283653A1 (en) Fork Configuration Dampers and Method of Using Same
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
JP5601882B2 (en) Steel seismic wall and building with the same
JP4631280B2 (en) Seismic control pier
JP7160587B2 (en) Seismic isolation structure
JP2003193699A (en) Elasto-plastic, visco-elastic brace
JP5132503B2 (en) Seismic structure and building
JP2009013683A (en) Damping structure of building
JP4414833B2 (en) Seismic walls using corrugated steel
JP4563872B2 (en) Seismic wall
JPH10140873A (en) Vibration damping structure of building
TWI490158B (en) Seismic isolation supporting device in traveling crane
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JPH10220062A (en) Vibration damping structure for building
JP5095492B2 (en) Corrugated steel shear wall
JP3931944B2 (en) Damping damper and its installation structure
JP2006307458A (en) Seismic control structure of building
JP4242673B2 (en) Damping device and damping structure using the same
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP4049120B2 (en) Building seismic control structure
JP5627846B2 (en) Boundary beam, boundary beam design method, boundary beam construction method, and building
JP3744267B2 (en) Building vibration control device