JP5095492B2 - Corrugated steel shear wall - Google Patents

Corrugated steel shear wall Download PDF

Info

Publication number
JP5095492B2
JP5095492B2 JP2008128782A JP2008128782A JP5095492B2 JP 5095492 B2 JP5095492 B2 JP 5095492B2 JP 2008128782 A JP2008128782 A JP 2008128782A JP 2008128782 A JP2008128782 A JP 2008128782A JP 5095492 B2 JP5095492 B2 JP 5095492B2
Authority
JP
Japan
Prior art keywords
corrugated steel
region
shear
steel plates
wave region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008128782A
Other languages
Japanese (ja)
Other versions
JP2009275436A (en
Inventor
満 竹内
義弘 太田
秀幸 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2008128782A priority Critical patent/JP5095492B2/en
Publication of JP2009275436A publication Critical patent/JP2009275436A/en
Application granted granted Critical
Publication of JP5095492B2 publication Critical patent/JP5095492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、架構を構成する周辺部材に複数の波形鋼板を取り付けて構成された波形鋼板耐震壁に関する。   The present invention relates to a corrugated steel shear wall configured by attaching a plurality of corrugated steel plates to peripheral members constituting a frame.

構造物における耐震壁としては、特許文献1に示すように、波形に加工した波形鋼板を、波形の折筋の向きを水平方向として架構の構面に配置して構成した波形鋼板耐震壁が提案されている。この波形鋼板耐震壁は、垂直方向にアコーディオンのように伸縮するため鉛直力を負担しないが、水平せん断力に対しては抵抗可能であり、せん断剛性・せん断耐力を確保しつつ優れた変形性能を有している。更に、せん断剛性及び強度については、鋼板の材質強度、板厚、重ね合わせ枚数、波形のピッチ、波高等を変えることにより調整可能であり、剛性及び設計強度の自由度が高い耐震壁を実現している。   As a seismic wall in a structure, as shown in Patent Document 1, a corrugated steel shear wall composed of corrugated steel sheets processed into corrugations arranged on the frame surface of the frame with the direction of the corrugated crease in the horizontal direction is proposed. Has been. This corrugated steel shear wall does not bear vertical force because it expands and contracts in the vertical direction like an accordion, but it can resist horizontal shearing force and has excellent deformation performance while ensuring shear rigidity and shear strength. Have. Furthermore, the shear rigidity and strength can be adjusted by changing the material strength, thickness, number of overlapping sheets, corrugation pitch, wave height, etc. of the steel sheet, realizing a shear wall with a high degree of freedom in rigidity and design strength. ing.

ところで、近年、居住空間における環境性能が注目されるようになり、交通や風等による振動に対しても性能満足が求められている。このような振動の対策としては、建物の重量を増したり、剛性を高めたりすることが考えられるが、建物に減衰を付与することが効果的である。波形鋼板耐震壁について見ると、波形鋼板が降伏した後の塑性域では、安定した履歴ループ(履歴減衰)により振動エネルギーを吸収できるが、波形鋼板が降伏する前の弾性域では、波形鋼板の剛性を高めて振動を抑制することになる。しかしながら、波形鋼板の剛性を高めると、波形鋼板耐震壁の変形性能が低下し、波形鋼板耐震壁の特性を十分に活かすことができない。   By the way, in recent years, environmental performance in a living space has attracted attention, and performance satisfaction is also required for vibration due to traffic, wind, and the like. As measures against such vibrations, it is conceivable to increase the weight of the building or increase the rigidity. However, it is effective to impart damping to the building. Looking at the corrugated steel shear wall, in the plastic region after the corrugated steel plate yields, the vibration energy can be absorbed by a stable hysteresis loop (history damping), but in the elastic region before the corrugated steel plate yields, the rigidity of the corrugated steel plate To suppress vibration. However, if the rigidity of the corrugated steel sheet is increased, the deformation performance of the corrugated steel shear wall is lowered, and the characteristics of the corrugated steel shear wall cannot be fully utilized.

一方、特許文献2には、複数の波形鋼板を重ね合わせた波形鋼板耐震壁が提案されている。しかしながら、交通や風等による振動を低減する技術的思想は開示されていない。
特開2005−264713号公報 特開2006−37628号公報
On the other hand, Patent Document 2 proposes a corrugated steel shear wall in which a plurality of corrugated steel plates are superposed. However, a technical idea for reducing vibration due to traffic, wind, or the like is not disclosed.
JP 2005-264713 A JP 2006-37628 A

本発明は、上記の事実を考慮し、耐震性能を維持しつつ、交通や風等による振動を低減できる波形鋼板耐震壁を提供することを目的とする。   In view of the above facts, an object of the present invention is to provide a corrugated steel seismic wall that can reduce vibration due to traffic, wind, or the like while maintaining seismic performance.

請求項1に記載の波形鋼板耐震壁は、架構を構成する周辺部材に取り付けられ、対向して配置された複数の波形鋼板と、対向する前記波形鋼板の間に設けられた粘弾性体と、を備え、対向する前記波形鋼板の少なくとも一方が、せん断剛性が異なる領域を上下方向に有し、少なくとも一つの前記領域に作用するせん断力によって生じるせん断変形量と、該領域と対向する他方の前記波形鋼板に作用するせん断力によって生じるせん断変形量と、が異なることを特徴とする。   The corrugated steel earthquake resistant wall according to claim 1 is attached to a peripheral member constituting the frame, and a plurality of corrugated steel plates arranged opposite to each other, a viscoelastic body provided between the corrugated steel plates facing each other, At least one of the opposing corrugated steel sheets has a region in which the shear rigidity is different in the vertical direction, the amount of shear deformation caused by the shearing force acting on at least one of the regions, and the other of the other facing the region The amount of shear deformation caused by the shearing force acting on the corrugated steel sheet is different.

上記の構成によれば、架構を構成する周辺部材に波形鋼板を対向して取り付け、対向する波形鋼板の間に粘弾性体を設けている。また、対向する波形鋼板の少なくとも一方には、せん断剛性が異なる領域が上下方向に設けられている。そして、一方の波形鋼板に設けられた領域のうち、少なくとも一つの領域に作用するせん断力によって生じるせん断変形量と、当該領域と対向する他方の波形鋼板に作用するせん断力によって生じるせん断変形量と、が異なっている。このため、対向する波形鋼板のせん断変形量に差が生じ、対向する波形鋼板の間に設けられた粘弾性体がせん断変形する。従って、粘弾性体により振動エネルギーが吸収され、振動が低減される。   According to said structure, a corrugated steel plate is attached facing the peripheral member which comprises a frame, and the viscoelastic body is provided between the corrugated steel plates which oppose. Moreover, the area | region where shear rigidity differs is provided in the up-down direction at least one of the corrugated steel plates which oppose. And among the regions provided in one corrugated steel sheet, the amount of shear deformation caused by the shear force acting on at least one region, and the shear deformation amount caused by the shear force acting on the other corrugated steel plate facing the region, Is different. For this reason, a difference arises in the amount of shear deformation of the corrugated steel plates facing each other, and the viscoelastic body provided between the corrugated steel plates facing each other undergoes shear deformation. Therefore, vibration energy is absorbed by the viscoelastic body, and vibration is reduced.

請求項2に記載の波形鋼板耐震壁は、請求項1に記載の波形鋼板耐震壁において、前記領域と、該領域と隣接する領域とが、形状の異なる波形とされたことを特徴とする。   According to a second aspect of the present invention, there is provided the corrugated steel shear wall according to the first aspect, wherein the region and a region adjacent to the region have different shapes.

上記の構成によれば、形状の異なる波形の領域を波形鋼板に設けている。波形鋼板のせん断剛性は、波形の形状を変えることで調整できる。そのため、波が疎の部分と波が密の部分を波形鋼板に設けることで、せん断剛性が異なる領域を設けることができる。   According to said structure, the area | region of the waveform from which a shape differs is provided in the corrugated steel plate. The shear stiffness of the corrugated steel sheet can be adjusted by changing the corrugated shape. For this reason, by providing the corrugated steel sheet with a sparse part and a dense part in the corrugated steel sheet, regions having different shear rigidity can be provided.

請求項3に記載の波形鋼板耐震壁は、請求項1又は請求項2に記載の波形鋼板耐震壁において、対向する前記波形鋼板が、それぞれ前記架構の構面の中央を境界としたせん断剛性が異なる2つの領域を有することを特徴とする。   The corrugated steel earthquake-resistant wall according to claim 3 is the corrugated steel earthquake-resistant wall according to claim 1 or 2, wherein the corrugated steel plates facing each other have shear rigidity with the center of the construction surface of the frame as a boundary. It is characterized by having two different areas.

上記の構成によれば、対向する波形鋼板に、せん断剛性が異なる2つの領域をそれぞれ設けている。この2つの領域の境界は、架構の構面の中央に位置している。そのため、架構の構面の中央において、対向する波形鋼板のせん断変形量の差が最大となる。従って、架構の構面の中央付近に粘弾性体を設けることで、振動エネルギーの吸収効率が向上し、振動の低減効果が大きくなる。
なお、架構の構面の中央とは、架構の構面を等分した位置だけでなく、波形鋼板の加工誤差や周辺部材の施工誤差等による位置ずれを含む概念であり、せん断剛性が異なる2つの領域の境界は、架構の構面の概ね中央に位置していれば良い。
According to said structure, the two area | regions where shear rigidity differs are each provided in the corrugated steel plate which opposes. The boundary between the two regions is located at the center of the frame. For this reason, the difference in the amount of shear deformation between the corrugated steel plates facing each other is maximized at the center of the frame. Therefore, by providing the viscoelastic body near the center of the construction surface of the frame, the vibration energy absorption efficiency is improved, and the vibration reduction effect is increased.
The center of the frame structure is not only a position where the frame structure is equally divided, but also a concept including misalignment due to processing errors of corrugated steel sheets, construction errors of peripheral members, and the like. The boundary between the two regions may be located approximately in the center of the frame.

請求項4に記載の波形鋼板耐震壁は、架構を構成する周辺部材に取り付けられ、対向して配置された複数の波形鋼板と、対向する前記波形鋼板の間に設けられた粘弾性体と、を備え、前記波形鋼板の少なくとも一方が、降伏点が異なる領域を上下方向に有し、少なくとも一つの前記領域に作用するせん断力によって降伏する降伏開始時期と、該領域と対向する他方の前記波形鋼板に作用するせん断力によって降伏する降伏開始時期と、が異なることを特徴とする。   The corrugated steel earthquake-resistant wall according to claim 4 is attached to peripheral members constituting the frame, a plurality of corrugated steel plates arranged to face each other, and a viscoelastic body provided between the corrugated steel plates facing each other, And at least one of the corrugated steel sheets has a region having different yield points in the vertical direction, the yield start time when yielding is generated by a shearing force acting on at least one of the regions, and the other waveform facing the region. It is characterized in that the yield start time when yielding is different due to the shearing force acting on the steel sheet.

上記の構成によれば、架構を構成する周辺部材に波形鋼板を対向して取り付け、対向する波形鋼板の間に粘弾性体を設けている。また、対向する波形鋼板の少なくとも一方には、降伏点が異なる領域が上下方向に設けられている。そして、一方の波形鋼板に設けられた複数の領域のうち、少なくとも一つの領域に作用するせん断力によって降伏する降伏開始時期と、当該領域と対向する他方の波形鋼板に作用するせん断力によって降伏する降伏点時期と、が異なっている。これにより、一方の領域が早期に降伏して塑性変形するため、他方の領域(弾性変形)よりもせん断変形量が大きくなる。従って、対向する波形鋼板のせん断変形量に差が生じ、対向する波形鋼板の間に設けられた粘弾性体がせん断変形する。よって、粘弾性体により振動エネルギーが吸収され、振動が低減される。   According to said structure, a corrugated steel plate is attached facing the peripheral member which comprises a frame, and the viscoelastic body is provided between the corrugated steel plates which oppose. Moreover, the area | region where a yield point differs is provided in the up-down direction at least one of the corrugated steel plates which oppose. And among the plurality of regions provided in one corrugated steel sheet, it yields by the yield start time when it yields by the shearing force acting on at least one region, and by the shearing force acting on the other corrugated steel plate facing the region. Yield point time is different. Thereby, since one area | region yields early and plastically deforms, a shear deformation amount becomes larger than the other area | region (elastic deformation). Accordingly, a difference occurs in the amount of shear deformation between the corrugated steel plates facing each other, and the viscoelastic body provided between the corrugated steel plates facing each other undergoes shear deformation. Therefore, vibration energy is absorbed by the viscoelastic body, and vibration is reduced.

請求項5に記載の波形鋼板耐震壁は、請求項1〜4の何れか1項に記載の波形鋼板耐震壁において、前記波形鋼板が、上下の前記周辺部材にのみ取り付けられていることを特徴とする。   The corrugated steel plate earthquake-resistant wall according to claim 5 is the corrugated steel plate earthquake-resistant wall according to any one of claims 1 to 4, wherein the corrugated steel plate is attached only to the upper and lower peripheral members. And

上記の構成によれば、波形鋼板が上下の周辺部材にのみ取り付けられ、左右の周辺部材に取り付けられていない。このため、左右の周辺部材によって波形鋼板が拘束される場合と比較して、対向する波形鋼板のせん断変形量の差が大きくなり、粘弾性体のせん断変形量が大きくなる。従って、粘弾性体のよる振動エネルギーの吸収効率が向上し、振動低減効果が向上する。   According to said structure, a corrugated steel plate is attached only to an up-and-down peripheral member, and is not attached to the left-right peripheral member. For this reason, compared with the case where a corrugated steel plate is restrained by the left and right peripheral members, the difference in the shear deformation amount of the corrugated steel plates facing each other is increased, and the shear deformation amount of the viscoelastic body is increased. Therefore, the absorption efficiency of vibration energy by the viscoelastic body is improved, and the vibration reduction effect is improved.

請求項6に記載の波形鋼板耐震壁は、請求項1〜5の何れか1項に記載の波形鋼板耐震壁において、対向する前記波形鋼板を接合する接合手段が、各前記波形鋼板に形成されたボルト孔と、前記ボルト孔を貫通するボルトと、前記ボルトがねじ込まれるナットと、を備え、前記ボルトが貫通する前記ボルト孔の少なくとも一方が、前記ボルトの水平方向の変位を許容する長孔とされたことを特徴とする。   The corrugated steel earthquake-resistant wall according to claim 6 is the corrugated steel earthquake-resistant wall according to any one of claims 1 to 5, wherein a joining means for joining the corrugated steel plates facing each other is formed on each corrugated steel plate. A bolt hole, a bolt that penetrates the bolt hole, and a nut into which the bolt is screwed, and at least one of the bolt holes that penetrates the bolt allows a horizontal displacement of the bolt. It is characterized by that.

上記の構成によれば、接合手段によって対向する波形鋼板が接合されている。そのため、波形鋼板の面外方向の変形に対して、各波形鋼板が協同して抵抗する。従って、波形鋼板の面外方向の変形に対する剛性(曲げ剛性)が大きくなり、波形鋼板耐震壁のせん断座屈が防止される。   According to said structure, the corrugated steel plate which opposes by the joining means is joined. Therefore, each corrugated steel plate cooperates and resists a deformation | transformation of the out-of-plane direction of a corrugated steel plate. Accordingly, the rigidity (bending rigidity) against the deformation in the out-of-plane direction of the corrugated steel sheet is increased, and shear buckling of the corrugated steel sheet earthquake resistant wall is prevented.

また、ボルトが貫通するボルト孔の少なくとも一方が長孔とされ、ボルトが水平方向に変位可能となっている。そのため、対向する各波形鋼板が独立して水平方向(面内方向)にせん断変形可能となり、各波形鋼板のせん断変形量に差が生じる。従って、粘弾性体がせん断変形して振動エネルギーが吸収するため、振動が低減される。   In addition, at least one of the bolt holes through which the bolt passes is a long hole, and the bolt can be displaced in the horizontal direction. Therefore, each corrugated steel plate which opposes becomes independently shear-deformable to a horizontal direction (in-plane direction), and a difference arises in the amount of shear deformation of each corrugated steel plate. Therefore, the vibration is reduced because the viscoelastic body undergoes shear deformation and absorbs vibration energy.

本発明は、上記の構成としたので、耐震性能を維持しつつ、交通や風等による振動を低減することができる。   Since this invention set it as said structure, it can reduce the vibration by traffic, a wind, etc., maintaining seismic performance.

以下、図面を参照して本発明の第1の実施形態に係る波形鋼板耐震壁について説明する。図1は、波形鋼板耐震壁10を示す正面図であり、図2は、波形鋼板耐震壁10の断面図であり、図3は、波形鋼板耐震壁10の拡大断面図である。   The corrugated steel shear wall according to the first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing a corrugated steel seismic wall 10, FIG. 2 is a cross-sectional view of the corrugated steel seismic wall 10, and FIG. 3 is an enlarged cross-sectional view of the corrugated steel seismic wall 10.

図1、図2に示すように、鉄筋コンクリート造の柱12、14及び鉄筋コンクリート造の梁16、18に囲まれた架構20の構面には、鋼板を波形に加工した2枚の波形鋼板22、24(図2参照)が折り筋の向きを水平方向として対向配置されている。各波形鋼板22、24の外周部には、板状の接合用フレーム枠26が溶接され、接合用フレーム枠26を介して波形鋼板22、24が、後述する接合方法によって柱12、14及び梁16、18と接合されている。なお、波形鋼板22、24には同じ材質の鉄鋼が使用されている。   As shown in FIGS. 1 and 2, the corrugated surface of the frame 20 surrounded by the reinforced concrete columns 12 and 14 and the reinforced concrete beams 16 and 18 includes two corrugated steel plates 22 each having a corrugated steel plate, 24 (see FIG. 2) are arranged opposite to each other with the direction of the crease being in the horizontal direction. A plate-shaped joining frame frame 26 is welded to the outer peripheral portion of each corrugated steel plate 22, 24, and the corrugated steel plates 22, 24 are connected to the columns 12, 14 and beams by the joining method described later through the joining frame frame 26. 16 and 18 are joined. The corrugated steel plates 22 and 24 are made of the same steel material.

波形鋼板22は、波形の形状が異なる2つ領域28、30を上下方向に有し、上部の密波領域28は、面外方向に突出する山部28A、28Bが交互に連続する波形とされ、下部の疎波領域30は、面外方向に突出する山部30A、30Bが交互に連続する波形とされている。また、密波領域28と疎波領域30との境界は、波形鋼板22の中央部付近、即ち、架構20の構面の中央付近に位置している。   The corrugated steel sheet 22 has two regions 28 and 30 having different corrugated shapes in the vertical direction, and the upper dense wave region 28 has a waveform in which peaks 28A and 28B protruding in an out-of-plane direction are alternately continued. The lower sparse wave region 30 has a waveform in which peak portions 30A and 30B protruding in the out-of-plane direction are alternately continued. The boundary between the dense wave region 28 and the sparse wave region 30 is located near the center of the corrugated steel plate 22, that is, near the center of the frame 20.

密波領域28と疎波領域30の波形の形状を比較すると、山部28A(又は山部28B)と山部30A(又は山部30B)との斜辺部の折り目長さ、及び斜辺部の折り目の投影長さが、ほぼ等しくされている。一方、山の頂面部の折り目長さは、山部28A(又は山部28B)よりも山部30A(又は山部30B)の方が長くされている。なお、山の頂面部の折り目長さ、斜辺部の折り目長さ、及び斜辺部の折り目の投影長さは、図3中のa、b、cにそれぞれ対応する。   Comparing the waveform shapes of the dense wave region 28 and the sparse wave region 30, the crease lengths of the oblique sides of the ridges 28A (or ridges 28B) and the ridges 30A (or ridges 30B) and the folds of the oblique sides Are substantially equal in projection length. On the other hand, the crease length of the top surface part of the mountain is longer in the mountain part 30A (or mountain part 30B) than in the mountain part 28A (or mountain part 28B). In addition, the crease length of the top surface portion of the mountain, the crease length of the oblique side portion, and the projection length of the crease portion of the oblique side portion respectively correspond to a, b, and c in FIG.

波形鋼板22と同様に、波形鋼板24は、上下方向に波形の形状が異なる2つ領域を有し、上部の疎波領域32は、面外方向に突出する山部32A、32Bが交互に連続する波形とされ、下部の密波領域34は、面外方向に突出する山部34A、34Bが交互に連続する波形とされている。また、疎波領域32と密波領域34との境界は、波形鋼板24の中央部付近、即ち、架構20の構面の中央付近に位置している。   Similar to the corrugated steel plate 22, the corrugated steel plate 24 has two regions with different corrugated shapes in the vertical direction, and the upper sparse wave region 32 has continuous peaks 32 A and 32 B protruding in the out-of-plane direction. The lower dense wave region 34 has a waveform in which crests 34A and 34B protruding in the out-of-plane direction are alternately continued. The boundary between the sparse wave region 32 and the dense wave region 34 is located near the center of the corrugated steel sheet 24, that is, near the center of the frame 20.

そして、山部32A(又は山部32B)と山部34A(又は山部34B)との斜辺部の折り目長さ、及び斜辺部の折り目の投影長さが、ほぼ等しくされている。一方、山の頂面部の折り目長さは、山部34A(又は山部34B)よりも山部32A(又は山部32B)の方が長くされている。
なお、波形鋼板22の密波領域28と、波形鋼板24の密波領域34とは同一形状の波形とされ、波形鋼板22の疎波領域30と、波形鋼板24の疎波領域32とは同一形状の波形とされている。
The crease lengths of the oblique sides of the ridge portions 32A (or the ridge portions 32B) and the ridge portions 34A (or the ridge portions 34B) and the projection lengths of the creases of the oblique side portions are substantially equal. On the other hand, the crease length of the top surface part of the mountain is longer in the mountain part 32A (or mountain part 32B) than in the mountain part 34A (or mountain part 34B).
The dense wave region 28 of the corrugated steel plate 22 and the dense wave region 34 of the corrugated steel plate 24 have the same shape, and the sparse wave region 30 of the corrugated steel plate 22 and the sparse wave region 32 of the corrugated steel plate 24 are the same. The shape is a waveform.

波形鋼板22と波形鋼板24とは、密波領域28と疎波領域32及び疎波領域30と密波領域34とが対向するように配置され、波形鋼板22と波形鋼板24との間に粘弾性体36が設けられている。具体的には、図3に示すように、山部28Bと山部32Aとの間に板状の粘弾性体36が挿入され、粘弾性体36が山部28B、32Aの山の頂面部にそれぞれ接着されている。   The corrugated steel plate 22 and the corrugated steel plate 24 are disposed so that the dense wave region 28 and the sparse wave region 32 and the sparse wave region 30 and the dense wave region 34 face each other. An elastic body 36 is provided. Specifically, as shown in FIG. 3, a plate-like viscoelastic body 36 is inserted between the peak portion 28B and the peak portion 32A, and the viscoelastic body 36 is placed on the top surface of the peaks of the peak portions 28B and 32A. Each is glued.

一方、山部28Bと山部32Bとの間には、軽鉄スタッド38が配置されている。軽鉄スタッド38は、リップ溝40を有する断面C型の長手材とされ、リップ溝40を上に向けて配置されている。また、軽鉄スタッド38は、山部32Bの山の頂面部に溶接又はボルト(不図示)等で接合されている。また、軽鉄スタッド38と山部28Bとの間に粘弾性体36が挿入されている。この粘弾性体36は、軽鉄スタッド38の側面及び山部28Bの山の頂面部に接着されている。   On the other hand, a light iron stud 38 is disposed between the mountain portion 28B and the mountain portion 32B. The light iron stud 38 is a longitudinal member having a C-shaped cross section having a lip groove 40 and is arranged with the lip groove 40 facing upward. Further, the light iron stud 38 is joined to the top surface portion of the mountain portion 32B by welding or a bolt (not shown). A viscoelastic body 36 is inserted between the light iron stud 38 and the peak portion 28B. The viscoelastic body 36 is bonded to the side surface of the light iron stud 38 and the top surface portion of the mountain portion 28B.

粘弾性体36の材料としては、ジエン系ゴム、ブチル系ゴム、アクリル系、ウレタンアスファルト系ゴム等が用いられる。なお、上記と同様に、疎波領域30と密波領域34との間にも、粘弾性体36が挿入されている。   As a material of the viscoelastic body 36, diene rubber, butyl rubber, acrylic, urethane asphalt rubber or the like is used. Similar to the above, the viscoelastic body 36 is also inserted between the sparse wave region 30 and the dense wave region 34.

次に、架構20と波形鋼板22、24との接合方法の例について説明する。なお、第1の実施形態における接合方法について説明するが、本接合方法は、全ての実施形態に適用可能である。   Next, an example of a method for joining the frame 20 and the corrugated steel plates 22 and 24 will be described. In addition, although the joining method in 1st Embodiment is demonstrated, this joining method is applicable to all embodiment.

図4に示すように、接合用フレーム枠26には、せん断力伝達要素としてのスタッド42が溶接等によって取り付けられている。そして、架構20の施工時に、柱12、14及び梁16、18の内部にスタッド42を埋め込むことで、架構20と波形鋼板22、24とが一体的に接合される。このため、波形鋼板22、24に作用するせん断力(地震荷重等)がスタッド42を介して、架構20に伝達される。   As shown in FIG. 4, a stud 42 as a shearing force transmitting element is attached to the joining frame 26 by welding or the like. And at the time of construction of the frame 20, the frame 20 and the corrugated steel plates 22 and 24 are integrally joined by embedding the studs 42 inside the columns 12 and 14 and the beams 16 and 18. For this reason, a shearing force (such as an earthquake load) acting on the corrugated steel plates 22 and 24 is transmitted to the frame 20 via the studs 42.

なお、本実施形態では、接合用フレーム枠26にスタッド42を取り付け、このスタッド42を左右の柱12、14及び上下の梁16、18の内部に埋め込んで接合したが、これに限られず、波形鋼板22、24に作用するせん断力を架構20に伝達できれば良い。例えば、柱12、14及び梁16、18の内周部にスタッド42等のせん断力伝達要素を備えた接合用プレートを埋め込み、接合用プレートと波形鋼板22、24に取り付けられた接合用フレーム枠26とをボルト又は溶接によって接合しても良い。更に、柱12、14及び梁16、18にせん断力を伝達可能なナット等のジョイント部材を、柱12、14及び梁16、18の内周部に埋め込み、このジョイント部材に波形鋼板22、24に取り付けられた接合用フレーム枠26を貫通するボルト等をねじ込んで定着させても良い。更に、波形鋼板22、24は、必ずしも柱12、14及び梁16、18の全てに接合する必要はなく、設計強度に応じて柱12、14又は梁16、18と接合しても良い。   In the present embodiment, the stud 42 is attached to the joining frame 26 and the stud 42 is embedded in the left and right columns 12 and 14 and the upper and lower beams 16 and 18 and joined. What is necessary is just to be able to transmit the shearing force acting on the steel plates 22 and 24 to the frame 20. For example, a joining plate having a shearing force transmission element such as a stud 42 embedded in the inner peripheral portions of the columns 12 and 14 and the beams 16 and 18, and a joining frame frame attached to the joining plate and the corrugated steel plates 22 and 24. 26 may be joined by bolts or welding. Further, a joint member such as a nut capable of transmitting a shearing force to the columns 12 and 14 and the beams 16 and 18 is embedded in the inner peripheral portions of the columns 12 and 14 and the beams 16 and 18, and the corrugated steel plates 22 and 24 are embedded in the joint members. A bolt or the like penetrating through the joining frame 26 attached to the screw may be screwed in and fixed. Further, the corrugated steel plates 22 and 24 do not necessarily have to be joined to all the columns 12 and 14 and the beams 16 and 18, and may be joined to the columns 12 and 14 or the beams 16 and 18 according to the design strength.

次に、本発明の第1の実施形態に係る波形鋼板耐震壁の作用及び効果について説明する。図5は、交通振動や風荷重等の外力(せん断力)が作用した場合の波形鋼板耐震壁10を示す概念図である。また、図6(C)は、対向配置された波形鋼板22、24がせん断変形した状態を示す模式図であり、図6(A)、図6(B)は、理解を容易にするために、せん断変形した状態の表裏の波形鋼板22、24を示す模式図である。   Next, operations and effects of the corrugated steel shear wall according to the first embodiment of the present invention will be described. FIG. 5 is a conceptual diagram showing the corrugated steel shear wall 10 when an external force (shearing force) such as traffic vibration or wind load is applied. FIG. 6C is a schematic diagram showing a state in which the corrugated steel plates 22 and 24 arranged opposite to each other are subjected to shear deformation, and FIGS. 6A and 6B are for ease of understanding. It is a schematic diagram which shows the corrugated steel plates 22 and 24 of the front and back of the state which carried out the shear deformation.

図5又は図6に示すように、波形鋼板耐震壁10に外力(せん断力F)が作用すると、波形鋼板22、24がせん断変形を繰り返しながら振動エネルギーを吸収する。ここで、対向して配置された波形鋼板22、24は、並列バネとして各々の全体せん断剛性の比に応じたせん断力F、Fを負担する。即ち、密波領域28、疎波領域30のせん断剛性を合成した波形鋼板22の全体せん断剛性をKとし、疎波領域32、密波領域34のせん断剛性を合成した波形鋼板24の全体せん断剛性をKとすると、波形鋼板22が負担するせん断力Fは、F=F×K/(K+K)となり、波形鋼板24が負担するせん断力Fは、F=F×K/(K+K)となる。 As shown in FIG. 5 or 6, when an external force (shearing force F) is applied to the corrugated steel shear wall 10, the corrugated steel plates 22 and 24 absorb vibration energy while repeating shear deformation. Here, the corrugated steel plates 22 and 24 arranged facing each other bear the shearing forces F A and F B corresponding to the ratio of the overall shear rigidity as parallel springs. That is, dense wave region 28, the entire shear stiffness of corrugated steel 22 obtained by combining the shear stiffness of the sparse wave region 30 and K A, sparse wave region 32, the overall shear corrugated steel 24 obtained by combining the shear stiffness of the dense wave region 34 If the rigidity and K B, the shear force F a that corrugated steel 22 will bear, F a = F × K a / (K a + K B) , and the shear force F B which corrugated steel 24 will bear, F B = F × K B / (K A + K B ).

また、波形鋼板22について見ると、密波領域28と疎波領域30とは、直列バネであるため、密波領域28、疎波領域30にそれぞれせん断力Fが作用し、密波領域28、疎波領域30が各々のせん断剛性に応じてせん断変形する。ここで、波形鋼板のせん断弾性係数G、せん断剛性K、及びせん断変形量δは、一般的にそれぞれ式(1)、式(2)、式(3)によって与えられる。 Also, looking at the corrugated steel 22 and the dense wave region 28 and Utoha region 30, since a series spring, dense wave region 28, respectively shearing force F A sparsely wave region 30 acts, dense wave region 28 The sparse wave region 30 undergoes shear deformation according to each shear rigidity. Here, the shear elastic modulus G w , the shear stiffness K, and the shear deformation amount δ of the corrugated steel sheet are generally given by the equations (1), (2), and (3), respectively.

Figure 0005095492



なお、η:長さ効率(η=(a+c)/(a+b))、a:山の頂面部の折り目長さ、b:斜辺部の折り目長さ、c:斜辺部の折り目の投影長さ、E:波形鋼板のヤング係数、ν:ポアソン比、A:波形鋼板の水平断面積、L:波形鋼板の高さ(せん断高さ)、F:波形鋼板に作用するせん断力である。
Figure 0005095492



Where η is the length efficiency (η = (a + c) / (a + b)), a is the crease length at the top of the mountain, b is the crease length at the hypotenuse, c is the projection length of the crease at the hypotenuse, E 0 : Young's modulus of corrugated steel sheet, ν: Poisson's ratio, A: Horizontal cross-sectional area of corrugated steel sheet, L: Height of corrugated steel sheet (shear height), F 0 : Shear force acting on corrugated steel sheet.

本実施形態では、密波領域28と疎波領域30とは異なる大きさの波形とされ、即ち、山部30A、30Bの山の頂面部の折り目長さが、山部28A、28Bの山の頂面部の折り目長さよりも長いため、疎波領域30の方が密波領域28よりも長さ効率ηが大きい。従って、疎波領域30のせん断弾性係数Gw2が密波領域28のせん断弾性係数Gw1よりも大きくなり(Gw2>Gw1)、疎波領域30のせん断剛性Kが密波領域28のせん断剛性Kよりも大きくなる(K>K)。従って、図6(A)に示すように密波領域28のせん断変形量δ1(=F/K)が、疎波領域30のせん断変形量δ2(=F/K)よりも大きくなる(δ1>δ2)。なお、密波領域28と疎波領域30の斜辺の折り目長さ及び斜辺の折り目の投影長さは等しい。 In the present embodiment, the dense wave region 28 and the sparse wave region 30 have different sized waveforms, that is, the crease lengths of the peak portions of the peaks 30A, 30B are the peaks of the peaks 28A, 28B. Since the fold length of the top surface portion is longer, the sparse wave region 30 has a greater length efficiency η than the dense wave region 28. Accordingly, the shear elastic modulus G w2 of the sparse wave region 30 is larger than the shear elastic modulus G w1 of the dense wave region 28 (G w2 > G w1 ), and the shear stiffness K 2 of the sparse wave region 30 is equal to that of the dense wave region 28. The shear rigidity is greater than K 1 (K 2 > K 1 ). Therefore, as shown in FIG. 6A, the shear deformation amount δ1 (= F A / K 1 ) of the dense wave region 28 is larger than the shear deformation amount δ2 (= F A / K 2 ) of the sparse wave region 30. (Δ1> δ2). It should be noted that the crease length of the oblique side and the projection length of the crease of the oblique side of the dense wave region 28 and the sparse wave region 30 are equal.

波形鋼板22と同様に、波形鋼板24について見ると、疎波領域32と密波領域34とは直列バネであるため、疎波領域32、密波領域34にそれぞれ全体せん断力Fが作用し、疎波領域32、密波領域34が各々のせん断剛性に応じてせん断変形する。波形鋼板24の疎波領域32と密波領域34とは、異なる大きさの波形とされ、即ち、疎波領域32は、密波領域34よりも長さ効率ηが大きく、疎波領域32のせん断剛性Kが密波領域34のせん断剛性Kw4よりも大きくなる(K>K)。そのため、図6(B)に示すように密波領域34のせん断変形量δ4(=F/K)が、疎波領域32のせん断変形量δ3(=F/K)よりも大きくなる(δ4>δ3)。なお、疎波領域32と密波領域34の斜辺の折り目長さ及び斜辺の折り目の投影長さは等しい。 Like the corrugated steel 22, looking at the corrugated steel 24, since the sparse wave region 32 and Mitsuha region 34 in series spring, sparse wave region 32, respectively entire shearing force F B acts on the dense wave region 34 The sparse wave region 32 and the dense wave region 34 are subjected to shear deformation according to their shear rigidity. The sparse wave region 32 and the dense wave region 34 of the corrugated steel plate 24 have different sized waveforms, that is, the sparse wave region 32 has a greater length efficiency η than the dense wave region 34, and shear stiffness K 3 is larger than the shear stiffness K w4 of dense wave region 34 (K 3> K 4) . Therefore, as shown in FIG. 6B, the shear deformation amount δ4 (= F B / K 4 ) of the dense wave region 34 is larger than the shear deformation amount δ3 (= F B / K 3 ) of the sparse wave region 32. (Δ4> δ3). It should be noted that the slant side fold length and the slant side fold projection length of the sparse wave region 32 and the dense wave region 34 are equal.

また、本実施形態では、密波領域28と密波領域34、疎波領域30と疎波領域32が同一形状の波形とされ、且つ、波形鋼板22、24には同じ材質の鋼材が使用されている。そのため、各領域のせん断剛性がK=K、K=Kとなり、波形鋼板22の全体せん断剛性K(=(K×K)/(K+K))と、波形鋼板24の全体せん断剛性K(=(K×K)/(K+K))と、が等しくなる(K=K)。従って、各波形鋼板22、24が負担する全体せん断力F、Fが等しくなり(F=F)、密波領域28のせん断変形量δ1と密波領域34のせん断変形量δ4とが等しく(δ1=δ4)、疎波領域30のせん断変形量δ2と疎波領域32のせん断変形量δ3とが等しくなる(δ2=δ3)。 Further, in the present embodiment, the dense wave region 28 and the dense wave region 34, the sparse wave region 30 and the sparse wave region 32 have the same waveform, and the corrugated steel plates 22 and 24 are made of the same steel material. ing. Therefore, the shear stiffness of each region is K 1 = K 4 , K 2 = K 3 , and the overall shear stiffness K A (= (K 1 × K 2 ) / (K 1 + K 2 )) of the corrugated steel plate 22 is corrugated. The total shear rigidity K B (= (K 3 × K 4 ) / (K 3 + K 4 )) of the steel plate 24 becomes equal (K A = K B ). Accordingly, the total shear forces F A and F B borne by the corrugated steel plates 22 and 24 are equal (F A = F B ), and the shear deformation amount δ1 of the dense wave region 28 and the shear deformation amount δ4 of the dense wave region 34 Are equal (δ1 = δ4), and the shear deformation amount δ2 of the sparse wave region 30 is equal to the shear deformation amount δ3 of the sparse wave region 32 (δ2 = δ3).

よって、対向する密波領域28、疎波領域32のせん断変形量δ1、δ3(δ1>δ3)に差が生じると共に、対向する疎波領域30、密波領域34のせん断変形量δ2、δ4(δ2<δ4)に差が生じる。この結果、図6(C)に示すように、波形鋼板22と波形鋼板24との間に相対変形(矢印M)が生じ、波形鋼板22と波形鋼板24との間に設けられた粘弾性体36(図2参照)が水平方向にせん断変形する。そのため、粘弾性体36において、振動エネルギーが熱エネルギーに変換され、振動が低減される。このように波形鋼板22、24の剛性を高めるのではなく、粘弾性体36で減衰を付与することにより、波形鋼板耐震壁10の耐震性能(変形性能)を維持しつつ、交通振動や風荷重等の微振動を低減できる。   Therefore, there is a difference between the shear deformation amounts δ1 and δ3 (δ1> δ3) of the opposing dense wave region 28 and the sparse wave region 32, and the shear deformation amounts δ2 and δ4 ( A difference occurs in δ2 <δ4). As a result, as shown in FIG. 6C, relative deformation (arrow M) occurs between the corrugated steel plate 22 and the corrugated steel plate 24, and the viscoelastic body provided between the corrugated steel plate 22 and the corrugated steel plate 24. 36 (see FIG. 2) undergoes shear deformation in the horizontal direction. Therefore, in the viscoelastic body 36, vibration energy is converted into heat energy, and vibration is reduced. In this way, rather than increasing the rigidity of the corrugated steel plates 22 and 24, by applying damping with the viscoelastic body 36, while maintaining the seismic performance (deformation performance) of the corrugated steel shear wall 10, traffic vibration and wind load And so on.

また、本実施形態では、密波領域28と疎波領域30との境界、及び疎波領域32と密波領域34との境界が架構20の構面の中央付近に位置している。そのため、架構20の構面の中央付近で、対向する波形鋼板22、24のせん断変形量の差が最大となる。従って、波形鋼板22、24の中央付近に粘弾性体36を集中的に配置することで、振動低減効率を向上させることができる。また、粘弾性体36のコスト削減、施工性向上等の観点から、粘弾性体36を部分的に設ける場合には、図7に示すように、波形鋼板22、24の中央付近に粘弾性体36を配置することが適している。   In the present embodiment, the boundary between the dense wave region 28 and the sparse wave region 30 and the boundary between the sparse wave region 32 and the dense wave region 34 are located near the center of the frame 20. Therefore, the difference in the amount of shear deformation between the corrugated steel plates 22 and 24 facing each other is maximized near the center of the surface of the frame 20. Therefore, the vibration reduction efficiency can be improved by intensively arranging the viscoelastic body 36 near the center of the corrugated steel plates 22 and 24. Further, in the case where the viscoelastic body 36 is partially provided from the viewpoints of cost reduction of the viscoelastic body 36 and improvement of workability, the viscoelastic body is provided near the center of the corrugated steel plates 22 and 24 as shown in FIG. It is suitable to arrange 36.

ここで、波形鋼板22と波形鋼板24との間に相対変形を生じさせるためには、δ2≠δ4となるように波形鋼板22、24を設計すれば良い。これを一般化すると、せん断変形量δ2、δ4は、式(4)、式(5)で与えられることから、K≠Kを満たせば良いことがわかる。そのため、密波領域28、疎波領域30のせん断剛性比(K/K)と、疎波領域32、密波領域34のせん断剛性比(K/K)が異なるように各領域の長さ効率ηを調整することで、波形鋼板22と波形鋼板24の間に相対変形を生じさせることができる。 Here, in order to cause relative deformation between the corrugated steel sheet 22 and the corrugated steel sheet 24, the corrugated steel sheets 22 and 24 may be designed so that δ2 ≠ δ4. If this is generalized, the shear deformation amounts δ2 and δ4 are given by the equations (4) and (5), so that it is understood that K 1 K 4 ≠ K 2 K 3 should be satisfied. Therefore, the shear stiffness ratio (K 1 / K 2 ) of the dense wave region 28 and the sparse wave region 30 is different from the shear stiffness ratio (K 3 / K 4 ) of the sparse wave region 32 and the dense wave region 34. It is possible to cause relative deformation between the corrugated steel sheet 22 and the corrugated steel sheet 24 by adjusting the length efficiency η.

Figure 0005095492
Figure 0005095492


例えば、図8に示すように、疎波領域30、32を平板状の鋼板で構成しても良い。この場合、疎波領域30、32の長さ効率がη=1となる。よって、疎波領域30のせん断剛性Kが密波領域28のせん断剛性Kよりも大きくなり(K<K)、疎波領域32のせん断剛性Kが密波領域34のせん断剛性Kよりも大きくなる(K>K)。また、K≠Kを満たすため、対向する波形鋼板22、24の間に相対変形が生じる。 For example, as shown in FIG. 8, the sparse wave regions 30 and 32 may be formed of flat steel plates. In this case, the length efficiency of the sparse wave regions 30 and 32 is η = 1. Therefore, the shear stiffness K 2 of the sparse wave region 30 is larger than the shear stiffness K 1 of the dense wave region 28 (K 1 <K 2 ), and the shear stiffness K 3 of the sparse wave region 32 is the shear stiffness of the dense wave region 34. It becomes larger than K 4 (K 3 > K 4 ). Further, in order to satisfy K 1 K 4 ≠ K 2 K 3 , relative deformation occurs between the corrugated steel plates 22 and 24 facing each other.

なお、波形鋼板は、長さ効率ηがη=1に近づくに従って、即ち、波の形状が平板に近づくに従って波形鋼板のせん断座屈強度・耐力が小さくなる。従って、疎波領域30、32には、補剛リブ等を溶接等するなどしてせん断座屈を防止することが望ましい。この場合、補剛リブ等によって疎波領域30、32のせん断剛性が大きくなるため、対向する波形鋼板22、24の間の相対変形量が更に大きくなり、振動低減効果が向上する。なお、本発明では、図8に示すように、少なくとも一部の領域が波形に加工された鋼板を波形鋼板という。   In the corrugated steel sheet, the shear buckling strength / proof strength of the corrugated steel sheet decreases as the length efficiency η approaches η = 1, that is, as the wave shape approaches the flat plate. Therefore, it is desirable to prevent the shear buckling in the sparse wave regions 30 and 32 by welding a stiffening rib or the like. In this case, since the shear rigidity of the sparse wave regions 30 and 32 is increased by the stiffening ribs or the like, the relative deformation amount between the corrugated steel plates 22 and 24 facing each other is further increased, and the vibration reduction effect is improved. In the present invention, as shown in FIG. 8, a steel plate in which at least a part of the region is processed into a corrugated shape is referred to as a corrugated steel plate.

また、図9に示すように、対向する波形鋼板22、24のうち、波形鋼板22にのみ波形の形状が異なる密波領域28、疎波領域30を設けても良い。この場合、波形鋼板24に、波形の形状が同じ2つの密波領域34があるものと見なすと、波形鋼板22の密波領域28、疎波領域30のせん断剛性比(K/K)と、波形鋼板24の2つの密波領域34のせん断剛性比(K/K)が異なるため、対向する波形鋼板22、24の間に相対変形が生じる。このように、対向する波形鋼板22又は波形鋼板24の少なくも一方に波形の形状が異なる領域を複数設けることで、対向する波形鋼板22、24の間に相対変形を生じさせることができる。 Moreover, as shown in FIG. 9, you may provide the dense wave area | region 28 and the sparse wave area | region 30 from which the waveform shape differs only in the corrugated steel plate 22 among the corrugated steel plates 22 and 24 which oppose. In this case, assuming that the corrugated steel sheet 24 has two dense wave regions 34 having the same corrugated shape, the shear stiffness ratio (K 1 / K 2 ) of the dense wave region 28 and the sparse wave region 30 of the corrugated steel plate 22. Since the shear stiffness ratio (K 4 / K 4 ) of the two dense wave regions 34 of the corrugated steel sheet 24 is different, relative deformation occurs between the corrugated steel sheets 22 and 24 facing each other. As described above, by providing a plurality of regions having different corrugated shapes on at least one of the corrugated steel plates 22 or the corrugated steel plates 24, it is possible to cause relative deformation between the corrugated steel plates 22 and 24 facing each other.

更に、密波領域28と疎波領域30の境界又は疎波領域32と密波領域34の境界は、架構20の構面の中央部に限らない。例えば、図10(A)又は図10(B)に示すように、密波領域28、疎波領域30の境界と疎波領域32、密波領域34の境界を上下方向にずらして、密波領域28と密波領域34とが部分的に対向するように波形鋼板22、24を配置しても良い。図10(A)に示す構成では、密波領域28と密波領域34とが、架構20の構面の中央付近において部分的に対向している。また、図10(B)に示す構成では、密波領域28と密波領域34とが対向する部分において、密波領域34を左右に反転させ、密波領域28に密波領域34を重ね合せている。   Furthermore, the boundary between the dense wave region 28 and the sparse wave region 30 or the boundary between the sparse wave region 32 and the dense wave region 34 is not limited to the central portion of the frame 20. For example, as shown in FIG. 10A or FIG. 10B, the boundary between the dense wave region 28 and the sparse wave region 30 and the boundary between the sparse wave region 32 and the dense wave region 34 are shifted in the vertical direction to The corrugated steel plates 22 and 24 may be disposed so that the region 28 and the dense wave region 34 partially face each other. In the configuration shown in FIG. 10A, the dense wave region 28 and the dense wave region 34 partially oppose each other in the vicinity of the center of the construction surface of the frame 20. In the configuration shown in FIG. 10B, the dense wave region 34 is reversed left and right at the portion where the dense wave region 28 and the dense wave region 34 face each other, and the dense wave region 34 is superimposed on the dense wave region 28. ing.

この場合、対向する波形鋼板22と波形鋼板24との相対変形量は、密波領域28と疎波領域30の境界又は疎波領域32と密波領域34の境界で最大となるため、当該境界部に粘弾性体36を設けることが好ましい。当然、粘弾性体は全面に設ける必要はない。   In this case, since the relative deformation amount of the corrugated steel plate 22 and the corrugated steel plate 24 facing each other is the maximum at the boundary between the dense wave region 28 and the sparse wave region 30 or the boundary between the sparse wave region 32 and the dense wave region 34, It is preferable to provide the viscoelastic body 36 at the part. Of course, the viscoelastic body need not be provided on the entire surface.

更に、図11に示すように、3枚の波形鋼板を対向して配置しても良い。この場合、左右に配置された2つの波形鋼板22と、2つの波形鋼板22で挟まれた波形鋼板24との間に相対変形がそれぞれ生じる。   Further, as shown in FIG. 11, three corrugated steel plates may be arranged to face each other. In this case, relative deformation occurs between the two corrugated steel plates 22 arranged on the left and right and the corrugated steel plates 24 sandwiched between the two corrugated steel plates 22.

次に、波形鋼板22、24にそれぞれ3つの領域を設けた第1の実施形態の変形例について説明する。   Next, a modified example of the first embodiment in which the corrugated steel plates 22 and 24 are each provided with three regions will be described.

図12に示すように、波形鋼板22は、3つの領域を上下方向に有し、上部及び下部に、波形の形状が密な密波領域52、56が設けられ、密波領域52と密波領域56との間に、平板状の疎波領域54が設けられている。一方、波形鋼板22に対向する波形鋼板24は、3つの領域を上下方向に有し、上部及び下部に、平板状の疎波領域58、62が設けられ、疎波領域58と疎波領域62との間に、波形の形状が密な密波領域60が設けられている。また、波形鋼板22と波形鋼板24との間には、粘弾性体36が挿入されている。なお、密波領域52、56、60は、同一形状の波形とされている。   As shown in FIG. 12, the corrugated steel sheet 22 has three regions in the vertical direction, and the upper and lower portions are provided with the dense wave regions 52 and 56 having a dense corrugated shape. A flat sparse wave region 54 is provided between the region 56. On the other hand, the corrugated steel sheet 24 opposed to the corrugated steel sheet 22 has three regions in the vertical direction, and plate-like sparse wave regions 58 and 62 are provided in the upper and lower parts. Between the two, a dense wave region 60 having a dense waveform shape is provided. A viscoelastic body 36 is inserted between the corrugated steel plate 22 and the corrugated steel plate 24. The dense wave regions 52, 56 and 60 have the same waveform.

ここで、波形鋼板22の密波領域52、疎波領域54、密波領域56のせん断剛性をK、K、Kとし、波形鋼板24の疎波領域58、密波領域60、疎波領域62のせん断剛性をK、K、Kとし、また、波形鋼板22の密波領域52、疎波領域54、密波領域56のせん断変形量をδ1、δ2、δ3とし、波形鋼板24の疎波領域58、密波領域60、疎波領域62のせん断変形量をδ4、δ5、δ6とすると、δ3≠δ6、又は(δ2+δ3)≠(δ5+δ6)を満たすことで、対向する波形鋼板22、24の間に相対変形が生じる。 Here, the shear stiffness of the corrugated steel sheet 22, the sparse wave area 54, and the dense wave area 56 is K 1 , K 2 , K 3, and the sparse wave area 58, dense wave area 60, sparse of the corrugated steel sheet 24. The shear stiffness of the wave region 62 is K 4 , K 5 , K 6, and the shear deformation amounts of the dense wave region 52, the sparse wave region 54, and the dense wave region 56 of the corrugated steel plate 22 are δ 1, δ 2, δ 3, When the shear deformation amounts of the sparse wave region 58, the dense wave region 60, and the sparse wave region 62 of the steel plate 24 are δ4, δ5, and δ6, when δ3 ≠ δ6 or (δ2 + δ3) ≠ (δ5 + δ6) is satisfied, opposing waveforms are obtained. Relative deformation occurs between the steel plates 22 and 24.

この場合、密波領域52と疎波領域54とを一つの合成領域と見なし、また、疎波領域58と密波領域60とを一つの合成領域と見なすと、δ3≠δ6となるための条件は、上述の通り、K12≠K45(条件1)となる。なお、K12は、せん断剛性K、Kを合成したものであり、K45は、せん断剛性K、Kを合成したものである。 In this case, if the dense wave region 52 and the sparse wave region 54 are regarded as one synthesis region, and if the sparse wave region 58 and the dense wave region 60 are regarded as one synthesis region, the condition for δ3 ≠ δ6 is satisfied. As described above, K 12 K 6 ≠ K 45 K 3 (Condition 1). K 12 is a combination of shear rigidity K 1 and K 2 , and K 45 is a combination of shear rigidity K 4 and K 5 .

同様に、(δ2+δ3)≠(δ5+δ6)となるための条件は、疎波領域54と密波領域56とを一つの合成領域と見なし、密波領域60と疎波領域62とを一つの合成領域と見なすと、K56≠K23(条件2)となる。なお、K23は、せん断剛性K、Kを合成したものであり、K56は、せん断剛性K、Kを合成したものである。 Similarly, the condition for (δ2 + δ3) ≠ (δ5 + δ6) is that the sparse wave region 54 and the dense wave region 56 are regarded as one synthesis region, and the dense wave region 60 and the sparse wave region 62 are regarded as one synthesis region. In this case, K 1 K 56 ≠ K 23 K 4 (condition 2). K 23 is a combination of shear rigidity K 2 and K 3 , and K 56 is a combination of shear rigidity K 5 and K 6 .

従って、条件1又は条件2を満たすように設計することで、対向する波形鋼板22、24の間に相対変形が生じる。即ち、波形鋼板22に、せん断剛性が異なる領域が3つ以上ある場合は、いずれかの領域境界で波形鋼板22を2つの領域に分けて算出した上下の領域のせん断剛性比と、当該領域境界と同じ位置(高さ)で、波形鋼板24を2つの領域に分けて算出した上下の領域のせん断剛性比と、が異なるように設計することで、対向する波形鋼板22、24の間に相対変形を生じさせることができる。   Therefore, by designing to satisfy the condition 1 or the condition 2, relative deformation occurs between the corrugated steel plates 22 and 24 facing each other. That is, when the corrugated steel sheet 22 has three or more regions having different shear stiffnesses, the shear stiffness ratio between the upper and lower regions calculated by dividing the corrugated steel plate 22 into two regions at any region boundary, and the region boundary Is designed so that the shear rigidity ratio of the upper and lower regions calculated by dividing the corrugated steel sheet 24 into two regions at the same position (height) is different between the corrugated steel plates 22 and 24 facing each other. Deformation can occur.

なお、本変形例では、密波領域52、56、60が同一形状の波形とされているためK=K=K、K=K=Kとなり、また、K<Kであることから、条件1及び条件2を満たし、対向する波形鋼板22、24の間に相対変形が生じる。 In this modification, the dense wave regions 52, 56, and 60 have the same shape, so that K 1 = K 3 = K 5 , K 2 = K 4 = K 6 , and K 1 <K since it is 2, it satisfies the condition 1 and condition 2, the relative deformation between the opposing corrugated steel 22,24 occurs.

また、本変形例では、波形鋼板22、24に、それぞれ3つの領域を設けたが、これに限らず3つ以上の領域を設けても良い。また、波形鋼板22の領域の数と波形鋼板24の領域の数とが異なっていても良く、例えば、波形鋼板22に3つの領域を設け、波形鋼板22に2つの領域を設けても良い。この場合、上記したように、いずれかの領域境界で波形鋼板22を2つの領域に分けて算出した上下の領域のせん断剛性比と、当該領域境界と同じ位置(高さ)で、波形鋼板24を2つの領域に分けて算出した上下の領域のせん断剛性比と、が異なるように設計することで、対向する波形鋼板22、24の間に相対変形を生じさせることができる。 Moreover, in this modification, although the three area | regions were each provided in the corrugated steel plates 22 and 24, you may provide not only this but three or more area | regions. Further, the number of regions of the corrugated steel plate 22 and the number of regions of the corrugated steel plate 24 may be different. For example, three regions may be provided in the corrugated steel plate 22 and two regions may be provided in the corrugated steel plate 22. In this case, as described above, the corrugated steel sheet 24 is calculated with the shear rigidity ratio of the upper and lower areas calculated by dividing the corrugated steel sheet 22 into two areas at any area boundary and the same position (height) as the area boundary. By design so that the shear stiffness ratio of the upper and lower regions calculated by dividing the two into two regions is different, relative deformation can be caused between the corrugated steel plates 22 and 24 facing each other.

次に、波形鋼板22、24を上下の梁16、18にのみ接合して構成した第1の実施形態の変形例について説明する。図13は、波形鋼板耐震壁10を示す正面図である。   Next, a modification of the first embodiment in which the corrugated steel plates 22 and 24 are joined only to the upper and lower beams 16 and 18 will be described. FIG. 13 is a front view showing the corrugated steel shear wall 10.

図13に示すように波形鋼板22、24(波形鋼板24は不図示)は、上下の梁16、18にのみ接合され、各波形鋼板22、24と柱12又は柱14との間に、それぞれ開口44、46が形成されている。このように、各波形鋼板22、24を上下の梁16、18にのみ接合することで、各波形鋼板22、24が柱12又は柱14に拘束されない。従って、各波形鋼板22、24を左右の柱12、14に接合する場合と比較して、各波形鋼板22、24のせん断変形量が大きくなり、対向する波形鋼板22、24に相対変形が生じ易くなる。そのため、粘弾性体36のせん断変形量が大きくなり、粘弾性体36による振動エネルギーの吸収効率が向上し、振動低減効果が向上する。   As shown in FIG. 13, the corrugated steel plates 22 and 24 (the corrugated steel plate 24 is not shown) are joined only to the upper and lower beams 16 and 18, and between the corrugated steel plates 22 and 24 and the column 12 or the column 14, respectively. Openings 44 and 46 are formed. In this way, the corrugated steel plates 22 and 24 are not constrained to the columns 12 or 14 by joining the corrugated steel plates 22 and 24 only to the upper and lower beams 16 and 18. Therefore, compared to the case where the corrugated steel plates 22 and 24 are joined to the left and right columns 12 and 14, the shear deformation amount of the corrugated steel plates 22 and 24 is increased, and relative deformation occurs in the corrugated steel plates 22 and 24 facing each other. It becomes easy. Therefore, the shear deformation amount of the viscoelastic body 36 is increased, the vibration energy absorption efficiency by the viscoelastic body 36 is improved, and the vibration reduction effect is improved.

更に、開口44、46を設けることで、波形鋼板22、24に貫通孔を空けずに設備回線・配管等を通すことができるため、波形鋼板耐震壁10の設計自由度が向上する。なお、必ずしも2つの開口44、46を設ける必要はなく、開口は一つでも良い。また、開口44、46を設けた場合は、波形鋼板22、24が負担するせん断力による鉛直分力が、左右の接合用フレーム枠26を介して上下の梁16、18に集中して作用するため、上下の梁16、18にせん断補強を施すことが望ましい。   Furthermore, by providing the openings 44 and 46, it is possible to pass the equipment line / pipe or the like without making a through hole in the corrugated steel plates 22 and 24, so that the degree of freedom in designing the corrugated steel earthquake resistant wall 10 is improved. The two openings 44 and 46 are not necessarily provided, and one opening may be provided. Further, when the openings 44 and 46 are provided, the vertical component force due to the shearing force borne by the corrugated steel plates 22 and 24 is concentrated on the upper and lower beams 16 and 18 via the left and right joining frame frames 26. Therefore, it is desirable to apply shear reinforcement to the upper and lower beams 16 and 18.

また、本実施形態では、異なる形状の波形、即ち、長さ効率ηを変えることで、せん断剛性が異なる領域を設けたがこれに限らない。例えば、板厚を変えたり、せん断弾性係数が異なる鋼材を用いて、せん断剛性が異なる領域を上下方向に設けても良い。更に、普通鋼と低降伏点鋼のように、降伏点が異なる鋼材からなる領域を上下方向に設けても良い。具体的には、波形鋼板22の上部の領域を低降伏点鋼で構成し、下部の領域を普通鋼で構成する。波形鋼板22とは逆に、波形鋼板24は、上部の領域を普通鋼で構成し、下部の領域を低降伏点鋼で構成する。そして、普通鋼の領域と低降伏点鋼の領域とが対向するように、波形鋼板22、24を配置する。このとき、各波形鋼板22が負担するせん断力を考慮して、対向する普通鋼の領域の降伏開始時期と低降伏点鋼の領域の降伏開始時期とが異なるように鋼材を選択する。このように構成された波形鋼板22、24にせん断力が作用すると、低降伏点鋼の領域が早期に降伏して塑性変形するため、対向する普通鋼の領域(弾性変形)よりもせん断変形量が大きくなる。そのため、対向する波形鋼板22、24の間に相対変形が生じて、粘弾性体により振動を吸収することができる。なお、降伏開始時期とは、せん断力が作用した場合に、鋼板が降伏して弾性域から塑性域に移る時期である。   In the present embodiment, regions having different shear rigidity are provided by changing the waveform having different shapes, that is, the length efficiency η, but the present invention is not limited thereto. For example, regions having different shear rigidity may be provided in the vertical direction by changing the plate thickness or using steel materials having different shear elastic coefficients. Furthermore, you may provide the area | region which consists of steel materials from which a yield point differs like a normal steel and a low yield point steel in an up-down direction. Specifically, the upper region of the corrugated steel plate 22 is made of low yield point steel, and the lower region is made of ordinary steel. Contrary to the corrugated steel plate 22, the corrugated steel plate 24 is composed of ordinary steel in the upper region and low yield point steel in the lower region. And the corrugated steel plates 22 and 24 are arrange | positioned so that the area | region of a normal steel and the area | region of a low yield point steel may oppose. At this time, in consideration of the shearing force borne by each corrugated steel plate 22, the steel material is selected so that the yield start time in the opposing plain steel region and the yield start time in the low yield point steel region are different. When a shearing force is applied to the corrugated steel plates 22 and 24 configured in this way, the low yield point steel region yields early and undergoes plastic deformation, so that the amount of shear deformation is greater than the opposing plain steel region (elastic deformation). Becomes larger. Therefore, relative deformation occurs between the corrugated steel plates 22 and 24 facing each other, and vibration can be absorbed by the viscoelastic body. The yield start time is the time when the steel sheet yields and moves from the elastic region to the plastic region when a shearing force is applied.

次に、本発明の第2の実施形態に係る波形鋼板耐震壁について説明する。図14(A)は、波形鋼板耐震壁64の断面の略図である。なお、第1の実施形態と同じ構成のものは、同符号を付すると共に、適宜省略して説明する。   Next, the corrugated steel shear wall according to the second embodiment of the present invention will be described. FIG. 14A is a schematic diagram of a cross section of a corrugated steel earthquake resistant wall 64. In addition, the thing of the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

第2の実施形態は、図8に示す構成に替えて、対向する波形鋼板22、24をボルト66及びナット68で接合する。図14(A)に示すように、密波領域28の山部28B、当該山部28Bに対向する疎波領域32、及び山部28Bと疎波領域32との間に挿入された粘弾性体36には、ボルト66が貫通するボルト孔70、72、74が形成されている。そして、波形鋼板22の面外方向からボルト66が、ボルト孔70、72、74を貫通してナット68にねじ込まれ、波形鋼板22と波形鋼板24とが接合されている。   In the second embodiment, instead of the configuration shown in FIG. 8, the corrugated steel plates 22 and 24 facing each other are joined by bolts 66 and nuts 68. As shown in FIG. 14A, the peak portion 28B of the dense wave region 28, the sparse wave region 32 facing the ridge portion 28B, and the viscoelastic body inserted between the peak portion 28B and the sparse wave region 32. 36 is formed with bolt holes 70, 72, 74 through which the bolt 66 passes. Then, the bolt 66 passes through the bolt holes 70, 72, 74 and is screwed into the nut 68 from the out-of-plane direction of the corrugated steel plate 22, and the corrugated steel plate 22 and the corrugated steel plate 24 are joined.

同様に、疎波領域30、当該疎波領域30に対向する密波領域34の山部34A、及び疎波領域30と山部34Aとの間に挿入された粘弾性体36には、ボルト66が貫通するボルト孔70、72、74が形成されている。そして、波形鋼板22の面外方向からボルト66が、ボルト孔70、72、74を貫通してナット68にねじ込まれ、波形鋼板22と波形鋼板24とが接合されている。   Similarly, bolts 66 are provided in the sparse wave region 30, the peak portion 34A of the dense wave region 34 facing the sparse wave region 30, and the viscoelastic body 36 inserted between the sparse wave region 30 and the peak portion 34A. Bolt holes 70, 72, 74 through which are inserted are formed. Then, the bolt 66 passes through the bolt holes 70, 72, 74 and is screwed into the nut 68 from the out-of-plane direction of the corrugated steel plate 22, and the corrugated steel plate 22 and the corrugated steel plate 24 are joined.

また、波形鋼板22に形成されたボルト孔70は、図15に示すように、水平方向に延びた長円状とされている。そのため、ボルト孔70の長手方向(矢印A)に沿ってボルト66が移動可能となっている。即ち、波形鋼板22と波形鋼板24とは、ボルト66及びナット68によって面外方向に一体化されているが、ボルト孔70によって水平方向に縁切りされ、ボルト孔70が許容する範囲内で、各波形鋼板22、24が独立して水平方向に変位可能となっている。   Moreover, the bolt hole 70 formed in the corrugated steel plate 22 has an elliptical shape extending in the horizontal direction as shown in FIG. Therefore, the bolt 66 can move along the longitudinal direction (arrow A) of the bolt hole 70. That is, the corrugated steel plate 22 and the corrugated steel plate 24 are integrated in the out-of-plane direction by bolts 66 and nuts 68, but are edged in the horizontal direction by the bolt holes 70. The corrugated steel plates 22 and 24 can be displaced in the horizontal direction independently.

次に、本発明の第2の実施形態に係る波形鋼板耐震壁の作用及び効果について説明する。   Next, the operation and effect of the corrugated steel shear wall according to the second embodiment of the present invention will be described.

図14(A)に示すように、波形鋼板耐震壁64に外力(せん断力)が作用すると、各波形鋼板22、24がせん断変形を繰り返しながら振動エネルギーを吸収する。このような場合、各波形鋼板22、24が面外方向(矢印B)にはらみ出す恐れがある。しかし、対向する波形鋼板22、24がボルト66及びナット68により面外方向に一体化されているため、面外方向の変形に対して各波形鋼板22、24が協同して抵抗する。そのため、波形鋼板22、24の面外方向の剛性(曲げ剛性)が大きくなり、各波形鋼板22、24が面外方向にはらみ出すせん断座屈が防止される。   As shown in FIG. 14A, when an external force (shearing force) is applied to the corrugated steel shear wall 64, each corrugated steel plate 22, 24 absorbs vibration energy while repeating shear deformation. In such a case, the corrugated steel plates 22 and 24 may protrude in the out-of-plane direction (arrow B). However, since the corrugated steel plates 22 and 24 facing each other are integrated in the out-of-plane direction by the bolts 66 and nuts 68, the corrugated steel plates 22 and 24 cooperate to resist deformation in the out-of-plane direction. Therefore, the out-of-plane rigidity (bending rigidity) of the corrugated steel sheets 22 and 24 is increased, and shear buckling in which the corrugated steel sheets 22 and 24 protrude in the out-of-plane direction is prevented.

一方、波形鋼板22に形成されたボルト孔70は、水平方向に延びた長円状とされ、即ち、各波形鋼板22、24が水平方向に縁切りされ、ボルト孔70が許容する範囲内で、各波形鋼板22、24が独立して水平方向に変位可能となっている。そのため、対向する波形鋼板22、24の間に相対変形が生じ、波形鋼板22と波形鋼板24との間に設けられた粘弾性体36が水平方向にせん断変形する。従って、粘弾性体36において振動エネルギーが吸収され、振動が低減される。   On the other hand, the bolt hole 70 formed in the corrugated steel plate 22 has an oval shape extending in the horizontal direction, that is, the corrugated steel plates 22 and 24 are horizontally cut and within the range allowed by the bolt hole 70. Each of the corrugated steel plates 22 and 24 can be independently displaced in the horizontal direction. Therefore, relative deformation occurs between the corrugated steel plates 22 and 24 facing each other, and the viscoelastic body 36 provided between the corrugated steel plate 22 and the corrugated steel plate 24 undergoes shear deformation in the horizontal direction. Accordingly, vibration energy is absorbed by the viscoelastic body 36, and vibration is reduced.

なお、本実施形態では、山部28Bと疎波領域32又は疎波領域30と山部34Aとを、ボルト66及びナット68で接合したがこれに限らない。例えば、図14(B)に示すように、密波領域28の山部28Aと、疎波領域32との間に形成された空間76、又は疎波領域30と、密波領域34の山部34Bとの間に形成された空間78に長ナット80を配置し、各波形鋼板22、24の面外方向から長ナット80の両端部にボルト66をねじ込んで接合しても良い。このように、山部28Aと疎波領域32又は疎波領域30と山部34Bとを長ナット80で連結することで、山部28A、34B又は疎波領域30、34が局部的に湾曲するせん断座屈を防止することができる。   In this embodiment, the peak portion 28B and the sparse wave region 32 or the sparse wave region 30 and the peak portion 34A are joined by the bolt 66 and the nut 68, but the present invention is not limited to this. For example, as shown in FIG. 14B, a space 76 formed between the peak portion 28 </ b> A of the dense wave region 28 and the sparse wave region 32, or the ridge portion of the sparse wave region 30 and the dense wave region 34. A long nut 80 may be disposed in a space 78 formed between the long nut 80 and the bolts 66 at both ends of the corrugated steel plates 22 and 24 from both sides of the corrugated steel plate. In this way, by connecting the peak portion 28A and the sparse wave region 32 or the sparse wave region 30 and the peak portion 34B with the long nut 80, the ridge portions 28A and 34B or the sparse wave regions 30 and 34 are locally bent. Shear buckling can be prevented.

また、波形鋼板22に設けたボルト孔70のみを長円状に形成したが、波形鋼板24に形成したボルト孔72を水平方向に延びた長円状に形成して良い。即ち、ボルト孔70及びボルト孔72の少なくとも一方が水平方向に延びた長円状に形成されていれば良い。また、波形鋼板22、24は、鉛直方向の剛性が低く、鉛直方向にアコーディオンのように伸縮するため、ボルト孔70又はボルト孔72の鉛直方向の径を大きくして、ボルト66の鉛直方向に変位可能とすることが好ましい。更に、ボルト60等による接合部の位置や数は、上記したものに限らず、設計強度、剛性に応じて適宜変更すれば良い。   Moreover, although only the bolt hole 70 provided in the corrugated steel plate 22 is formed in an oval shape, the bolt hole 72 formed in the corrugated steel plate 24 may be formed in an oval shape extending in the horizontal direction. That is, it is sufficient that at least one of the bolt hole 70 and the bolt hole 72 is formed in an oval shape extending in the horizontal direction. Further, since the corrugated steel plates 22 and 24 have low vertical rigidity and expand and contract like an accordion in the vertical direction, the vertical diameter of the bolt hole 70 or the bolt hole 72 is increased and It is preferable to be displaceable. Furthermore, the position and number of joints by bolts 60 and the like are not limited to those described above, and may be changed as appropriate according to design strength and rigidity.

なお、上記全ての実施形態において、粘弾性体36は、必要に応じて対向する波形鋼板22、24の間に設ければ良く、対向する波形鋼板22、24の相対変形量が大きいところに設けるのが好ましい。また、板状の粘弾性体36ではなく、主材と硬化剤とからなる粘弾性体を現場で混合し、対向する波形鋼板22、24の間に充填しても良い。   In all the embodiments described above, the viscoelastic body 36 may be provided between the corrugated steel plates 22 and 24 facing each other as necessary, and is provided where the opposing corrugated steel plates 22 and 24 have a large relative deformation amount. Is preferred. Further, instead of the plate-like viscoelastic body 36, a viscoelastic body made of a main material and a curing agent may be mixed on site and filled between the corrugated steel plates 22 and 24 facing each other.

また、柱12、14及び梁16、18から構成された架構20の構面に波形鋼板22、24を配置した場合の例について説明したがこれに限らず、例えば、梁16、18に替えてコンクリートスラブ又は小梁等であっても良い。更に、柱12、14及び梁16、18は、鉄筋コンクリート造に限られず、鉄骨鉄筋コンクリート造、プレストレスコンクリート造、鉄骨造、更には現場打ち工法であっても、プレキャスト工法によるものであっても良い。   Moreover, although the example at the time of arrange | positioning the corrugated steel plates 22 and 24 on the construction surface of the frame 20 comprised from the pillars 12 and 14 and the beams 16 and 18 was demonstrated, it is not restricted to this, For example, it replaces with the beams 16 and 18 It may be a concrete slab or a small beam. Furthermore, the columns 12 and 14 and the beams 16 and 18 are not limited to reinforced concrete structures, but may be steel reinforced concrete structures, prestressed concrete structures, steel frame structures, or on-site methods, or precast methods. .

また、各波形鋼板22、24は、図16(A)〜(D)に示すような断面形状をした波形鋼板を用いても良い。更に、波形鋼板22、24は、波形の折り筋の向きを水平方向として架構20に配置したがこれに限らず、折り筋の向きを鉛直方向として架構20に配置しても良い。このように配置しても波形鋼板耐震壁に特有の変形性能に影響はなく、優れた耐震性能は確保される。   Further, the corrugated steel plates 22 and 24 may be corrugated steel plates having a cross-sectional shape as shown in FIGS. Furthermore, although the corrugated steel plates 22 and 24 are arranged on the frame 20 with the direction of the corrugated crease being horizontal, the present invention is not limited thereto, and the direction of the crease may be arranged on the frame 20 with the vertical direction. Even if it arrange | positions in this way, there is no influence on the deformation | transformation performance peculiar to a corrugated steel shear wall, and the outstanding seismic performance is ensured.

以上、本発明の第1、2の実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1、第2の実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first and second embodiments of the present invention have been described above. However, the present invention is not limited to such an embodiment, and the first and second embodiments may be used in combination. Needless to say, the present invention can be implemented in various forms without departing from the gist of the invention.

本発明の第1の実施形態に係る波形鋼板耐震壁を示す、正面図である。It is a front view which shows the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁を示す、図1の1−1線断面図である。It is the 1-1 sectional view taken on the line of FIG. 1 which shows the corrugated steel shear wall according to the first embodiment of the present invention. 本発明の第1の実施形態に係る波形鋼板耐震壁を示す、図1の1−1線断面図の拡大図である。It is an enlarged view of the 1-1 sectional view of FIG. 1 which shows the corrugated steel shear wall according to the first embodiment of the present invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の断片を示す、説明図である。It is explanatory drawing which shows the fragment | piece of the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁を示す、説明図である。It is explanatory drawing which shows the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁を構成する波形鋼板を模式化した説明図である。It is explanatory drawing which modeled the corrugated steel plate which comprises the corrugated steel earthquake-resistant wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図である。1. It is the 1-1 sectional view taken on the line of FIG. 1 which shows the modification of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図である。1. It is the 1-1 sectional view taken on the line of FIG. 1 which shows the modification of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図である。1. It is the 1-1 sectional view taken on the line of FIG. 1 which shows the modification of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. (A)、(B)は、本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図の拡大図である。(A), (B) is the enlarged view of the 1-1 sectional view taken on the line of FIG. 1, showing a modification of the corrugated steel shear wall according to the first embodiment of the present invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図である。1. It is the 1-1 sectional view taken on the line of FIG. 1 which shows the modification of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図である。1. It is the 1-1 sectional view taken on the line of FIG. 1 which shows the modification of the corrugated steel earthquake proof wall which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る波形鋼板耐震壁の変形例を示す、正面図である。It is a front view which shows the modification of the corrugated steel shear wall based on the 1st Embodiment of this invention. (A)は、本発明の第2の実施形態に係る波形鋼板耐震壁を示す、図1の1−1線断面図の拡大図であり、(B)は、本発明の第2の実施形態に係る波形鋼板耐震壁の変形例を示す、図1の1−1線断面図の拡大図である。(A) is an enlarged view of a sectional view taken along line 1-1 of FIG. 1 showing a corrugated steel shear wall according to a second embodiment of the present invention, and (B) is a second embodiment of the present invention. It is an enlarged view of the 1-1 sectional view taken on the line of FIG. 本発明の第2の実施形態に係る波形鋼板耐震壁の断片を示す、説明図である。It is explanatory drawing which shows the fragment | piece of the corrugated steel earthquake-resistant wall which concerns on the 2nd Embodiment of this invention. 本発明の全ての実施形態に係る波形鋼板の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the corrugated steel plate which concerns on all the embodiment of this invention.

符号の説明Explanation of symbols

10 波形鋼板耐震壁
12 柱(周辺部材)
14 柱(周辺部材)
16 梁(周辺部材)
18 梁(周辺部材)
20 架構
22 波形鋼板
24 波形鋼板
28 密波領域(領域)
30 疎波領域(領域)
32 疎波領域(領域)
34 密波領域(領域)
36 粘弾性体
52 密波領域(領域)
54 疎波領域(領域)
56 密波領域(領域)
58 疎波領域(領域)
60 密波領域(領域)
62 疎波領域(領域)
64 波形鋼板耐震壁
66 ボルト
68 ナット
70 ボルト孔
72 ボルト孔
80 長ナット(ナット)
10 Corrugated steel shear wall 12 Column (peripheral member)
14 pillars (peripheral members)
16 Beam (peripheral member)
18 Beam (peripheral members)
20 frame 22 corrugated steel sheet 24 corrugated steel sheet 28 dense wave region (region)
30 Sparse wave region (region)
32 Sparse wave region (region)
34 Close wave region (region)
36 Viscoelastic body 52 Dense wave region (region)
54 Sparse wave region (region)
56 Close wave region (region)
58 Sparse wave region (region)
60 dense wave region (region)
62 Sparse wave region (region)
64 Corrugated steel shear wall 66 Bolt 68 Nut 70 Bolt hole 72 Bolt hole 80 Long nut (nut)

Claims (6)

架構を構成する周辺部材に取り付けられ、対向して配置された複数の波形鋼板と、
対向する前記波形鋼板の間に設けられた粘弾性体と、
を備え、
対向する前記波形鋼板の少なくとも一方が、せん断剛性が異なる領域を上下方向に有し、少なくとも一つの前記領域に作用するせん断力によって生じるせん断変形量と、該領域と対向する他方の前記波形鋼板に作用するせん断力によって生じるせん断変形量と、が異なることを特徴とする波形鋼板耐震壁。
A plurality of corrugated steel plates attached to the peripheral members constituting the frame and arranged facing each other;
A viscoelastic body provided between the corrugated steel plates facing each other;
With
At least one of the corrugated steel plates facing has a region in which the shear rigidity is different in the vertical direction, the amount of shear deformation caused by the shearing force acting on at least one of the regions, and the other corrugated steel plate facing the region A corrugated steel shear wall characterized by the amount of shear deformation caused by the acting shear force.
前記領域と、該領域と隣接する領域とが、形状の異なる波形とされたことを特徴とする請求項1に記載の波形鋼板耐震壁。   The corrugated steel shear wall according to claim 1, wherein the region and a region adjacent to the region have corrugated shapes. 対向する前記波形鋼板が、それぞれ前記架構の構面の中央を境界としたせん断剛性が異なる2つの領域を有することを特徴とする請求項1又は請求項2に記載の波形鋼板耐震壁。   3. The corrugated steel earthquake resistant wall according to claim 1, wherein the corrugated steel plates facing each other have two regions having different shear stiffnesses, each having a center of the construction surface of the frame as a boundary. 架構を構成する周辺部材に取り付けられ、対向して配置された複数の波形鋼板と、
対向する前記波形鋼板の間に設けられた粘弾性体と、
を備え、
前記波形鋼板の少なくとも一方が、降伏点が異なる領域を上下方向に有し、少なくとも一つの前記領域に作用するせん断力によって降伏する降伏開始時期と、該領域と対向する他方の前記波形鋼板に作用するせん断力によって降伏する降伏開始時期と、が異なることを特徴とする波形鋼板耐震壁。
A plurality of corrugated steel plates attached to the peripheral members constituting the frame and arranged facing each other;
A viscoelastic body provided between the corrugated steel plates facing each other;
With
At least one of the corrugated steel sheets has a region in which the yield point is different in the vertical direction, the yield start time when yielding is caused by a shearing force acting on at least one of the regions, and the other corrugated steel plate facing the region. A corrugated steel shear wall characterized in that the yield start time of yielding depends on the shearing force.
前記波形鋼板が、上下の前記周辺部材にのみ取り付けられていることを特徴とする請求項1〜4の何れか1項に記載の波形鋼板耐震壁。   The corrugated steel earthquake resistant wall according to any one of claims 1 to 4, wherein the corrugated steel plate is attached only to the upper and lower peripheral members. 対向する前記波形鋼板を接合する接合手段が、各前記波形鋼板に形成されたボルト孔と、前記ボルト孔を貫通するボルトと、前記ボルトがねじ込まれるナットと、
を備え、
前記ボルトが貫通する前記ボルト孔の少なくとも一方が、前記ボルトの水平方向の変位を許容する長孔とされたことを特徴とする請求項1〜5の何れか1項に記載の波形鋼板耐震壁。
Joining means for joining the corrugated steel plates facing each other, bolt holes formed in the corrugated steel plates, bolts penetrating the bolt holes, nuts into which the bolts are screwed,
With
The corrugated steel earthquake resistant wall according to any one of claims 1 to 5, wherein at least one of the bolt holes through which the bolt penetrates is a long hole that allows displacement of the bolt in a horizontal direction. .
JP2008128782A 2008-05-15 2008-05-15 Corrugated steel shear wall Expired - Fee Related JP5095492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008128782A JP5095492B2 (en) 2008-05-15 2008-05-15 Corrugated steel shear wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128782A JP5095492B2 (en) 2008-05-15 2008-05-15 Corrugated steel shear wall

Publications (2)

Publication Number Publication Date
JP2009275436A JP2009275436A (en) 2009-11-26
JP5095492B2 true JP5095492B2 (en) 2012-12-12

Family

ID=41441126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128782A Expired - Fee Related JP5095492B2 (en) 2008-05-15 2008-05-15 Corrugated steel shear wall

Country Status (1)

Country Link
JP (1) JP5095492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019275605B2 (en) * 2014-04-22 2021-09-16 Su, Guanghui MR Integrated beam for corrugated sheet and integrated frame structure formed thereon

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601882B2 (en) * 2010-05-19 2014-10-08 株式会社竹中工務店 Steel seismic wall and building with the same
DE102010042847A1 (en) * 2010-10-25 2012-04-26 Universität Stuttgart Composite material and method for producing a composite material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284374A (en) * 1987-05-15 1988-11-21 日本鋼管株式会社 Vibration damping wall structure
JP2989563B2 (en) * 1997-03-07 1999-12-13 有限会社新技研 Earthquake-resistant wall material
JPH11303309A (en) * 1998-04-16 1999-11-02 Kobe Steel Ltd Highly rigid panel and its manufacture
JP2002067217A (en) * 2000-08-29 2002-03-05 Hitachi Zosen Corp Panel member
JP4705759B2 (en) * 2004-02-19 2011-06-22 株式会社竹中工務店 Damping walls and structures
JP4395419B2 (en) * 2004-07-29 2010-01-06 株式会社竹中工務店 Vibration control pillar
JP4881092B2 (en) * 2006-07-26 2012-02-22 株式会社竹中工務店 Seismic wall or seismic control wall made of corrugated steel sheet and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019275605B2 (en) * 2014-04-22 2021-09-16 Su, Guanghui MR Integrated beam for corrugated sheet and integrated frame structure formed thereon

Also Published As

Publication number Publication date
JP2009275436A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP5113597B2 (en) Corrugated steel shear wall
JP5336145B2 (en) Damping structure and building with damping structure
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
JP2010037868A (en) Corrugated steel plate earthquake-resisting wall
JP5601882B2 (en) Steel seismic wall and building with the same
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
JP4879723B2 (en) Buckling restraint brace
JP4555737B2 (en) Seismic wall and method of constructing the seismic wall
JP5095492B2 (en) Corrugated steel shear wall
JP5132503B2 (en) Seismic structure and building
JP4563872B2 (en) Seismic wall
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP2009047193A (en) Damper device and structure
JP4414833B2 (en) Seismic walls using corrugated steel
JP5917838B2 (en) Corrugated steel shear wall and calculation method of initial shear stiffness
JP2010121383A (en) Seismic retrofitting method and building
JP2009138484A (en) Corrugated steel plate earthquake-resistant wall
JP5254767B2 (en) Seismic structure, building with seismic structure, and repair method.
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP2011127279A (en) Earthquake resisting wall formed by corrugated steel plate and building having the same
JP2009161984A (en) Corrugated steel plate earthquake-resisting wall
JP2009185469A (en) Beam flexual yielding preceding type frame
JP4881084B2 (en) Seismic structure
JP5159487B2 (en) Seismic control column construction method, seismic control column, and building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees