JP2002309670A - Composite damping brace - Google Patents
Composite damping braceInfo
- Publication number
- JP2002309670A JP2002309670A JP2001116490A JP2001116490A JP2002309670A JP 2002309670 A JP2002309670 A JP 2002309670A JP 2001116490 A JP2001116490 A JP 2001116490A JP 2001116490 A JP2001116490 A JP 2001116490A JP 2002309670 A JP2002309670 A JP 2002309670A
- Authority
- JP
- Japan
- Prior art keywords
- shaft member
- steel pipe
- viscoelastic body
- vibration damping
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013016 damping Methods 0.000 title claims abstract description 57
- 239000002131 composite material Substances 0.000 title claims abstract description 41
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 91
- 239000010959 steel Substances 0.000 claims abstract description 91
- 239000000463 material Substances 0.000 claims abstract description 16
- 230000008602 contraction Effects 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
(57)【要約】
【課題】 簡易軽量な構造にも拘わらず、座屈強度に優
れ、かつ構造物に生じる小振幅から大振幅に至る様々な
振動を低減することができる複合制振ブレースを提供す
る。
【解決手段】 両端部1a、1bが構造物の骨組に接続
される平板状鋼材または十字型鋼材からなる軸部材1
に、軸面積が大きい弾性部分2と軸面積が小さい降伏部
分3とを形成し、この軸部材1の表面に、当該表面と対
向する表面を有する鋼管部材6を相対変位自在に配設し
て、これら鋼管部材6を互いに連結した複合制振ブレー
スにおいて、弾性部分2における軸部材と鋼管部材との
間に粘弾性体7を介装するとともに、軸部材1に、上記
複合制振ブレースの伸縮を吸収可能な間隙5が形成され
た不連続部を設け、この不連続部を境にした粘弾性体7
が介装されていない側の軸部材1に、鋼管部材6を固定
した。
(57) [Problem] To provide a composite vibration damping brace which has excellent buckling strength and can reduce various vibrations from small amplitude to large amplitude generated in a structure despite its simple and lightweight structure. provide. A shaft member (1) made of a flat steel material or a cross-shaped steel material whose both ends (1a, 1b) are connected to a frame of a structure.
An elastic portion 2 having a large shaft area and a yielding portion 3 having a small shaft area are formed, and a steel pipe member 6 having a surface opposed to the surface is disposed on the surface of the shaft member 1 so as to be relatively displaceable. In the composite vibration damping brace in which the steel pipe members 6 are connected to each other, a viscoelastic body 7 is interposed between the shaft member and the steel pipe member in the elastic portion 2 and the shaft member 1 is expanded and contracted. A discontinuous portion having a gap 5 capable of absorbing the water is provided, and the viscoelastic body 7 is separated from the discontinuous portion.
The steel pipe member 6 was fixed to the shaft member 1 on the side where is not interposed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉄骨構造などの骨
組を補強するとともに、併せて構造物に生じる小振幅か
ら大振幅に至る様々な振動を低減することが可能になる
複合制振ブレースに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite vibration damping brace that reinforces a framework such as a steel frame structure, and at the same time, can reduce various vibrations from small amplitude to large amplitude generated in a structure. Things.
【0002】[0002]
【従来の技術】近年、各種の構造物において、その居住
性を向上させ、かつ地震時における安全性を確保するた
めに、柱・梁からなる骨組自体の耐震安全性を確保する
とともに、当該骨組内に特殊な装置や部品を付加するこ
とにより、地震や強風等に起因する構造物の揺れを低減
させる様々な制振構造が開発されている。2. Description of the Related Art In recent years, in order to improve the livability of various structures and to ensure safety in the event of an earthquake, in addition to securing the seismic safety of the frame itself composed of columns and beams, the framework itself has been required. Various vibration damping structures have been developed to reduce the shaking of structures caused by earthquakes, strong winds, and the like by adding special devices and parts to the inside.
【0003】このような制振構造の一種として、上記骨
組内に、粘弾性体の剪断変形によりエネルギーを吸収す
る粘弾性ダンパーや、金属材料の塑性変形によるエネル
ギー吸収能力を利用した履歴型ダンパーを組み込む構造
が知られている。As one type of such a vibration damping structure, a viscoelastic damper that absorbs energy by shearing deformation of a viscoelastic body or a hysteretic damper that utilizes the energy absorbing ability by plastic deformation of a metal material is provided in the above-mentioned frame. Incorporating structures are known.
【0004】[0004]
【発明が解決しようとする課題】ところで、上記粘弾性
ダンパーによれば、上記粘弾性体が小さな変形に対して
も応答性に優れるため、強風等によって構造物に生じる
小さな揺れを低減して居住性をより高めることができる
という利点がある。しかしながら、大地震時のように、
大きな速度や大きな変形が加わると、過大な剪断力が発
生し、その反力が上記骨組側に伝達されて当該骨組の破
壊を招来するとともに、過大な変形によって破断し、ダ
ンパーとしての機能が失われる虞があるという問題点が
あった。また、粘弾性体は、温度依存性が存在するため
に、減衰性能にバラ付きを生じるという問題点もあり、
特に低温時には、大きな減衰力を発揮するために、骨組
の破壊を招くという上記問題点が顕著になる。According to the viscoelastic damper, since the viscoelastic body has excellent responsiveness to small deformation, small vibrations generated in the structure due to strong wind or the like are reduced. There is an advantage that the property can be further improved. However, like during a major earthquake,
When a large speed or large deformation is applied, an excessive shearing force is generated, and the reaction force is transmitted to the above-mentioned frame side to cause the destruction of the frame, and also break due to the excessive deformation and lose the function as a damper. There was a problem that there was a possibility of being performed. In addition, the viscoelastic body has a problem that the damping performance varies due to the temperature dependency,
In particular, at a low temperature, the above-described problem of causing a destruction of the skeleton due to exerting a large damping force becomes remarkable.
【0005】これに対して、履歴型ダンパーにおいて
は、大地震時に部材の履歴減衰によって効果的にエネル
ギーを吸収し、揺れの低減化を図ることはできるもの
の、逆に強風等に起因する小さな揺れに対しては有効に
機能することができず、よって居住性の改善効果を期待
することはできないという問題点があった。On the other hand, in a hysteretic damper, energy can be effectively absorbed by a hysteresis damping of a member during a large earthquake and the vibration can be reduced, but on the contrary, a small vibration caused by a strong wind or the like can be achieved. However, there was a problem in that it was not possible to function effectively, and therefore it was not possible to expect an effect of improving livability.
【0006】そこで、特開平11−153194号公報
に見られるように、これら粘弾性ダンパーと履歴型ダン
パーとを組み合わせた制振ブレースが提案されている。
この制振ブレースは、履歴ダンパーとなる鋼製中心軸力
部材の両側面に、一端部と他端部とから交互に鋼製座屈
防止部材を積層状に配設し、これら部材間に粘弾性体を
用いた減衰材を充填することにより粘弾性ダンパーとし
て機能させたものであり、いわば粘弾性ダンパーと履歴
型ダンパーとを並列的に連結したものである。Accordingly, as disclosed in Japanese Patent Application Laid-Open No. 11-153194, a vibration damping brace combining these viscoelastic dampers and hysteretic dampers has been proposed.
In this vibration damping brace, steel buckling prevention members are alternately disposed on both sides of a steel central axial force member serving as a hysteresis damper from one end and the other end in a laminated manner, and a viscous force is applied between these members. The viscoelastic damper is made to function as a viscoelastic damper by filling an attenuating material using an elastic body, that is, a viscoelastic damper and a hysteretic damper are connected in parallel.
【0007】しかしながら、上記従来の制振ブレースに
あっては、鋼製中心軸力部材の両面に、2〜3層にわた
って鋼製座屈防止部材が積層したものであるために、構
造が複雑で重量も嵩むとともに、コスト的にも不利であ
るという欠点がある。また、粘弾性ダンパーと履歴型ダ
ンパーとを並列的に連結している結果、小さな揺れに対
する減衰性を得ることが困難であり、結局小振幅から大
振幅に至るまでの広範囲の揺れを有効に抑えることが難
しいという問題点もある。However, in the above-mentioned conventional vibration damping brace, since the steel central buckling member is formed by laminating two or three layers of steel buckling prevention members on both sides, the structure is complicated. There are disadvantages in that the weight is increased and the cost is disadvantageous. Also, as a result of connecting the viscoelastic damper and the hysteretic damper in parallel, it is difficult to obtain a damping property for a small swing, and effectively suppresses a wide range of swing from a small amplitude to a large amplitude. There is also a problem that it is difficult.
【0008】本発明は、かかる事情に鑑みてなされたも
ので、簡易軽量な構造にも拘わらず、構造物に生じる小
振幅から大振幅に至る様々な振動を低減することができ
る複合制振ブレースを提供することを目的とするもので
ある。The present invention has been made in view of the above circumstances, and a composite vibration damping brace capable of reducing various vibrations from small amplitude to large amplitude generated in a structure despite its simple and lightweight structure. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】請求項1に記載の本発明
に係る複合制振ブレースは、両端部が構造物の骨組に接
続される平板状鋼材または十字型鋼材からなる軸部材
に、軸面積が大きい弾性部分と軸面積が小さい降伏部分
とを形成し、この軸部材の表面に、当該表面と対向する
表面を有する鋼管部材を相対変位自在に配設して、これ
ら鋼管部材を互いに連結した複合制振ブレースにおい
て、上記弾性部分における軸部材と鋼管部材との間に粘
弾性体を介装するとともに、上記軸部材に、上記複合制
振ブレースの伸縮を吸収可能な間隙が形成された不連続
部を設け、この不連続部を境にした上記粘弾性体が介装
されていない側の上記軸部材に、上記鋼管部材を固定し
たことを特徴とするものである。According to a first aspect of the present invention, there is provided a composite vibration damping brace according to the present invention, wherein a shaft member made of a flat steel material or a cross-shaped steel material having both ends connected to a frame of a structure is provided with a shaft. An elastic portion having a large area and a yielding portion having a small shaft area are formed, and a steel pipe member having a surface opposed to the surface is disposed on the surface of the shaft member so as to be relatively displaceable, and these steel pipe members are connected to each other. In the combined vibration damping brace, a viscoelastic body is interposed between the shaft member and the steel pipe member in the elastic portion, and a gap is formed in the shaft member to absorb expansion and contraction of the composite vibration damping brace. A discontinuous portion is provided, and the steel pipe member is fixed to the shaft member on the side of the discontinuous portion where the viscoelastic body is not interposed.
【0010】また、請求項2に記載の発明は、請求項1
に記載の発明において、上記不連続部を境にした上記軸
部材の他方と、上記鋼管部材との間に、所定以上の相対
変位を阻止する係合部を形成したことを特徴とするもの
である。[0010] The invention described in claim 2 is the same as the claim 1.
The invention according to the above, characterized in that an engaging portion for preventing a relative displacement of not less than a predetermined value is formed between the other of the shaft member bordering the discontinuous portion and the steel pipe member. is there.
【0011】また、請求項3に記載の本発明に係る複合
制振ブレースは、両端部が構造物の骨組に接続される平
板状鋼材または十字型鋼材からなる軸部材に、軸面積が
大きい弾性部分と軸面積が小さい降伏部分とを形成し、
この軸部材の表面に、当該表面と対向する表面を有する
鋼管部材を相対変位自在に配設して、これら鋼管部材を
互いに連結した複合制振ブレースにおいて、上記弾性部
分における上記軸部材と鋼管部材との間に粘弾性体を介
装するとともに、上記軸部材の上記弾性部分に、上記複
合制振ブレースの伸縮を吸収可能な間隙が形成された不
連続部を設けたことを特徴とするものである。According to a third aspect of the present invention, there is provided a composite vibration damping brace according to the present invention, wherein a shaft member made of a flat steel material or a cross-shaped steel material whose both ends are connected to a frame of a structure has an elasticity with a large shaft area. Forming a part and a yielding part with a small axial area,
On a surface of the shaft member, a steel pipe member having a surface opposed to the surface is disposed so as to be relatively displaceable, and in a composite vibration damping brace in which these steel pipe members are connected to each other, the shaft member and the steel pipe member in the elastic portion are provided. And a discontinuous portion in which a gap capable of absorbing the expansion and contraction of the composite vibration damping brace is provided in the elastic portion of the shaft member. It is.
【0012】ここで、軸部材における弾性部分について
は、想定される大地震時においても、主として弾性変形
によって追従する軸面積に設定することが好ましく、降
伏部分については、過大な変形が生じた際に、粘弾性体
が破断する前に降伏点に達して塑性変形する軸面積に設
定することが好ましい。Here, the elastic portion of the shaft member is preferably set to have a shaft area that follows mainly by elastic deformation even in an assumed large earthquake, and the yield portion is preferably set when excessive deformation occurs. In addition, it is preferable to set the shaft area to reach the yield point before the viscoelastic body breaks and undergo plastic deformation.
【0013】また、上記粘弾性体としては、アクリル
系、シリコン系、ジエン系、アスファルト系等の高分子
材料を使用することが好適であり、軸部材と鋼管部材と
の間に介装する方法としては、組み立て時に予め軸部材
の表面に接着する方法や、軸部材に沿って鋼管部材を配
設した後に、両者間に充填する方法などが適用可能であ
る。さらに、鋼管部材としては、汎用であって、かつ効
果的に座屈防止機能を発揮し得る断面形状を有する角型
鋼管を用いることが好適である。Preferably, the viscoelastic body is made of a polymer material such as an acrylic, silicon, diene, or asphalt-based material, and is interposed between a shaft member and a steel pipe member. As a method, a method of previously bonding to the surface of the shaft member at the time of assembling, a method of disposing a steel pipe member along the shaft member, and then filling the space between the two can be applied. Further, as the steel pipe member, it is preferable to use a rectangular steel pipe having a cross-sectional shape that is general-purpose and can effectively exhibit a buckling prevention function.
【0014】請求項1〜3のいずれかに記載の複合制振
ブレースによれば、軸部材に弾性部分と降伏部分とを形
成し、弾性部分における軸部材と鋼管部材との間に粘弾
性体を介装するとともに、上記軸部材に間隙を有する不
連続部を設けているので、上記粘弾性体を利用した粘弾
性ダンパーと軸部材の降伏部分が奏する履歴型ダンパー
とが直列に配置された構成になっている。この結果、構
造物に、強風等に起因する振幅の小さな揺れが生じた場
合には、先ず軸部材と鋼管部材との間に介装された粘弾
性体の剪断変形によって、これを吸収することができ
る。According to the composite vibration damping brace of any one of claims 1 to 3, an elastic portion and a yield portion are formed on the shaft member, and the viscoelastic body is provided between the shaft member and the steel pipe member in the elastic portion. And the shaft member is provided with a discontinuous portion having a gap, so that the viscoelastic damper using the viscoelastic body and the hysteretic damper played by the yielding portion of the shaft member are arranged in series. It has a configuration. As a result, in the case where a small amplitude tremor caused by a strong wind or the like occurs in the structure, first, the viscoelastic body interposed between the shaft member and the steel pipe member is absorbed by the shear deformation. Can be.
【0015】この際に、図6に示すように、粘弾性体A
の減衰力は、軸部材Bと鋼管部材Cとの間の剪断面積S
と剪断厚さdとの比(S/d:形状係数)に比例するこ
とが知られている。したがって、剪断厚さdを小さくす
れば、同一の剪断面積Sによっても大きな減衰力を得る
ことができ、換言すれば小さい剪断面積Sによっても、
同等の減衰効果を得ることができる。ところが、このよ
うに剪断厚さdを小さくすると、粘弾性体の許容剪断
歪、すなわち許容軸変形が小さくなるという問題点を生
じる。At this time, as shown in FIG.
Is the shear area S between the shaft member B and the steel pipe member C.
It is known that it is proportional to the ratio (S / d: shape factor) of the shear thickness d. Therefore, if the shear thickness d is reduced, a large damping force can be obtained even with the same shear area S. In other words, even with a small shear area S,
An equivalent damping effect can be obtained. However, when the shear thickness d is reduced as described above, there is a problem that allowable shear strain of the viscoelastic body, that is, allowable axial deformation is reduced.
【0016】この点、本発明においては、上述したよう
に粘弾性ダンパーと履歴型ダンパーとが直列に配置され
た構成であるため、大地震が発生して構造物に作用する
揺れの振幅が大きくなった場合には、粘弾性体の剪断変
形が増加する過程で、軸部材における降伏部分が降伏
し、ブレース全体としての軸変形が、主として降伏部分
における変形に移行するために、上記粘弾性体の剪断変
形を抑えることができる。しかも、粘弾性体が過大な減
衰力にならない結果、骨組に悪影響を及ぼす虞もなく、
かつ粘弾性ダンパーと履歴型ダンパーとの協働によっ
て、粘弾性体の過大な変形による剥離や破断を防止する
ことができるとともに、粘弾性体の温度依存による減衰
効果の変動も吸収することができる。In this respect, in the present invention, since the viscoelastic damper and the hysteretic damper are arranged in series as described above, the amplitude of the vibration acting on the structure due to the occurrence of a large earthquake is large. In this case, the yielding portion of the shaft member yields in the process of increasing the shear deformation of the viscoelastic body, and the axial deformation of the entire brace mainly shifts to the deformation at the yielding portion. Can be suppressed from being sheared. Moreover, as a result of the viscoelastic body not having excessive damping force, there is no possibility of adversely affecting the frame,
In addition, the cooperation between the viscoelastic damper and the hysteretic damper can prevent peeling or breakage due to excessive deformation of the viscoelastic body, and can also absorb fluctuations in the damping effect due to temperature dependence of the viscoelastic body. .
【0017】このように、本発明に係る複合制振ブレー
スによれば、小振幅の揺れに対しては、弾性部分と鋼管
部材との間に介装した粘弾性体による粘弾性ダンパーが
機能し、大振幅の揺れに対しては、降伏部分における履
歴型ダンパーによって、エネルギーを効果的に吸収して
その低減化を図ることができるために、簡易軽量な構造
にも拘わらず、構造物に生じる小振幅から大振幅に至る
様々な振動を低減することができる。As described above, according to the composite vibration damping brace according to the present invention, the viscoelastic damper formed of the viscoelastic body interposed between the elastic portion and the steel pipe member functions for small-amplitude vibration. With respect to large-amplitude sway, the hysteretic damper in the yielding portion can effectively absorb energy and reduce the energy. Various vibrations from a small amplitude to a large amplitude can be reduced.
【0018】加えて、大きな揺れによりこの複合制振ブ
レースが圧縮力を受けた際には、降伏部分に沿って設け
られた鋼管部材によって、軸部材の面外への変形が抑え
られるために、当該軸部材の座屈が防止される。この結
果ブレース全体としての座屈強度を高めることもでき
る。In addition, when the composite vibration damping brace receives a compressive force due to large shaking, the steel pipe member provided along the yielding portion suppresses the deformation of the shaft member out of the plane. Buckling of the shaft member is prevented. As a result, the buckling strength of the entire brace can be increased.
【0019】ところで、構造物に大きな振幅の揺れが作
用した際における降伏部分による変形と、これによる粘
弾性体の剪断変形の抑制効果は、粘弾性体の粘性や剪断
厚さ等の諸元並びに軸部材の剛性等の諸元を適宜設定す
ることによって調整可能であるが、万一粘弾性体に過大
な剪断変形が加わると、当該粘弾性体が破断し、ひいて
はダンパーとしての機能が失われる虞がある。そこで、
請求項2に記載の発明のように、不連続部を境にした軸
部材の他方と鋼管部材との間に、所定以上の相対変位を
阻止する係合部を形成すれば、粘弾性体の過大な変形に
よる剥離や破断を確実に防止することが可能になる。By the way, the deformation due to the yielding portion when a large amplitude swing acts on the structure, and the effect of suppressing the shear deformation of the viscoelastic body due to this, are based on the specifications such as the viscosity and shear thickness of the viscoelastic body. It can be adjusted by appropriately setting specifications such as the rigidity of the shaft member, but if excessive shear deformation is applied to the viscoelastic body, the viscoelastic body breaks, and the function as a damper is lost. There is a fear. Therefore,
According to the second aspect of the present invention, if an engaging portion for preventing a relative displacement equal to or more than a predetermined value is formed between the other of the shaft members and the steel pipe member bordering on the discontinuous portion, the viscoelastic body is formed. Peeling or breakage due to excessive deformation can be reliably prevented.
【0020】[0020]
【発明の実施の形態】(実施の形態1)図1〜図3は、
本発明の複合制振ブレースの第1の実施形態を示すもの
である。図1および図2において、符号1は、両端部1
a、1bが構造物の骨組に接続される十字型鋼材からな
る軸部材を示すものであり、この軸部材1の端部1a側
には、軸面積が大きい弾性部分2が形成されている。そ
して、この弾性部分2と端部1bとの間には、傾斜状の
移行部分4を介して弾性部分2よりも軸面積が小さい降
伏部分3が形成されている。また、端部1aと弾性部分
2との間には、軸部材1の伸縮と後述する粘弾性体7の
剪断変形等により生じる複合制振ブレース全体の伸縮を
吸収可能な間隙5が形成された不連続部が形成されてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIGS.
1 shows a first embodiment of a composite vibration damping brace of the present invention. 1 and 2, reference numeral 1 denotes both ends 1
Reference numerals a and 1b denote shaft members made of a cross-shaped steel material connected to the framework of the structure. An elastic portion 2 having a large shaft area is formed on the end 1a side of the shaft member 1. A yielding portion 3 having a smaller axial area than the elastic portion 2 is formed between the elastic portion 2 and the end portion 1b via an inclined transition portion 4. A gap 5 is formed between the end portion 1a and the elastic portion 2 so as to absorb the expansion and contraction of the shaft member 1 and the expansion and contraction of the entire composite vibration damping brace caused by the shear deformation of the viscoelastic body 7 described later. A discontinuous portion is formed.
【0021】そして、十字型鋼材によって形成される軸
部材1の四隅には、それぞれ両端部1a、1b間にわた
って角型鋼管(鋼管部材)6が相対変位自在に配設され
ており、これら角型鋼管6は、互いの隣接部に沿って接
合されたフラットバー9により一体的に連結されてい
る。また、角型鋼管6と軸部材1の弾性部分2との間に
は、当該弾性部分2と角型鋼管6との双方に接着された
粘弾性体7が介装されている。さらに、軸部材1の端部
1aには、ボルト挿入孔8が形成されており、これと対
向する角型鋼管6の端部には、それぞれボルト挿入孔
(図示を略す。)が形成されている。そして、角型鋼管
6は、両挿入孔8に挿入された高力ボルト6aが締め付
けられることにより、当該端部において、軸部材1に固
定されている。At each of the four corners of the shaft member 1 formed of a cross-shaped steel material, square steel pipes (steel pipe members) 6 are disposed between both ends 1a and 1b so as to be relatively displaceable. The steel pipes 6 are integrally connected by a flat bar 9 joined along adjacent portions. Further, a viscoelastic body 7 bonded to both the elastic portion 2 and the square steel tube 6 is interposed between the square steel tube 6 and the elastic portion 2 of the shaft member 1. Further, a bolt insertion hole 8 is formed at the end 1a of the shaft member 1, and a bolt insertion hole (not shown) is formed at an end of the square steel pipe 6 facing the bolt insertion hole 8, respectively. I have. The rectangular steel pipe 6 is fixed to the shaft member 1 at the end by tightening the high-strength bolts 6a inserted into the two insertion holes 8.
【0022】ここで、軸部材1における弾性部分2は、
想定される大地震時においても、主として弾性変形によ
って追従する軸面積に設定され、他方降伏部分3は、過
大な変形が生じた際に、粘弾性体7が破断する前に降伏
点に達して塑性変形する軸面積に設定されている。ま
た、粘弾性体7としては、アクリル系、シリコン系、ジ
エン系、アスファルト系等の高分子材料が使用されてい
る。Here, the elastic portion 2 of the shaft member 1 is
Even in the case of a supposed large earthquake, the axial area is set to follow mainly by elastic deformation, while the yield portion 3 reaches the yield point before the viscoelastic body 7 breaks when excessive deformation occurs. The shaft area is set to the plastic deformation. Further, as the viscoelastic body 7, a polymer material such as acrylic, silicon, diene, and asphalt is used.
【0023】このような複合制振ブレースを組み立てる
には、先ず図1(a)に示すように、軸部材1における
弾性部分2の表面に、粘弾性体7を接着し、次いで図1
(b)に示すように、軸部材1の四隅に、それぞれ角型
鋼管6を配設することにより、上記粘弾性体7を角型鋼
管6にも接着させた後に、図1(c)に示すように、角
型鋼管6と軸部材1の端部1aに形成されたボルト挿入
孔8に高力ボルト6aを挿入して締めつけるとともに、
隣接する角型鋼管6の隣接部に添設したフラットバー9
を両角型鋼管6に溶接することにより、これら角型鋼管
6を一体的に連結する。以上により、上記複合制振ブレ
ースの組立が完了する。In order to assemble such a composite vibration damping brace, first, as shown in FIG. 1 (a), a viscoelastic body 7 is adhered to the surface of the elastic portion 2 of the shaft member 1, and then, as shown in FIG.
As shown in FIG. 1B, the viscoelastic body 7 is also adhered to the square steel pipe 6 by arranging the square steel pipes 6 at the four corners of the shaft member 1 respectively. As shown, a high-strength bolt 6a is inserted into a square steel pipe 6 and a bolt insertion hole 8 formed in an end 1a of the shaft member 1, and tightened.
Flat bar 9 provided adjacent to the adjacent square steel pipe 6
Are welded to the square steel pipes 6 to integrally connect the square steel pipes 6. Thus, the assembly of the composite vibration damping brace is completed.
【0024】以上の構成からなる複合制振ブレースによ
れば、図3(a)、(b)に示すように、軸部材1に弾
性部分2と降伏部分3とを形成し、弾性部分2における
軸部材1と角型鋼管6との間に粘弾性体7を介装すると
ともに、軸部材1に間隙5を有する不連続部を設けてい
るので、粘弾性体7を利用した粘弾性ダンパーと軸部材
の降伏部分3が奏する履歴型ダンパーとが直列に配置さ
れた構成になっている。According to the composite vibration damping brace having the above structure, as shown in FIGS. 3A and 3B, the elastic member 2 and the yielding member 3 are formed on the shaft member 1, and Since the viscoelastic body 7 is interposed between the shaft member 1 and the square steel pipe 6 and the discontinuous portion having the gap 5 is provided in the shaft member 1, a viscoelastic damper using the viscoelastic body 7 is provided. The hysteresis damper which the yielding portion 3 of the shaft member plays is arranged in series.
【0025】この結果、構造物に、強風等に起因する振
幅の小さな揺れが生じて、この複合制振ブレースに圧縮
力および引張力が作用した場合には、先ず軸部材1の一
端部1aに固定された角型鋼管6と、軸部材1の他端部
1bから降伏部分3および弾性部分2との間に相対変位
が生じ、弾性部分2と角型鋼管6との間の粘弾性体7が
剪断変形する。これにより、上記揺れのエネルギーを吸
収して、当該揺れを低減し、居住性を高めることができ
る。ちなみに、この際の複合制振ブレースにおける軸力
の伝達は、軸部材1の一端部1a→高力ボルト6a→角
型鋼管6→粘弾性体7→軸部材1の弾性部分2→降伏部
分3→軸部材1の他端部1bになる。As a result, when a small vibration of the amplitude due to a strong wind or the like is generated in the structure, and a compressive force and a tensile force act on the composite vibration damping brace, first, one end 1a of the shaft member 1 is applied to the structure. Relative displacement occurs between the fixed rectangular steel pipe 6 and the yielding portion 3 and the elastic portion 2 from the other end 1 b of the shaft member 1, and a viscoelastic body 7 between the elastic portion 2 and the rectangular steel pipe 6. Is sheared. Thereby, the energy of the shaking can be absorbed, the shaking can be reduced, and the livability can be improved. Incidentally, the transmission of the axial force in the composite vibration damping brace at this time is performed by one end 1a of the shaft member 1 → high-strength bolt 6a → square steel pipe 6 → viscoelastic body 7 → elastic portion 2 of the shaft member 1 → yield portion 3 → It becomes the other end 1b of the shaft member 1.
【0026】次いで、大地震が発生して構造物に作用す
る揺れの振幅が大きくなった場合には、上述した粘弾性
体7の剪断変形が増加する過程で、軸部材1の降伏部分
3が降伏し、その履歴減衰によって上記揺れを低減す
る。この際のブレース全体としての軸変形は、主として
降伏部分3における変形となるため、粘弾性体7の剪断
変形を抑えることができ、よって粘弾性体7が過大な減
衰力にならないために、骨組に悪影響を及ぼす虞もな
い。また、粘弾性体7による粘弾性ダンパーと降伏部分
3による履歴型ダンパーとの協働によって、粘弾性体7
の過大な変形による剥離や破断を防止することができる
とともに、粘弾性体7の温度依存による減衰効果の変動
も吸収することができる。Next, when the amplitude of the shaking acting on the structure increases due to the occurrence of the large earthquake, the yielding portion 3 of the shaft member 1 is reduced while the shear deformation of the viscoelastic body 7 increases. Yields and reduces the sway by its hysteretic damping. At this time, the axial deformation of the entire brace is mainly at the yielding portion 3, so that the shear deformation of the viscoelastic body 7 can be suppressed, and the viscoelastic body 7 does not have excessive damping force. There is no risk of adversely affecting Further, the cooperation between the viscoelastic damper by the viscoelastic body 7 and the hysteretic damper by the yielding portion 3 allows the viscoelastic body 7
Can be prevented from peeling or breaking due to excessive deformation of the viscoelastic body 7, and the fluctuation of the damping effect due to the temperature dependence of the viscoelastic body 7 can be absorbed.
【0027】このように、上記複合制振ブレースによれ
ば、小振幅の揺れに対しては、弾性部分2と角型鋼管6
との間に介装した粘弾性体7による粘弾性ダンパーが機
能し、大振幅の揺れに対しては、降伏部分3における履
歴型ダンパーによってエネルギーを効果的に吸収してそ
の低減化を図ることができるために、簡易軽量な構造に
も拘わらず、構造物に生じる小振幅から大振幅に至る様
々な振動を低減することができる。As described above, according to the above-described composite vibration damping brace, the elastic portion 2 and the square steel pipe 6 can be prevented from swinging with a small amplitude.
A viscoelastic damper with a viscoelastic body 7 interposed between the damper and the oscillating body functions to effectively absorb energy by a hysteretic damper in the yielding portion 3 to reduce large-amplitude sway. Therefore, despite the simple and lightweight structure, various vibrations from small amplitude to large amplitude generated in the structure can be reduced.
【0028】加えて、大きな揺れによりこの複合制振ブ
レースが圧縮力を受けた際には、降伏部分3に沿って設
けられ、かつフラットバー9によって互いに連結・一体
化された角型鋼管6によって、軸部材1の面外への変形
が抑えられるために、当該軸部材1の座屈を防止するこ
とができ、この結果ブレース全体としての座屈強度を高
めることもできる。In addition, when the composite damping brace is subjected to a compressive force due to large shaking, the square steel pipe 6 provided along the yielding portion 3 and connected and integrated with each other by the flat bar 9. Since the out-of-plane deformation of the shaft member 1 is suppressed, buckling of the shaft member 1 can be prevented, and as a result, the buckling strength of the entire brace can be increased.
【0029】(実施の形態2〜4)次いで、図4(a)
〜(c)は、それぞれ本発明の第2〜第4の実施形態を
示すもので、図1および図2と同一構成部分に付いて
は、同一符号を付してその説明を簡略化する。図4
(a)に示す第2の実施形態における複合制振ブレース
は、軸部材1を弾性部分2と移行部分4との間で切断し
て、軸部材1の伸縮および粘弾性体7の剪断変形等によ
って生じる複合制振ブレースの伸縮を吸収可能な間隙1
0を有する不連続部を形成したものであり、図中斜線で
示す弾性部分2の表面および図示されない角型鋼管6の
表面に、同様に粘弾性体7が接着されている。そして、
図示されない角型鋼管6は、移行部分4側に形成された
ボルト挿入孔8との間に挿通された高力ボルトが締め付
けられることにより、上記不連続部を境にした軸部材1
の上方側に固定されている。(Embodiments 2 to 4) Next, FIG.
(C) show the second to fourth embodiments of the present invention, respectively, and the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals and the description thereof will be simplified. FIG.
In the composite vibration damping brace according to the second embodiment shown in (a), the shaft member 1 is cut between the elastic portion 2 and the transition portion 4 to expand and contract the shaft member 1 and shear deformation of the viscoelastic body 7. 1 that can absorb the expansion and contraction of the compound damping brace generated by
A viscoelastic body 7 is similarly adhered to the surface of the elastic portion 2 shown by hatching in the figure and the surface of the square steel pipe 6 (not shown). And
The square steel pipe 6 (not shown) is tightened by a high-strength bolt inserted between the steel pipe 6 and a bolt insertion hole 8 formed on the transition portion 4 side, so that the shaft member 1 bordering the discontinuous portion is formed.
Is fixed on the upper side.
【0030】また、図4(b)に示す第3の実施形態に
おける複合制振ブレースは、軸部材1の中央部に弾性部
分2を形成し、この弾性部分2と両端部1a、1bとの
間に、それぞれ移行部分4を介して降伏部分3を形成す
るとともに、軸部材1を弾性部分2の中央部において切
断して、軸部材1の伸縮と粘弾性体7の剪断変形とを吸
収可能な間隙11を有する不連続部を形成したものであ
る。そして、この複合制振ブレースにおいては、図示さ
れない角型鋼管6が、上述した高力ボルト等によって軸
部材1に固定されることなく、当該軸部材1の両端部1
a、1b間にわたり相対変位自在に配設されるととも
に、角型鋼管6と軸部材1の弾性部分2との間に、当該
弾性部分2および角型鋼管6の双方に接着された粘弾性
体7が介装されている。Further, in the composite vibration damping brace according to the third embodiment shown in FIG. 4B, an elastic portion 2 is formed at the center of a shaft member 1, and the elastic portion 2 and both end portions 1a and 1b are connected. In between, the yielding portion 3 is formed via the transition portion 4, and the shaft member 1 is cut at the center of the elastic portion 2 so that the expansion and contraction of the shaft member 1 and the shear deformation of the viscoelastic body 7 can be absorbed. A discontinuous portion having a large gap 11 is formed. Then, in this composite vibration damping brace, the square steel pipe 6 (not shown) is not fixed to the shaft member 1 by the above-mentioned high-strength bolts or the like, and both ends 1 of the shaft member 1 are not fixed.
a, a viscoelastic body bonded between the rectangular steel pipe 6 and the elastic part 2 of the shaft member 1 and bonded to both the elastic part 2 and the square steel pipe 6. 7 are interposed.
【0031】さらに、図4(c)に示す第4の実施形態
における複合制振ブレースは、図4(b)に示したもの
と同様に、軸部材1の中央部に弾性部分2を形成し、こ
の弾性部分2と両端部1a、1bとの間に、それぞれ移
行部分4を介して降伏部分3を形成するとともに、弾性
部分2と移行部分4との間で切断し、軸部材1の伸縮と
粘弾性体7の剪断変形とを吸収可能な間隙12を有する
不連続部を形成したものである。そして、図示されない
角型鋼管6は、移行部分4側に形成されたボルト挿入孔
8との間に挿通された高力ボルトによって、上記不連続
部を境にした軸部材1の上方側に固定されている。な
お、上記第2〜第4の実施形態において図示を省略した
角型鋼管6およびこれらを連結するフラットバー9の構
成に付いては、図1に示したものと同様である。Further, in the composite vibration damping brace according to the fourth embodiment shown in FIG. 4C, an elastic portion 2 is formed at the center of the shaft member 1 similarly to the one shown in FIG. A yielding portion 3 is formed between the elastic portion 2 and both ends 1a and 1b via a transition portion 4, respectively, and is cut between the elastic portion 2 and the transition portion 4 to expand and contract the shaft member 1. A discontinuous portion having a gap 12 capable of absorbing the shear deformation of the viscoelastic body 7 is formed. The rectangular steel pipe 6 (not shown) is fixed to the upper side of the shaft member 1 at the discontinuous portion by a high-strength bolt inserted between the rectangular steel pipe 6 and a bolt insertion hole 8 formed on the transition portion 4 side. Have been. In the second to fourth embodiments, the configurations of the square steel pipes 6 not shown and the flat bars 9 connecting them are the same as those shown in FIG.
【0032】図4(a)、(b)、(c)に示す複合制
振ブレースによっても、図1に示したものと同様の作用
効果を得ることができる。ちなみに、図4(a)に示す
複合制振ブレースにおける軸力の伝達は、軸部材1の一
端部1a→軸部材1の弾性部分2→粘弾性体7→角型鋼
管6→高力ボルト6a→降伏部分3→軸部材1の他端部
1bになる。The same operational effects as those shown in FIG. 1 can be obtained by the composite vibration damping braces shown in FIGS. 4 (a), 4 (b) and 4 (c). By the way, the transmission of the axial force in the composite vibration damping brace shown in FIG. 4 (a) is performed by one end 1a of the shaft member 1, the elastic portion 2 of the shaft member 1, the viscoelastic body 7, the square steel pipe 6, and the high-strength bolt 6a. → the yield portion 3 → the other end 1 b of the shaft member 1.
【0033】また、図4(b)に示す複合制振ブレ−ス
においては、軸部材の端部1a→降伏部分3→弾性部分
2の下部→粘弾性体7→角型鋼管6→粘弾性体7→弾性
部分2の上部→降伏部分3→軸部材1の他端部1bにな
る。さらに、図4(c)に示す複合制振ブレースにおい
ては、軸部材1の一端部1a→降伏部分3→弾性部分2
→粘弾性体7→角型鋼管6→→高力ボルト6a→降伏部
分3→軸部材1の他端部1bになる。In the composite vibration damping braces shown in FIG. 4B, the end 1a of the shaft member → the yield portion 3 → the lower portion of the elastic portion 2 → viscoelastic body 7 → square steel pipe 6 → viscoelasticity. The body 7 → the upper part of the elastic part 2 → the yield part 3 → the other end 1 b of the shaft member 1. Further, in the composite vibration damping brace shown in FIG. 4C, one end 1a of the shaft member 1 → the yield portion 3 → the elastic portion 2
→ viscoelastic body 7 → square steel pipe 6 →→ high strength bolt 6a → yield part 3 → other end 1b of shaft member 1.
【0034】(実施の形態5)図5は、本発明の第5の
実施形態を示すもので、同様に図1に示したものと同一
構成部分に付いては、同一符号を付してある。この複合
制振ブレースにおいては、図1に示したものと同様に、
角型鋼管6が高力ボルト6aによって軸部材1の端部1
a側に固定されるとともに、不連続部を境にした軸部材
1の他方に、表面から突出する平板状の凸部20が接合
されている。他方、この凸部20と対向する角型鋼管6
には、長手方向に所定の長さ寸法切り欠かれてなる凹部
21が形成されている。そして、角型鋼管6は、各々の
凹部21内に凸部20を係合させた状態で、軸部材1の
4隅部に配設されている。なお、その他の構成に付いて
は、図1に示したものと同様である。(Embodiment 5) FIG. 5 shows a fifth embodiment of the present invention. Similarly, the same components as those shown in FIG. 1 are denoted by the same reference numerals. . In this composite vibration damping brace, as shown in FIG.
The square steel pipe 6 is connected to the end 1
A flat projection 20 projecting from the surface is joined to the other end of the shaft member 1 that is fixed to the a side and borders the discontinuous portion. On the other hand, the square steel pipe 6 facing the convex portion 20
Is formed with a concave portion 21 formed by cutting out a predetermined length dimension in the longitudinal direction. The square steel pipes 6 are arranged at the four corners of the shaft member 1 in a state where the protrusions 20 are engaged with the respective recesses 21. The other configuration is the same as that shown in FIG.
【0035】本実施形態に係る複合制震ブレースによれ
ば、図1〜図4に示したものと同様の作用効果が得られ
る他、さらに、相対変位する軸部材1と角型鋼管6との
間に、所定以上の相対変位を阻止する凹凸部(係合部)
20、21を形成しているので、大地震時に万一粘弾性
体7に過大な剪断変形が加わった場合においても、凸部
20が凹部21内の端部に係止されて、それ以上の相対
変位が阻止される。この結果、粘弾性体7の過大な変形
による剥離や破断を確実に防止することができる。According to the composite vibration damping brace according to this embodiment, the same operation and effect as those shown in FIGS. 1 to 4 can be obtained, and further, the shaft member 1 and the square steel pipe 6 which are relatively displaced can be connected. A concave and convex portion (engaging portion) for preventing a relative displacement of a predetermined value or more.
Since the viscoelastic body 7 is subjected to excessive shearing deformation in the event of a large earthquake, the projections 20 are locked to the ends in the recesses 21, so that the viscoelastic body 7 is not damaged. Relative displacement is prevented. As a result, peeling or breakage due to excessive deformation of the viscoelastic body 7 can be reliably prevented.
【0036】なお、上記実施の形態においては、いずれ
も軸部材1として十字型鋼材からなるものを用いた場合
に付いてのみ説明したが、これに限定されるものではな
く、当該軸部材として平板状鋼材を用い、その両面に一
対の角型鋼管6を相対変位自在に配設するとともに、角
型鋼管6同士を隣接部において互いに連結してもよく、
また、必ずしも移行部分4を弾性部分2と降伏部分3と
の間に形成する必要も無い。In the above embodiment, only the case where the shaft member 1 is made of a cross-shaped steel material has been described. However, the present invention is not limited to this case. A pair of square steel pipes 6 may be disposed on both surfaces thereof so as to be relatively displaceable, and the square steel pipes 6 may be connected to each other at adjacent portions, using a shaped steel material.
Further, it is not always necessary to form the transition portion 4 between the elastic portion 2 and the yield portion 3.
【0037】また、角型鋼管6と軸部材1との固定につ
いても、上述した高力ボルト6aに限るものではなく、
溶接等の各種の固定構造を採用することができる。さら
に、軸部材1と角型鋼管6との過度の相対変位を阻止す
る係合部も、第2の実施形態に示した形状の凹凸部2
0、21に限定されるものではなく、例えばボルトと当
該ボルトが係合するルーズホール等の種々の形態の係合
部を適用することが可能である。The fixing of the square steel pipe 6 and the shaft member 1 is not limited to the above-described high-strength bolt 6a.
Various fixing structures such as welding can be adopted. Further, the engaging portion for preventing excessive relative displacement between the shaft member 1 and the square steel pipe 6 is also provided with the uneven portion 2 having the shape shown in the second embodiment.
The present invention is not limited to 0 and 21, and various types of engaging portions such as a bolt and a loose hole with which the bolt engages can be applied.
【0038】[0038]
【発明の効果】以上説明したように、請求項1〜3のい
ずれかに記載の複合制振ブレースによれば、軸部材の周
囲に座屈補剛材として機能する鋼管部材を相対変位自在
に配設し、かつ上記軸部材に間隙を有する不連続部を設
けるとともに、粘弾性体を利用した粘弾性ダンパーと軸
部材の降伏部分が奏する履歴型ダンパーとを直列に配置
した構成にしているため、小振幅の揺れに対しては、弾
性部分と鋼管部材との間に介装した粘弾性体による粘弾
性ダンパーが機能し、大振幅の揺れに対しては、降伏部
分における履歴型ダンパーによって、エネルギーを効果
的に吸収してその低減化を図ることができるために、簡
易軽量な構造にも拘わらず、構造物に生じる小振幅から
大振幅に至る様々な振動を低減することができる。As described above, according to the composite vibration damping brace according to any one of claims 1 to 3, the steel pipe member functioning as a buckling stiffener around the shaft member can be relatively displaced. Disposed and provided with a discontinuous portion having a gap in the shaft member, and a viscoelastic damper using a viscoelastic body and a hysteretic damper played by the yielding portion of the shaft member are arranged in series. The viscoelastic damper of the viscoelastic body interposed between the elastic portion and the steel pipe member functions for small-amplitude shaking, and the hysteretic damper in the yielding portion for large-amplitude shaking, Since the energy can be effectively absorbed and the energy can be reduced, various vibrations from small amplitude to large amplitude generated in the structure can be reduced despite the simple and lightweight structure.
【0039】また、特に請求項2に記載の発明によれ
ば、不連続部を境にした軸部材の他方と鋼管部材との間
に、所定以上の相対変位を阻止する係合部を形成してい
るので、万一粘弾性体に過大な剪断変形が加わった場合
においても、上記係合部によって粘弾性体の剥離や破断
を確実に防止することが可能になるといった効果が得ら
れる。According to the second aspect of the present invention, an engaging portion for preventing a relative displacement of not less than a predetermined value is formed between the other of the shaft members and the steel pipe member at the discontinuous portion. Therefore, even in the event that excessive shear deformation is applied to the viscoelastic body, an effect is obtained in that the engagement portion can reliably prevent peeling or breakage of the viscoelastic body.
【図1】本発明に係る複合制振ブレースの第1の実施形
態を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of a composite vibration damping brace according to the present invention.
【図2】図1の要部の縦断面図である。FIG. 2 is a longitudinal sectional view of a main part of FIG.
【図3】図1の複合制振ブレースの作用を説明するため
の模式図で、(a)は引張力が作用した状態、(b)は
圧縮力が作用した状態を示すものである。3A and 3B are schematic views for explaining the operation of the composite vibration damping brace of FIG. 1, wherein FIG. 3A shows a state in which a tensile force is applied, and FIG. 3B shows a state in which a compressive force is applied.
【図4】(a)は第2の実施形態における軸部材等の形
状を示す斜視図、(b)は第3の実施形態における軸部
材等の形状を示す斜視図、(c)は第4の実施形態にお
ける軸部材等の形状を示す斜視図である。4A is a perspective view showing a shape of a shaft member and the like in a second embodiment, FIG. 4B is a perspective view showing a shape of a shaft member and the like in a third embodiment, and FIG. It is a perspective view showing the shape of the shaft member etc. in the embodiment.
【図5】本発明の第5の実施形態を示す分解斜視図であ
る。FIG. 5 is an exploded perspective view showing a fifth embodiment of the present invention.
【図6】粘弾性ダンパーの特性を説明するための一部切
り欠いた斜視図である。FIG. 6 is a partially cutaway perspective view for explaining characteristics of the viscoelastic damper.
1 軸部材 1a、1b 端部 2 弾性部分 3 降伏部分 5、10、11、12 間隙 6 角型鋼管(鋼管部材) 6a 高力ボルト 7 粘弾性体 9 フラットバー 20 凸部 21 凹部 Reference Signs List 1 shaft member 1a, 1b end 2 elastic part 3 yield part 5, 10, 11, 12 gap 6 square steel pipe (steel pipe member) 6a high-strength bolt 7 viscoelastic body 9 flat bar 20 convex part 21 concave part
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J048 AA03 AC01 BD08 EA38 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J048 AA03 AC01 BD08 EA38
Claims (3)
状鋼材または十字型鋼材からなる軸部材に、軸面積が大
きい弾性部分と軸面積が小さい降伏部分とを形成し、こ
の軸部材の表面に、当該表面と対向する表面を有する鋼
管部材を相対変位自在に配設して、これら鋼管部材を互
いに連結した複合制振ブレースにおいて、 上記弾性部分における上記軸部材と鋼管部材との間に粘
弾性体を介装するとともに、上記軸部材に、上記複合制
振ブレースの伸縮を吸収可能な間隙が形成された不連続
部を設け、この不連続部を境にした上記粘弾性体が介装
されていない側の上記軸部材に、上記鋼管部材を固定し
たことを特徴とする複合制振ブレース。1. An elastic member having a large shaft area and a yielding portion having a small shaft area are formed on a shaft member made of a flat steel material or a cross-shaped steel material whose both ends are connected to a frame of a structure. A steel pipe member having a surface opposed to the surface is disposed on the surface of the composite member so as to be relatively displaceable, and the steel pipe members are connected to each other. In addition to interposing a viscoelastic body on the shaft member, the shaft member is provided with a discontinuous portion in which a gap capable of absorbing the expansion and contraction of the composite vibration damping brace is formed, and the viscoelastic body bordering the discontinuous portion is provided. A composite vibration damping brace wherein the steel pipe member is fixed to the shaft member on the side where no interposition is provided.
方と、上記鋼管部材との間に、所定以上の相対変位を阻
止する係合部を形成したことを特徴とする請求項1に記
載の複合制振ブレース。2. An engaging portion for preventing a relative displacement of not less than a predetermined value is formed between the other of the shaft member and the steel pipe member at the discontinuous portion. The composite vibration damping brace described in.
状鋼材または十字型鋼材からなる軸部材に、軸面積が大
きい弾性部分と軸面積が小さい降伏部分とを形成し、こ
の軸部材の表面に、当該表面と対向する表面を有する鋼
管部材を相対変位自在に配設して、これら鋼管部材を互
いに連結した複合制振ブレースにおいて、 上記弾性部分における上記軸部材と鋼管部材との間に粘
弾性体を介装するとともに、上記軸部材の上記弾性部分
に、上記複合制振ブレースの伸縮を吸収可能な間隙が形
成された不連続部を設けたことを特徴とする複合制振ブ
レース。3. An elastic member having a large shaft area and a yielding portion having a small shaft area are formed on a shaft member made of a flat steel material or a cross-shaped steel material whose both ends are connected to a frame of a structure. A steel pipe member having a surface opposed to the surface is disposed on the surface of the composite member so as to be relatively displaceable, and the steel pipe members are connected to each other. And a discontinuous portion in which a gap capable of absorbing expansion and contraction of the composite vibration damping brace is provided in the elastic portion of the shaft member. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001116490A JP4370731B2 (en) | 2001-04-16 | 2001-04-16 | Composite vibration brace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001116490A JP4370731B2 (en) | 2001-04-16 | 2001-04-16 | Composite vibration brace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002309670A true JP2002309670A (en) | 2002-10-23 |
JP4370731B2 JP4370731B2 (en) | 2009-11-25 |
Family
ID=18967219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001116490A Expired - Fee Related JP4370731B2 (en) | 2001-04-16 | 2001-04-16 | Composite vibration brace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4370731B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006225864A (en) * | 2005-02-15 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | Combined damper |
JP2012241847A (en) * | 2011-05-23 | 2012-12-10 | Taisei Corp | Composite vibration control damper |
JP2012241848A (en) * | 2011-05-23 | 2012-12-10 | Taisei Corp | Composite vibration control damper |
CN102900167A (en) * | 2012-09-28 | 2013-01-30 | 同济大学 | Bilaterally-restrained in-line pure steel buckling restraint support and manufacturing method thereof |
JP2014211239A (en) * | 2014-08-06 | 2014-11-13 | 大成建設株式会社 | Composite vibration control damper |
WO2015018221A1 (en) * | 2013-08-05 | 2015-02-12 | 东南大学 | Embedded lightweight material body, sleeved concrete buckling restraint support |
JP2017089146A (en) * | 2015-11-05 | 2017-05-25 | 株式会社ビービーエム | Composite vibration control damper for structure |
CN108265846A (en) * | 2018-02-05 | 2018-07-10 | 沈阳建筑大学 | A kind of rectangular aluminium alloy inner core assembled buckling restrained brace |
CN114991559A (en) * | 2022-06-29 | 2022-09-02 | 东北林业大学 | Displacement-amplified self-resetting anti-buckling support and assembly method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104179270B (en) * | 2013-08-05 | 2016-11-02 | 东南大学 | Buckling-restrained support of embedded lightweight material casing concrete |
-
2001
- 2001-04-16 JP JP2001116490A patent/JP4370731B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006225864A (en) * | 2005-02-15 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | Combined damper |
JP2012241847A (en) * | 2011-05-23 | 2012-12-10 | Taisei Corp | Composite vibration control damper |
JP2012241848A (en) * | 2011-05-23 | 2012-12-10 | Taisei Corp | Composite vibration control damper |
CN102900167A (en) * | 2012-09-28 | 2013-01-30 | 同济大学 | Bilaterally-restrained in-line pure steel buckling restraint support and manufacturing method thereof |
WO2015018221A1 (en) * | 2013-08-05 | 2015-02-12 | 东南大学 | Embedded lightweight material body, sleeved concrete buckling restraint support |
JP2014211239A (en) * | 2014-08-06 | 2014-11-13 | 大成建設株式会社 | Composite vibration control damper |
JP2017089146A (en) * | 2015-11-05 | 2017-05-25 | 株式会社ビービーエム | Composite vibration control damper for structure |
CN108265846A (en) * | 2018-02-05 | 2018-07-10 | 沈阳建筑大学 | A kind of rectangular aluminium alloy inner core assembled buckling restrained brace |
CN114991559A (en) * | 2022-06-29 | 2022-09-02 | 东北林业大学 | Displacement-amplified self-resetting anti-buckling support and assembly method |
Also Published As
Publication number | Publication date |
---|---|
JP4370731B2 (en) | 2009-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1948878B1 (en) | Structure with increased damping by means of fork configuration dampers | |
KR101263078B1 (en) | Connection metal fitting and building with the same | |
JP2003049558A (en) | Damping stud | |
JP2003193699A (en) | Elasto-plastic and visco-elastic braces | |
JP2010037868A (en) | Corrugated steel plate earthquake-resisting wall | |
JP2002309670A (en) | Composite damping brace | |
JP2003034984A (en) | Vibration control brace | |
JP2002357013A (en) | Composite damping brace | |
JP2000110399A (en) | Seismic structure of detached houses | |
JPH11153194A (en) | Vibration damping member with integrated elasto-plastic and visco-elastic damper | |
JP2000027292A (en) | Damping member | |
JPH10220062A (en) | Vibration control structure of building structure | |
JP3750037B2 (en) | Damper device | |
JP2018145676A (en) | Buckling restraining brace | |
JP3147013U (en) | Composite vibration brace | |
JP2001173130A (en) | Hysteresis damiping type shear damper | |
JP4547979B2 (en) | Vibration control pillar | |
JP5095492B2 (en) | Corrugated steel shear wall | |
JP2001146856A (en) | Installation structure of viscoelastic damper | |
JP5338382B2 (en) | Vibration control panel | |
JP3744267B2 (en) | Building vibration control device | |
JPH10280727A (en) | Damping frame by composite type damper and damping method | |
JPH03199582A (en) | Vibration suppression device for buildings | |
JP4282199B2 (en) | Damping damper device | |
JP6749288B2 (en) | Composite damper, viscoelastic damper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080403 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090811 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090824 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150911 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |