JP2009013683A - Damping structure of building - Google Patents

Damping structure of building Download PDF

Info

Publication number
JP2009013683A
JP2009013683A JP2007177218A JP2007177218A JP2009013683A JP 2009013683 A JP2009013683 A JP 2009013683A JP 2007177218 A JP2007177218 A JP 2007177218A JP 2007177218 A JP2007177218 A JP 2007177218A JP 2009013683 A JP2009013683 A JP 2009013683A
Authority
JP
Japan
Prior art keywords
column
building
support member
damper
steel frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007177218A
Other languages
Japanese (ja)
Inventor
Takuya Nishimura
拓也 西村
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2007177218A priority Critical patent/JP2009013683A/en
Publication of JP2009013683A publication Critical patent/JP2009013683A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping structure of a building capable of reducing the response of the building by transmitting the resistance force of a damper to the columns without reducing the height to surely prevent both ends of the beams joined to the columns from being share-fractured for properly absorbing vibration energy. <P>SOLUTION: This damping structure C of a building is installed in a structural surface T1 surrounded by a pair of left and right columns 6 (6a, 6b), and a pair of upper and lower beams (1a, 1b) or slabs 2 for absorbing the vibration energy acting on the building T. The damping structure comprises an upper support member 7 having an upper end supported on the upper beam 1a and extending downward, a lower support member 8 having a lower end supported on the lower beam 1b and extending upward, and the damper 9 interposed between the upper support member 7 and the lower support member 8 and absorbing the vibration energy by deforming when the vibration energy acts thereon. The upper support member 7 and the lower support member 8 are connected to the columns 6 through a corrugated plate 15 having a folded part extending in the vertical direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、左右一対の柱と上下一対の梁又はスラブで囲まれた構面内に設置され、地震時に建物に作用する振動エネルギーを吸収して、該建物の地震時の応答を低減させるための建物の制震構造に関する。   The present invention is installed in a construction surface surrounded by a pair of left and right columns and a pair of upper and lower beams or slabs, and absorbs vibration energy acting on a building during an earthquake to reduce the response of the building during an earthquake. Related to the seismic control structure of Japanese buildings.

従来、建物の地震時の応答を低減させるための制震構造には、左右一対の柱と上下一対の梁(又はスラブ)で囲まれた構面内に設置されて、地震時に建物に作用する振動エネルギーを吸収するように構成したものがあり、この種の制震構造は、間柱型の制震構造と壁型の制震構造に分類されている(例えば、特許文献1、特許文献2、特許文献3参照)。   Conventionally, in a seismic control structure for reducing the response of a building during an earthquake, it is installed in a structure surrounded by a pair of left and right columns and a pair of upper and lower beams (or slabs), and acts on the building during an earthquake. There is one configured to absorb vibration energy, and this type of damping structure is classified into a stud-type damping structure and a wall-type damping structure (for example, Patent Document 1, Patent Document 2, (See Patent Document 3).

間柱型の制震構造Aは、例えば、図9及び図10に示すように、上方の梁1(1a)と下方の梁1(1b)(下方の梁1bで支持したスラブ2)にそれぞれ、例えばアンカーボルト3で連結して建物Tの構面T1内に設置される連結用上部鉄骨4及び連結用下部鉄骨5と、連結用上部鉄骨4に上端側を連結して下方に延設され、左右一対の柱6(6a、6b)の間に間隔をあけて配設された上部支持鉄骨(上部支持部材)7と、連結用下部鉄骨5に下端側を連結して上方に延設され、左右一対の柱6(6a、6b)の間に間隔をあけて配設された下部支持鉄骨(下部支持部材)8と、上下一対の上部支持鉄骨7と下部支持鉄骨8にそれぞれ上端と下端を連結して支持され、これら両支持鉄骨7、8の間に介装されたダンパ9とを備えて構成されている。  For example, as shown in FIGS. 9 and 10, the stud-type seismic control structure A is provided on the upper beam 1 (1 a) and the lower beam 1 (1 b) (slab 2 supported by the lower beam 1 b), respectively. For example, a connecting upper steel frame 4 and a connecting lower steel frame 5 which are connected by anchor bolts 3 and are installed in the construction surface T1 of the building T, and an upper end side is connected to the connecting upper steel frame 4 and is extended downward. An upper support steel frame (upper support member) 7 disposed with a space between a pair of left and right columns 6 (6a, 6b), and a lower steel frame 5 for connection are connected to the lower end side and extended upward. A lower support steel (lower support member) 8 disposed between the pair of left and right columns 6 (6a, 6b) with an interval therebetween, and an upper end and a lower end of the upper and lower pair of upper support steel 7 and lower support steel 8 respectively. It is connected and supported, and comprises a damper 9 interposed between these two supporting steel frames 7 and 8. To have.

一方、壁型の制震構造Bは、例えば、図11及び図12に示すように、上方の梁1(1a)に上端を連結して下方に延設された鉄筋コンクリート製の上部支持壁(上部支持部材)11と、下方の梁1(1b)(下方の梁1bで支持したスラブ2)に下端を連結して上方に延設された鉄筋コンクリート製の下部支持壁(下部支持部材)12と、上部支持壁11の下端に一体に取り付けられた連結プレート13に上端が、下部支持壁12の上端に一体に取り付けられた連結プレート14に下端がそれぞれ連結して支持され、これら支持壁11、12の間に介装された複数のダンパ9とを備えて構成されている。なお、上部支持壁11と下部支持壁12を鋼材で形成したものもある。   On the other hand, as shown in FIGS. 11 and 12, for example, the wall-type vibration control structure B has an upper support wall (upper part) made of reinforced concrete that extends downward by connecting the upper end to the upper beam 1 (1a). A lower support wall (lower support member) 12 made of reinforced concrete, which has a lower end connected to the lower beam 1 (1b) (slab 2 supported by the lower beam 1b) and extends upward, The upper end is connected to the connecting plate 13 integrally attached to the lower end of the upper support wall 11, and the lower end is connected to the connecting plate 14 integrally attached to the upper end of the lower support wall 12. And a plurality of dampers 9 interposed therebetween. In some cases, the upper support wall 11 and the lower support wall 12 are made of steel.

そして、上記のような間柱型の制震構造A及び壁型の制震構造Bにおいては、ダンパ9として例えば低降伏点鋼で形成したパネル部を有するパネルダンパなどが適用され、地震時に発生する上下の梁1の間の相対変位によってパネルダンパ9が弾塑性変形することで、振動エネルギーを吸収し、建物Tの地震時の応答を低減させる。このように制震構造A、Bを建物Tの構面T1内に設置して建物Tの応答を低減させることで、地震時に梁1や柱6の建物Tの主架構に損傷が生じることを防止できる。
特開2001−132266号公報 特開2002−201818号公報 特開2004−300782号公報
In the stud-type damping structure A and the wall-type damping structure B as described above, for example, a panel damper having a panel portion formed of a low yield point steel is applied as the damper 9 and is generated during an earthquake. The panel damper 9 undergoes elasto-plastic deformation due to the relative displacement between the upper and lower beams 1, thereby absorbing vibration energy and reducing the response of the building T during an earthquake. By installing the damping structures A and B in the construction surface T1 of the building T in this way and reducing the response of the building T, the main frame of the building T of the beam 1 and the pillar 6 is damaged during the earthquake. Can be prevented.
JP 2001-132266 A JP 2002-201818 A Japanese Patent Laid-Open No. 2004-300782

しかしながら、上記の間柱型及び壁型の制震構造A、Bにおいては、地震時に建物Tに作用した振動エネルギーが梁1(1a、1b)から上部支持部材7、11及び下部支持部材8、12を通じてダンパ(パネルダンパ)9に伝達し、ダンパ9が変形してこの振動エネルギーを吸収する際に、ダンパ9の抵抗力が上部支持部材7、11及び下部支持部材8、12を通じて上下の梁1にせん断力として伝達し、これら上下の梁1のせん断力を増大させる。そして、上下のそれぞれの梁1には、柱6(6a、6b)に接合した両端部側に大きなせん断力が発生し、この部分(図9、図11に示す危険断面部S)にせん断破壊が生じるおそれがあった。また、大きな耐力(抵抗力)を有するダンパ9を用いるほど、上下の梁1に大きなせん断力が作用することになり、危険断面部Sにせん断破壊がさらに生じやすくなってしまう。   However, in the stud-type and wall-type damping structures A and B described above, vibration energy acting on the building T during the earthquake is transmitted from the beams 1 (1a and 1b) to the upper support members 7 and 11 and the lower support members 8 and 12. When the damper 9 is deformed and absorbs this vibration energy, the resistance force of the damper 9 causes the upper and lower beams 1 to pass through the upper support members 7 and 11 and the lower support members 8 and 12. As a shearing force, the shearing force of these upper and lower beams 1 is increased. In each of the upper and lower beams 1, a large shearing force is generated on both ends joined to the columns 6 (6 a, 6 b), and shear fracture occurs in these portions (the dangerous cross section S shown in FIGS. 9 and 11). Could occur. Further, as the damper 9 having a greater proof stress (resistance force) is used, a greater shearing force acts on the upper and lower beams 1, and shear fracture is more likely to occur in the dangerous cross section S.

このため、梁1の断面耐力(主としてせん断耐力)を上回るせん断力の発生を防止するために、大きな耐力を備えたダンパ9を用いることができず、ダンパ9の選定に制約が生じ、ひいては建物Tの構面T1の1スパン当たりの耐力(補強効果、制震性能)を小さく設定せざるを得ず、制震構造A、Bを設置する構面T1数を多くせざるを得ないという問題があった。また、大きな耐力を備えたダンパ9を用いて制震構造A、Bを設置する構面T1数を減らすためには、梁1の危険断面部Sに別途補強を施す必要が生じてしまうという問題があった。   For this reason, in order to prevent generation of shear force exceeding the cross-sectional yield strength (mainly shear strength) of the beam 1, the damper 9 having a large yield strength cannot be used, and the selection of the damper 9 is restricted, and as a result, the building The problem is that the proof strength (strengthening effect, seismic performance) per span of the structural surface T1 of T must be set small, and the number of structural surfaces T1 on which the seismic structures A and B are installed must be increased. was there. Further, in order to reduce the number of structural surfaces T1 on which the damping structures A and B are installed using the damper 9 having a large proof strength, it is necessary to separately reinforce the dangerous cross section S of the beam 1. was there.

一方、例えば図9及び図10に示した間柱型の制震構造Aにおいて、連結用上部鉄骨4及び連結用下部鉄骨5のそれぞれの両端部4a、4b、5a、5bを左右の柱6a、6b(6)に強固に接合し、梁1の危険断面部Sに作用するせん断力をこれら連結用上部鉄骨4及び連結用下部鉄骨5で受け持つようにすることも考えられる。しかしながら、このように連結用上部鉄骨4及び連結用下部鉄骨5を柱6に剛接合した場合には、柱6が短柱化してしまうため、柱6のせん断破壊が卓越して柱6の脆性的な破壊を招くという不都合が生じてしまう。   On the other hand, for example, in the stud-type vibration control structure A shown in FIGS. 9 and 10, both ends 4a, 4b, 5a, 5b of the connecting upper steel frame 4 and the connecting lower steel frame 5 are connected to the left and right columns 6a, 6b. It is conceivable that the connecting upper steel frame 4 and the connecting lower steel frame 5 handle the shearing force acting on the dangerous cross section S of the beam 1 by being firmly joined to (6). However, when the connecting upper steel frame 4 and the connecting lower steel frame 5 are rigidly joined to the column 6 in this way, the column 6 is shortened, so that the shear failure of the column 6 is prominent and the column 6 is brittle. Inconveniences that result in disruption.

本発明は、上記事情に鑑み、ダンパの抵抗力を、短柱化を招くことなく柱に伝達させて、梁の柱と接合する両端部側のせん断破壊を確実に防止し、好適に振動エネルギーを吸収し建物の応答を低減させることが可能な建物の制震構造を提供することを目的とする。   In view of the above circumstances, the present invention transmits the resistance force of the damper to the column without causing a shortening of the column, and reliably prevents the shear failure at both end sides joined to the column of the beam, and preferably vibration energy. An object of the present invention is to provide a vibration control structure of a building that can absorb the noise and reduce the response of the building.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の建物の制震構造は、左右一対の柱と上下一対の梁又はスラブで囲まれた構面内に設置されて、建物に作用する振動エネルギーを吸収する建物の制震構造であって、上端側が上方の梁に支持されて下方に延設した上部支持部材と、下端側が下方の梁に支持されて上方に延設した下部支持部材と、前記上部支持部材と前記下部支持部材の間に介装され、前記振動エネルギーが作用するとともに弾塑性変形して該振動エネルギーを吸収するダンパとを備え、前記上部支持部材と前記下部支持部材がそれぞれ、上下方向に延びる折曲部を備えた折板を介して前記柱に連結されていることを特徴とする。   The building vibration control structure of the present invention is a building vibration control structure that is installed in a structure surrounded by a pair of left and right columns and a pair of upper and lower beams or slabs and absorbs vibration energy acting on the building. An upper support member whose upper end is supported by the upper beam and extending downward; a lower support member whose lower end is supported by the lower beam and extending upward; and between the upper support member and the lower support member And a damper that absorbs the vibration energy when the vibration energy acts and elastically plastically deforms, and the upper support member and the lower support member each include a bent portion extending in the vertical direction. It is connected to the column via a folded plate.

この発明においては、上部支持部材と下部支持部材のそれぞれと柱とを連結する折板が、上下方向に延びる折曲部を備えて形成されているため、建物に振動エネルギーが作用して、上部支持部材及び下部支持部材のそれぞれと柱とが水平方向に相対変位した際には、折板が折曲部で屈曲変形してダンパの抵抗力(ダンパの抵抗力の水平成分)を吸収し、ダンパの抵抗力がこの折板から柱に直接伝達することを防止できる。これにより、上部支持部材及び下部支持部材と柱とを折板を介して連結した場合においても、ダンパの抵抗力が柱にせん断力として作用することがなく、柱の短柱化を防止し、柱のせん断破壊が卓越することを確実に防止できる。   In this invention, since the folded plate that connects each of the upper support member and the lower support member and the column is formed with a bent portion extending in the vertical direction, vibration energy acts on the building, When each of the support member and the lower support member and the column are relatively displaced in the horizontal direction, the folded plate is bent and deformed at the bent portion to absorb the resistance force of the damper (the horizontal component of the resistance force of the damper), It is possible to prevent the resistance force of the damper from being directly transmitted from the folded plate to the column. Thereby, even when the upper support member and the lower support member and the column are connected via the folded plate, the resistance force of the damper does not act as a shearing force on the column, preventing the column from being shortened, It is possible to surely prevent the column from breaking shear.

一方、上部支持部材及び下部支持部材のそれぞれと柱とが垂直方向(上下方向)に相対変位した際には、折板が変形することがなく、あたかも上部支持部材及び下部支持部材と柱とが折板によって剛接合されているように、ダンパの抵抗力(ダンパの抵抗力の垂直成分)をこの折板から柱に直接伝達させることができ、ダンパの抵抗力の垂直成分を柱の軸力として支持することが可能になる。これにより、ダンパの抵抗力の少なくとも一部が上方の梁及び下方の梁を経ずに(危険断面部を経ずに)、上部支持部材及び下部支持部材からそれぞれ直接柱に伝達して支持されるため、上方の梁と下方の梁に大きなせん断力が作用することがなく、確実に(危険断面部に)せん断破壊が生じることを防止できる。   On the other hand, when the upper support member and the lower support member and the column are relatively displaced in the vertical direction (vertical direction), the folded plate is not deformed, as if the upper support member, the lower support member and the column are The damper's resistance force (the vertical component of the damper's resistance force) can be transmitted directly from this folded plate to the column as if rigidly joined by the folded plate, and the vertical component of the damper's resistance force is transmitted to the axial force of the column. It becomes possible to support as. As a result, at least a part of the resistance force of the damper is transmitted and supported directly from the upper support member and the lower support member to the column without passing through the upper beam and the lower beam (without passing through the dangerous cross section). Therefore, a large shearing force does not act on the upper beam and the lower beam, and it is possible to reliably prevent shear failure (in the dangerous cross section).

また、本発明の建物の制震構造においては、前記折板が前記折曲部によって前記柱の外面に対向する一面を備えるように前記柱の外面に沿って形成され、該折板の一面と前記柱の外面との間に、前記折板と前記柱を相対的に変位させるように絶縁するための弾性部材が介装されていることが望ましい。   In the vibration control structure of a building according to the present invention, the folded plate is formed along the outer surface of the column so as to have one surface facing the outer surface of the column by the bent portion, It is desirable that an elastic member for insulating the folded plate and the column to be relatively displaced is interposed between the outer surface of the column.

この発明においては、折板が折曲部によって柱の外面に沿って形成されていることで、上部支持部材及び下部支持部材のそれぞれと柱とが垂直方向(上下方向)に相対変位した際に、ダンパの抵抗力(ダンパの抵抗力の垂直成分)を確実にこの折板から柱に直接伝達させて柱の軸力として支持させることが可能になる。   In this invention, when the folded plate is formed along the outer surface of the column by the bent portion, each of the upper support member and the lower support member and the column are relatively displaced in the vertical direction (vertical direction). Thus, the resistance force of the damper (the vertical component of the resistance force of the damper) can be reliably transmitted directly from the folded plate to the column and supported as the axial force of the column.

また、折板の一面と柱の外面との間に弾性部材が設けられて、互いが絶縁されていることにより、上部支持部材及び下部支持部材のそれぞれと柱とが水平方向に相対変位した際に、確実に折板を折曲部で屈曲変形させてダンパの抵抗力がこの折板から柱に直接伝達することを防止できる。さらに、このとき、上部支持部材及び下部支持部材のそれぞれと柱とが近づくように相対変位した場合、すなわち折板の一面が柱の外面を水平方向に押圧するように変位した場合においても、弾性部材の弾性によってダンパの抵抗力及び押圧力を吸収できるため、上部支持部材及び下部支持部材と柱とを折板を介して連結しても、確実に柱にせん断力が作用することを防止でき、柱の短柱化を防止することが可能になる。   In addition, when an elastic member is provided between one surface of the folded plate and the outer surface of the column and each other is insulated, each of the upper support member and the lower support member and the column are relatively displaced in the horizontal direction. In addition, the folded plate can be reliably bent and deformed at the bent portion, and the resistance force of the damper can be prevented from being transmitted directly from the folded plate to the column. Further, at this time, even when each of the upper support member and the lower support member is relatively displaced so as to approach the column, that is, when one surface of the folded plate is displaced so as to press the outer surface of the column in the horizontal direction, it is elastic. Because the elastic force of the member can absorb the resistance and pressing force of the damper, even if the upper support member, the lower support member and the column are connected via a folded plate, it is possible to reliably prevent the shearing force from acting on the column. It becomes possible to prevent the column from being shortened.

本発明の建物の制震構造によれば、上部支持部材と下部支持部材がそれぞれ、上下方向に延びる折曲部を備えた折板を介して柱に連結されていることにより、ダンパの抵抗力を、短柱化を招くことなく柱に伝達させて、梁の柱と接合する両端部側のせん断破壊を確実に防止し、好適に振動エネルギーを吸収し建物の応答を低減させることが可能になる。これにより、従来の制震構造のように梁の断面耐力を考慮してダンパを選定する必要がなく、梁に別途補強を施すことを不要にして高耐力のダンパを用いることが可能になる。よって、建物の構面の1スパン当たりの耐力(補強効果、制震性能)を大きく設定し、制震構造を設置する構面数を少なくすることが可能になり、経済的に建物の耐震性能を向上させることが可能になる。   According to the vibration control structure of a building of the present invention, the upper support member and the lower support member are connected to the pillar via the folding plate provided with the bent portion extending in the up-down direction, respectively. Can be transmitted to the column without incurring a shortening of the column, and the shear failure at both ends joined to the column of the beam can be surely prevented, and the vibration energy can be suitably absorbed and the response of the building can be reduced. Become. Accordingly, it is not necessary to select a damper in consideration of the cross-sectional strength of the beam as in the conventional vibration control structure, and it is possible to use a high-strength damper without requiring additional reinforcement of the beam. Therefore, it is possible to increase the proof strength (reinforcing effect, seismic performance) per span of the building surface, and to reduce the number of structural surfaces where the seismic structure is installed. It becomes possible to improve.

以下、図1から図5を参照し、本発明の一実施形態に係る建物の制震構造について説明する。本実施形態は、例えば建物の左右一対の柱と上下一対の梁(又はスラブ)で囲まれた構面内に設置され、地震時に建物に作用する振動エネルギーを吸収してこの建物の地震時の応答を低減させるための制震構造に関するものである。   Hereinafter, a building vibration control structure according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. This embodiment is installed in a construction surface surrounded by a pair of left and right columns and a pair of upper and lower beams (or slabs) of a building, for example, and absorbs vibration energy acting on the building during an earthquake to The present invention relates to a vibration control structure for reducing response.

ここで、本実施形態の建物Tは、図1及び図2に示すように、左右一対の柱6(6a、6b)、上下一対の梁1(1a、1b)、及びスラブ2が鉄筋コンクリートで形成されており、このうち柱6は、断面方形状の柱本体6cと、柱本体6cの構面T1側を向く両側面6d側にそれぞれ一体形成され、各側面6dに直交して構面T1内側に突設した断面方形状の一対の突出部(袖壁)6eとを備えて、断面十字状に形成されている。   Here, in the building T of this embodiment, as shown in FIGS. 1 and 2, a pair of left and right columns 6 (6a, 6b), a pair of upper and lower beams 1 (1a, 1b), and a slab 2 are formed of reinforced concrete. Of these, the column 6 is integrally formed on the column main body 6c having a rectangular cross section and both side surfaces 6d facing the surface T1 side of the column main body 6c, and is orthogonal to each side surface 6d and inside the surface T1. And a pair of projecting portions (sleeve walls) 6e having a square cross-section projecting from each other.

このような柱6を備えた建物Tの構面T1内に設置する本実施形態の建物の制震構造(制震構造)Cは、図1に示すように、間柱型の制震構造であり、上方の梁1(1a)と下方の梁1(1b)(下方の梁1bで支持したスラブ2)にそれぞれ連結して設置された連結用上部鉄骨4及び連結用下部鉄骨5と、連結用上部鉄骨4に上端側を連結して下方に延設され、左右一対の柱6(6a、6b)の間に配設された上部支持鉄骨(上部支持部材)7と、連結用下部鉄骨5に下端側を連結して上方に延設され、左右一対の柱6の間に配設された下部支持鉄骨(下部支持部材)8と、上下一対の上部支持鉄骨7と下部支持鉄骨8にそれぞれ上端と下端を連結して支持され、これら両支持鉄骨7、8の間に介装されたダンパ9と、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6を連結する折板15とを備えて構成されている。   The building damping structure (seismic damping structure) C of the present embodiment installed in the construction surface T1 of the building T having such a column 6 is a stud-type damping structure as shown in FIG. A connecting upper steel frame 4 and a connecting lower steel frame 5 connected to the upper beam 1 (1a) and the lower beam 1 (1b) (slab 2 supported by the lower beam 1b), respectively, An upper support steel frame (upper support member) 7 is provided between the upper steel frame 4 and connected to the upper steel frame 4 so as to extend downward and disposed between a pair of left and right columns 6 (6a, 6b). A lower support steel frame (lower support member) 8 that is connected to the lower end side and extends upward and is disposed between a pair of left and right columns 6, and a pair of upper and lower upper support steel frames 7 and 8. And a lower end connected to each other, a damper 9 interposed between the two supporting steel frames 7 and 8, an upper supporting steel frame 7 and It is constituted by a folded plate 15 for connecting each and the bar 6 parts supporting steel frame 8.

また、本実施形態では、連結用上部鉄骨4、連結用下部鉄骨5、上部支持鉄骨7及び下部支持鉄骨8がそれぞれH型鋼で構成されており、1つの連結用上部鉄骨4と3つの上部支持鉄骨7で上部フレーム20が構成され、1つの連結用下部鉄骨5と3つの下部支持鉄骨8で下部フレーム21が構成されている。さらに、上部フレーム20及び下部フレーム21は、連結用上部鉄骨4及び連結用下部鉄骨5がそれぞれ構面T1の幅よりも僅かに小さな長さ寸法で形成されている。   Moreover, in this embodiment, the connection upper steel frame 4, the connection lower steel frame 5, the upper support steel frame 7, and the lower support steel frame 8 are each made of H-shaped steel, and one connection upper steel frame 4 and three upper support frames. The upper frame 20 is composed of the steel frame 7, and the lower frame 21 is composed of one connecting lower steel frame 5 and three lower supporting steel frames 8. Further, the upper frame 20 and the lower frame 21 are formed such that the connecting upper steel frame 4 and the connecting lower steel frame 5 are each slightly smaller in length than the width of the construction surface T1.

そして、上部フレーム20においては、連結用上部鉄骨4の延設方向両端部4a、4b側及びその中央にそれぞれ1つずつ上部支持鉄骨7が所定の間隔をあけて配設され、連結用上部鉄骨4のフランジを上方の梁1aの下面にアンカーボルト3で固定して、構面T1内に配設されている。これにより、各上部支持鉄骨7は、連結用上部鉄骨4を介して上端側が上方の梁1aに支持されている。また、下部フレーム21においては、連結用下部鉄骨5の延設方向両端部5a、5b側及びその中央にそれぞれ1つずつの下部支持鉄骨8が所定の間隔をあけて配設され、連結用下部鉄骨5のフランジを下方の梁1bで支持したスラブ2の床面にこのスラブ2を貫通し下方の梁1bに定着したアンカーボルト3で固定して、構面T1内に配設されている。これにより、各下部支持鉄骨8は、連結用下部鉄骨5を介して下端側が下方の梁1bに支持されている。   In the upper frame 20, one upper support steel frame 7 is disposed at a predetermined interval on each of the extension direction both ends 4 a and 4 b side and the center of the connection upper steel frame 4, and the connection upper steel frame 4. The flange 4 is fixed to the lower surface of the upper beam 1a with an anchor bolt 3, and is disposed in the construction surface T1. Thereby, each upper support steel frame 7 is supported by the upper beam 1a on the upper end side via the connection upper steel frame 4. Further, in the lower frame 21, one lower supporting steel frame 8 is disposed at a predetermined interval on each of the extending direction both ends 5a, 5b side and the center of the lower connecting steel frame 5 at a predetermined interval. The steel frame 5 is fixed to the floor surface of the slab 2 supported by the lower beam 1b with an anchor bolt 3 that passes through the slab 2 and is fixed to the lower beam 1b. Thereby, each lower support steel frame 8 is supported by the lower beam 1b on the lower end side via the connecting lower steel frame 5.

また、このとき、上部フレーム20の3つの上部支持鉄骨7と下部フレーム21の3つの下部支持鉄骨8は、それぞれ上下1つずつ同軸上に配設されており、上下一対の上部支持鉄骨7の下端と下部支持鉄骨8の上端の間に所定の隙間をあけて配設されている。そして、上下一対の上部支持鉄骨7の下端と下部支持鉄骨8の上端にそれぞれ上端と下端を連結してダンパ9が設けられ、これにより、ダンパ9が両支持鉄骨7、8の間に介装して支持されている。また、本実施形態のダンパ9は、低降伏点鋼で形成したパネル部を備えたパネルダンパであり、2つのパネルダンパ9を上部支持鉄骨7と下部支持鉄骨8のウェブを挟んで両側にそれぞれ取り付けて構成されている(図10参照)。   At this time, the three upper support steel frames 7 of the upper frame 20 and the three lower support steel frames 8 of the lower frame 21 are arranged coaxially one by one on the upper and lower sides, respectively. A predetermined gap is provided between the lower end and the upper end of the lower support steel frame 8. A damper 9 is provided by connecting the upper end and the lower end to the lower end of the pair of upper and lower upper support steel frames 7 and the upper end of the lower support steel frame 8, respectively, so that the damper 9 is interposed between the support steel frames 7 and 8. And is supported. Moreover, the damper 9 of this embodiment is a panel damper provided with the panel part formed with the low yield point steel, and the two panel dampers 9 are respectively arranged on both sides of the web of the upper support steel 7 and the lower support steel 8. It is configured to be attached (see FIG. 10).

さらに、上部フレーム20の連結用上部鉄骨4と下部フレーム21の連結用下部鉄骨5のそれぞれ両端部4a、4b、5a、5b側に配設された上部支持鉄骨7と下部支持鉄骨8には、各支持鉄骨7、8の柱6(6a、6b)側を向くフランジ面に、このフランジ面の直交方向外側(柱6側)に突出する連結板22が取り付けられている。   Furthermore, the upper support steel 7 and the lower support steel 8 disposed on both ends 4a, 4b, 5a, and 5b of the connection upper steel 4 of the upper frame 20 and the connection lower steel 5 of the lower frame 21, respectively, A connecting plate 22 is attached to the flange surface of each support steel frame 7, 8 that faces the column 6 (6 a, 6 b) side and projects outward in the direction perpendicular to the flange surface (column 6 side).

一方、本実施形態の折板15は、矩形平板状の鋼板を折り曲げ加工して形成したものであり、図1から図3に示すように、一側端15aから他側端15bの間に、一側端15aと他側端15bに沿って上下方向に延びる4つの折曲部15c、15d、15e、15fを備えて形成されており、これら折曲部15c〜15fによって各折曲部15c〜15fを挟んで両側の鋼板が直交するように折り曲げられている。また、このとき、折板15は、一側端15aから第1折曲部15cの間の第1平板部15gが、連結用上部鉄骨4と連結用下部鉄骨5のそれぞれに取り付けられた連結板22にボルト及びナットで連結されている。さらに、折板15は、第1折曲部15cから他側端15bまでの部分が、各折曲部15c〜15fによって柱6の外面に沿うように形成されている。   On the other hand, the folded plate 15 of the present embodiment is formed by bending a rectangular flat plate-shaped steel plate, and as shown in FIGS. 1 to 3, between one side end 15a and the other side end 15b, Four bent portions 15c, 15d, 15e, 15f extending in the vertical direction along the one side end 15a and the other side end 15b are formed, and the bent portions 15c-15f are formed by these bent portions 15c-15f. The steel plates on both sides are bent so as to be orthogonal to each other with 15f interposed therebetween. Further, at this time, the folded plate 15 is a coupling plate in which the first flat plate portion 15g between the one side end 15a and the first bent portion 15c is attached to each of the coupling upper steel frame 4 and the coupling lower steel frame 5. 22 is connected with a bolt and a nut. Furthermore, the folded plate 15 is formed so that the part from the 1st bending part 15c to the other side end 15b may follow the outer surface of the pillar 6 by each bending part 15c-15f.

すなわち、第1折曲部15cから第2折曲部15dの間の第2平板部15hが柱6の突出部6eの構面T1側を向く外面に、第2折曲部15dから第3折曲部15eの間の第3平板部15iが突出部6eの構面T1と同方向を向く外面に、第3折曲部15eから第4折曲部15fの間の第4平板部15kが柱本体6cの構面T1側を向く外面(側面6d)に、第4折曲部15fから他側端15bの間の第5平板部15mが柱本体6cの構面T1と同方向を向く外面に、それぞれ折板15の一面を対向させるように配設されている。また、第5平板部15mは、折板15の一面を柱本体6cの外面に面接触させた状態で、柱6にアンカーボルトによって固定されている。   That is, the second flat plate portion 15h between the first bent portion 15c and the second bent portion 15d is on the outer surface facing the construction surface T1 side of the protruding portion 6e of the column 6, and the second bent portion 15d to the third bent portion. The fourth flat plate portion 15k between the third bent portion 15e and the fourth bent portion 15f is a column on the outer surface where the third flat plate portion 15i between the bent portions 15e faces the same direction as the surface T1 of the protruding portion 6e. On the outer surface (side surface 6d) facing the construction surface T1 side of the main body 6c, the fifth flat plate portion 15m between the fourth bent portion 15f and the other end 15b is on the outer surface facing the same direction as the construction surface T1 of the column main body 6c. The folded plates 15 are arranged so as to face each other. The fifth flat plate portion 15m is fixed to the column 6 with an anchor bolt in a state where one surface of the folded plate 15 is in surface contact with the outer surface of the column main body 6c.

また、このように、第1平板部15gを連結板22に取り付け、第5平板部15mを柱6に固定して、上部支持鉄骨7と下部支持鉄骨8のそれぞれと柱6(6a、6b)とを連結するように折板15を設置した状態で、第2平板部15h、第3平板部15i、第4平板部15kのそれぞれの折板15の一面と、柱6の外面との間には、例えばゴムシートなどの弾性部材23が介装されている。また、本実施形態において、弾性部材23は柱6の外面に固着して設けられており、この弾性部材23によって、折板15の第2平板部15h、第3平板部15i、第4平板部15kは、柱6に固定されることがなく絶縁して設けられ、柱6に対し相対的に変位することが可能とされている。   Further, in this way, the first flat plate portion 15g is attached to the connecting plate 22, the fifth flat plate portion 15m is fixed to the column 6, and each of the upper support steel frame 7 and the lower support steel frame 8 and the column 6 (6a, 6b). In a state in which the folded plate 15 is installed so as to be connected to each other, between the one surface of each folded plate 15 of the second flat plate portion 15h, the third flat plate portion 15i, and the fourth flat plate portion 15k, and the outer surface of the column 6 Is provided with an elastic member 23 such as a rubber sheet. In the present embodiment, the elastic member 23 is fixedly provided on the outer surface of the column 6, and the second flat plate portion 15 h, the third flat plate portion 15 i, and the fourth flat plate portion of the folded plate 15 are provided by the elastic member 23. 15 k is provided without being fixed to the pillar 6 and insulated, and can be displaced relative to the pillar 6.

ついで、上記のように構成した本実施形態の建物の制震構造Cの作用及び効果について説明する。   Next, the action and effect of the building vibration control structure C of the present embodiment configured as described above will be described.

地震時に建物Tに作用した振動エネルギーが梁1から上部支持鉄骨7及び下部支持鉄骨8を通じてダンパ9に伝達し、ダンパ9が変形してこの振動エネルギーを吸収する。このとき、従来の制震構造Aにおいては、ダンパ9の抵抗力が上部支持鉄骨7及び下部支持鉄骨8を通じて上下の梁1にせん断力として伝達し、これら上下の梁1のせん断力を増大させ、上下のそれぞれの梁1の柱6に接合した両端部側に大きなせん断力が発生し、この部分(危険断面部S)にせん断破壊が生じるおそれがあった。   Vibration energy acting on the building T during the earthquake is transmitted from the beam 1 to the damper 9 through the upper support steel 7 and the lower support steel 8, and the damper 9 is deformed to absorb this vibration energy. At this time, in the conventional damping structure A, the resistance force of the damper 9 is transmitted as the shearing force to the upper and lower beams 1 through the upper supporting steel frame 7 and the lower supporting steel frame 8, and the shearing force of these upper and lower beams 1 is increased. A large shearing force was generated on both end sides joined to the pillars 6 of the upper and lower beams 1, and there was a possibility that shear failure would occur in this portion (hazardous cross section S).

これに対し、本実施形態においては、上部支持鉄骨7と下部支持鉄骨8のそれぞれと柱6とが、上下方向に延びる複数の折曲部15c〜15fを備えた折板15で連結されている。このため、建物Tに振動エネルギーが作用し、ダンパ9がこの振動エネルギーを吸収しつつ変形して、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが垂直方向(上下方向)に相対変位した際には、上部支持鉄骨7及び下部支持鉄骨8のそれぞれに伝達したダンパ9の抵抗力(ダンパ9の抵抗力の垂直成分)が、折板15に上下方向のせん断力Qとして伝達される。そして、折板15が折曲部15c〜15fを備えることによって平板と比較し上下方向の剛性に優れているため、図3に示すように、上下のせん断力Qで折板15が変形することはなく、あたかも上部支持鉄骨7及び下部支持鉄骨8と柱6とをこの折板15で剛接合するように振る舞うことになる。このため、折板15に発生した上下方向のせん断力Qがこの折板15から柱6に直接伝達され、このように折板15を通じて柱6に伝達したダンパの抵抗力が柱6の軸力Nとして支持されることになる。また、本実施形態のように、折板15が複数の折曲部15c〜15fによって柱6の外面に沿って形成されていることで、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが垂直方向に相対変位した際に、ダンパ9の抵抗力が確実にこの折板15を通じて柱6に直接伝達して、確実に柱6の軸力Nとして支持されることになる。   On the other hand, in this embodiment, each of the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are connected by a folded plate 15 having a plurality of bent portions 15c to 15f extending in the vertical direction. . For this reason, vibration energy acts on the building T, and the damper 9 is deformed while absorbing this vibration energy, so that the upper support steel 7 and the lower support steel 8 and the column 6 are relative to each other in the vertical direction (vertical direction). When displaced, the resistance force of the damper 9 (vertical component of the resistance force of the damper 9) transmitted to each of the upper support steel frame 7 and the lower support steel frame 8 is transmitted to the folded plate 15 as a vertical shearing force Q. The Since the folded plate 15 is provided with the bent portions 15c to 15f and is superior in rigidity in the vertical direction as compared with the flat plate, the folded plate 15 is deformed by the vertical shear force Q as shown in FIG. Instead, the upper support steel frame 7 and the lower support steel frame 8 and the column 6 behave as if they are rigidly joined by the folded plate 15. For this reason, the vertical shearing force Q generated in the folded plate 15 is directly transmitted from the folded plate 15 to the column 6, and thus the resistance force of the damper transmitted to the column 6 through the folded plate 15 is the axial force of the column 6. N will be supported. Further, as in the present embodiment, the folded plate 15 is formed along the outer surface of the column 6 by a plurality of bent portions 15c to 15f, so that each of the upper support steel frame 7 and the lower support steel frame 8 and the column 6 is formed. When the two are relatively displaced in the vertical direction, the resistance force of the damper 9 is reliably transmitted directly to the column 6 through the folded plate 15 and is reliably supported as the axial force N of the column 6.

これにより、ダンパ9から上部支持鉄骨7及び下部支持鉄骨8に伝達したダンパ9の抵抗力は、上方の梁1a及び下方の梁1bを経ずに(危険断面部Sを経ずに)、上部支持鉄骨7及び下部支持鉄骨8から折板15を通じてそれぞれ直接柱6に伝達して支持される。よって、上方の梁1aと下方の梁1bに大きなせん断力が作用することはなく、梁1の危険断面部Sにせん断破壊が生じることが確実に防止される。   Thereby, the resistance force of the damper 9 transmitted from the damper 9 to the upper support steel 7 and the lower support steel 8 does not pass through the upper beam 1a and the lower beam 1b (without passing through the dangerous cross section S). The support steel 7 and the lower support steel 8 are directly transmitted to the pillar 6 through the folded plate 15 and supported. Therefore, a large shearing force does not act on the upper beam 1a and the lower beam 1b, and it is reliably prevented that a shear fracture occurs in the dangerous cross section S of the beam 1.

一方、建物Tに振動エネルギーが作用し、ダンパ9がこの振動エネルギーを吸収しつつ変形して、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが水平方向に相対変位した際には、図4及び図5に示すように、上部支持鉄骨7及び下部支持鉄骨8のそれぞれに伝達したダンパ9の抵抗力(ダンパ9の抵抗力の水平成分)が折板15に伝達する。このとき、折板15の第2平板部15h、第3平板部15i、第4平板部15kと柱6の外面との間に弾性部材23が設けられて、これら折板15の平板部15h、15i、15mが柱6に固定されずに絶縁して設けられているため、この折板15が、柱6に対し相対的に変位するとともに複数の折曲部15c〜15fで屈曲変形してダンパ9の抵抗力を吸収する。このため、ダンパ9の抵抗力が、折板15を通じて柱6に直接伝達されることはなく、上部支持鉄骨7及び下部支持鉄骨8と柱6とを折板15を介して連結した場合においても、ダンパ9の抵抗力が柱6にせん断力として作用することがない。これにより、柱6の短柱化を防止し、柱6のせん断破壊が卓越することが確実に防止される。   On the other hand, when vibration energy acts on the building T and the damper 9 is deformed while absorbing the vibration energy, the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are relatively displaced in the horizontal direction. 4 and 5, the resistance force of the damper 9 (the horizontal component of the resistance force of the damper 9) transmitted to each of the upper support steel frame 7 and the lower support steel frame 8 is transmitted to the folded plate 15. At this time, the elastic member 23 is provided between the second flat plate portion 15h, the third flat plate portion 15i, the fourth flat plate portion 15k of the folded plate 15 and the outer surface of the column 6, and the flat plate portions 15h of the folded plate 15 are provided. Since 15i and 15m are provided without being fixed to the column 6, the folded plate 15 is relatively displaced with respect to the column 6, and is bent and deformed at a plurality of bent portions 15c to 15f. Absorbs 9 resistance. Therefore, the resistance force of the damper 9 is not directly transmitted to the column 6 through the folded plate 15, and even when the upper support steel 7, the lower support steel 8 and the column 6 are connected via the folded plate 15. The resistance force of the damper 9 does not act on the column 6 as a shearing force. Thereby, shortening of the pillar 6 is prevented and it is reliably prevented that the shear fracture of the pillar 6 is excellent.

また、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが近づくように相対変位した場合、すなわち折板15の第2平板部15h、第3平板部15i、第4平板部15kの一面が柱6の外面を水平方向に押圧するように変位した場合においても、これら平板部15h、15i、15kの一面と柱6の外面の間に介装した弾性部材23の弾性によって、ダンパ9の抵抗力及び押圧力が吸収されるため、上部支持鉄骨7及び下部支持鉄骨8と柱6とを折板15を介して連結しても、やはり確実に柱6にせん断力が作用することが防止されて、柱6の短柱化が防止される。   Further, when the upper support steel frame 7 and the lower support steel frame 8 are relatively displaced so that the column 6 approaches, that is, one surface of the second flat plate portion 15h, the third flat plate portion 15i, and the fourth flat plate portion 15k of the folded plate 15. Is displaced so as to press the outer surface of the column 6 in the horizontal direction, the elasticity of the elastic member 23 interposed between one surface of the flat plate portions 15h, 15i, 15k and the outer surface of the column 6 makes the damper 9 Since the resistance force and the pressing force are absorbed, even if the upper support steel frame 7 and the lower support steel frame 8 are connected to the column 6 via the folded plate 15, it is still possible to prevent the shear force from acting on the column 6 with certainty. Thus, the shortening of the pillar 6 is prevented.

したがって、本実施形態の建物の制震構造Cにおいては、上部支持鉄骨7と下部支持鉄骨8のそれぞれと柱6とを連結する折板15が、上下方向に延びる折曲部15c〜15fを備えて形成されているため、建物Tに振動エネルギーが作用して、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが水平方向に相対変位した際には、折板15が折曲部15c〜15fで屈曲変形することでダンパ9の抵抗力(ダンパ9の抵抗力の水平成分)を吸収し、ダンパ9の抵抗力がこの折板15から柱6に直接伝達することを防止できる。これにより、ダンパ9の抵抗力が柱6にせん断力として作用することがなく、柱6の短柱化を防止し、柱6のせん断破壊が卓越することを確実に防止できる。   Therefore, in the building vibration control structure C of the present embodiment, the folded plate 15 that connects each of the upper support steel 7 and the lower support steel 8 and the column 6 includes the bent portions 15c to 15f extending in the vertical direction. Therefore, when the vibration energy acts on the building T and the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are relatively displaced in the horizontal direction, the folded plate 15 is bent. By bending and deforming at 15 c to 15 f, the resistance force of the damper 9 (the horizontal component of the resistance force of the damper 9) can be absorbed, and the resistance force of the damper 9 can be prevented from being transmitted directly from the folded plate 15 to the column 6. As a result, the resistance force of the damper 9 does not act as a shearing force on the column 6, so that the column 6 can be prevented from being shortened, and the shear failure of the column 6 can be reliably prevented.

また、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが垂直方向に相対変位した際には、折板15が変形することがなく、ダンパ9の抵抗力(ダンパ9の抵抗力の垂直成分)をこの折板15から柱6に直接伝達させることができ、ダンパ9の抵抗力の垂直成分を柱6の軸力Nとして支持することが可能になる。これにより、ダンパ9の抵抗力の少なくとも一部が上方の梁1a及び下方の梁1bを経ずに、上部支持鉄骨7及び下部支持鉄骨8からそれぞれ直接柱6に伝達されて支持されるため、上方の梁1aと下方の梁1bに大きなせん断力が作用することがなく、確実に危険断面部Sにせん断破壊が生じることを防止できる。   Further, when each of the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are relatively displaced in the vertical direction, the folded plate 15 is not deformed and the resistance force of the damper 9 (the resistance force of the damper 9 is reduced). The vertical component) can be directly transmitted from the folded plate 15 to the column 6, and the vertical component of the resistance force of the damper 9 can be supported as the axial force N of the column 6. Thereby, since at least a part of the resistance force of the damper 9 is directly transmitted from the upper support steel 7 and the lower support steel 8 to the column 6 and supported without passing through the upper beam 1a and the lower beam 1b, A large shearing force does not act on the upper beam 1a and the lower beam 1b, and it is possible to reliably prevent shear fracture from occurring in the dangerous cross section S.

さらに、このとき、折板15が折曲部15c〜15fによって柱6の外面に沿って形成されていることで、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが垂直方向に相対変位した際に、ダンパ9の抵抗力を確実にこの折板15から柱6に直接伝達させて柱6の軸力Nとして支持させることが可能になる。   Further, at this time, the folded plate 15 is formed along the outer surface of the column 6 by the bent portions 15c to 15f, so that each of the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are vertically relative to each other. When displaced, the resistance force of the damper 9 can be reliably transmitted directly from the folded plate 15 to the column 6 and supported as the axial force N of the column 6.

また、折板15の一面と柱6の外面との間に弾性部材23が設けられて、互いが絶縁されていることにより、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが水平方向に相対変位した際に、確実に折板15を折曲部15c〜15fで屈曲変形させてダンパ9の抵抗力がこの折板15から柱6に直接伝達することを防止できる。さらに、上部支持鉄骨7及び下部支持鉄骨8のそれぞれと柱6とが近づくように相対変位した場合においても、弾性部材23の弾性によってダンパ9の抵抗力及び押圧力を吸収でき、確実に柱6にせん断力が作用することを防止して、柱6の短柱化を防止することが可能になる。   Further, the elastic member 23 is provided between one surface of the folded plate 15 and the outer surface of the column 6 so that the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are horizontally aligned with each other. When the relative displacement is made in the direction, the bent plate 15 can be reliably bent and deformed by the bent portions 15 c to 15 f, and the resistance force of the damper 9 can be prevented from being directly transmitted from the folded plate 15 to the column 6. Further, even when each of the upper support steel frame 7 and the lower support steel frame 8 and the column 6 are relatively displaced, the resistance force and the pressing force of the damper 9 can be absorbed by the elasticity of the elastic member 23, and the column 6 is surely received. It is possible to prevent the column 6 from being shortened by preventing the shearing force from acting on the column 6.

よって、本実施形態の建物の制震構造Cによれば、ダンパ9の抵抗力を、短柱化を招くことなく柱6に伝達させて、梁1の柱6と接合する両端部側のせん断破壊を確実に防止し、好適に振動エネルギーを吸収し建物Tの応答を低減させることが可能になる。これにより、従来の制震構造Aのように梁1の断面耐力を考慮してダンパ9を選定する必要がなく、梁1に別途補強を施すことを不要にして高耐力のダンパ9を用いることが可能になる。よって、建物Tの構面T1の1スパン当たりの耐力を大きく設定し、制震構造Cを設置する構面T1数を少なくすることが可能になり、経済的に建物Tの耐震性能を向上させることが可能になる。   Therefore, according to the vibration control structure C of the building of the present embodiment, the resistance of the damper 9 is transmitted to the column 6 without causing a shortening of the column, and the shear on both ends joined to the column 6 of the beam 1 It is possible to reliably prevent destruction, suitably absorb vibration energy, and reduce the response of the building T. Thus, it is not necessary to select the damper 9 in consideration of the cross-sectional strength of the beam 1 as in the conventional seismic control structure A, and it is not necessary to separately reinforce the beam 1 and the high strength damper 9 is used. Is possible. Therefore, it is possible to increase the proof strength per span of the structural surface T1 of the building T, to reduce the number of structural surfaces T1 on which the seismic control structure C is installed, and to economically improve the seismic performance of the building T. It becomes possible.

以上、本発明に係る建物の制震構造の実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、本実施形態では、建物Tの構面T1を形成する柱6が断面十字状に形成され、折板15がこの柱6の外面に沿う4つの平板部15h、15i、15k、15mを備えるように4つの折曲部15c〜15fを備えて形成されるとしたが、例えば図6に示すように、断面方形状の柱(突出部(袖壁)6eがない柱)6に、2つの折曲部15c、15dを備えた折板15を取り付けて建物の制震構造Cが構成されてもよく、また、折板15は、必ずしも柱6の外面に沿って形成されていなくてもよく、一側端15a側が上部支持鉄骨7及び下部支持鉄骨8のそれぞれに連結され、他側端15b側が柱6に連結されて、一側端15aと他側端15bの間に少なくとも一つの折曲部を備えていれば、本実施形態と同様の効果を得ることが可能である。よって、柱6の形状や、折板15の折曲部の数を限定する必要はない。   As mentioned above, although embodiment of the vibration control structure of the building which concerns on this invention was described, this invention is not limited to said one Embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, in this embodiment, the pillar 6 forming the construction surface T1 of the building T is formed in a cross-shaped cross section, and the folded plate 15 includes four flat plate portions 15h, 15i, 15k, and 15m along the outer surface of the pillar 6. As shown in FIG. 6, for example, as shown in FIG. 6, two columns 6 (columns without projecting portions (sleeve walls) 6e) are provided. The vibration control structure C of the building may be configured by attaching the folded plate 15 provided with the bent portions 15c and 15d, and the folded plate 15 may not necessarily be formed along the outer surface of the column 6. The one side end 15a side is connected to each of the upper support steel frame 7 and the lower support steel frame 8, the other side end 15b side is connected to the column 6, and at least one bent between the one side end 15a and the other side end 15b. If it has a part, it is possible to obtain the same effect as this embodiment That. Therefore, it is not necessary to limit the shape of the pillar 6 or the number of bent portions of the folded plate 15.

さらに、本実施形態では、それぞれ3つずつの上部支持鉄骨(上部支持部材)7と下部支持鉄骨(下部支持部材)8とダンパ9とを備えて建物の制震構造Cが構成されているものとしたが、本発明の建物の制震構造は、1つ以上の上部支持部材7と下部支持部材8を備え、上下一対の上部支持部材7と下部支持部材8の間に介装して支持された1つ以上のダンパ9を備えて構成されていればよく、上部支持部材7と下部支持部材8とダンパ9の数を限定する必要はない。   Further, in the present embodiment, the building's seismic control structure C includes three upper support steel frames (upper support members) 7, lower support steel frames (lower support members) 8, and dampers 9. However, the vibration control structure for a building according to the present invention includes one or more upper support members 7 and a lower support member 8, and is supported between a pair of upper and lower upper support members 7 and 8. The number of the upper support member 7, the lower support member 8, and the dampers 9 is not necessarily limited as long as it is configured to include one or more dampers 9.

また、本実施形態では、折板15の一面と柱6の外面の間に弾性部材23が介装され、この弾性部材23が柱6の外面に固着して設けられているものとしたが、弾性部材23は、折板15の一面に固着して設けられてもよい。さらに、折板15の変形に伴ってこの折板15から柱6にせん断力が作用して柱6の短柱化を招くおそれがない場合には、弾性部材23を設けなくてもよい。   In the present embodiment, the elastic member 23 is interposed between one surface of the folded plate 15 and the outer surface of the column 6, and the elastic member 23 is fixedly provided on the outer surface of the column 6. The elastic member 23 may be fixed to one surface of the folded plate 15. Further, when there is no possibility that the folded plate 15 is deformed to cause a shearing force from the folded plate 15 to the column 6 to cause the column 6 to be shortened, the elastic member 23 may not be provided.

また、本実施形態では、制震構造Cのダンパ9がパネルダンパであるものとしたが、本発明の建物の制震構造Cは、粘性ダンパ、粘弾性ダンパ、摩擦ダンパなど他のダンパを備えて構成されてもよい。   In the present embodiment, the damper 9 of the vibration control structure C is a panel damper. However, the vibration control structure C of the building of the present invention includes other dampers such as a viscous damper, a viscoelastic damper, and a friction damper. May be configured.

さらに、本実施形態では、建物の制震構造Cが間柱型の制震構造であるものとし、折板15が、上方の梁1(1a)と下方の梁1(1b)(下方の梁1bで支持したスラブ2)に設置した連結用上部鉄骨4及び連結用下部鉄骨5に連結して支持された上部支持鉄骨(上部支持部材)7及び下部支持鉄骨(下部支持部材)8のそれぞれに取り付けられているものとして説明を行ったが、本発明の建物の制震構造は、連結用上部鉄骨4及び連結用下部鉄骨5を設けずに、上部支持部材7と下部支持部材8をそれぞれ梁1(又はスラブ2)に直接連結して構成し、このように設けた上部支持部材7と下部支持部材8にそれぞれ折板15を取り付けるようにしてもよい。   Further, in the present embodiment, it is assumed that the damping structure C of the building is a stud-type damping structure, and the folded plate 15 includes an upper beam 1 (1a) and a lower beam 1 (1b) (lower beam 1b). It is attached to each of the upper support steel frame (upper support member) 7 and the lower support steel frame (lower support member) 8 supported by being connected to the connection upper steel frame 4 and the lower connection steel frame 5 installed in the slab 2) As described above, in the building vibration control structure of the present invention, the upper support member 7 and the lower support member 8 are respectively connected to the beam 1 without providing the connection upper steel frame 4 and the connection lower steel frame 5. Alternatively, the folded plate 15 may be attached to the upper support member 7 and the lower support member 8 provided in this manner.

また、本発明の建物の制震構造Dは、例えば図7及び図8に示すように、壁型の制震構造であってもよく、上方の梁1(1a)に連結した鉄筋コンクリート製の上部支持壁(上部支持部材)11と、下方の梁1(1b)(下方の梁1bで支持したスラブ2)に連結した鉄筋コンクリート製の下部支持壁(下部支持部材)12と、上部支持壁11と下部支持壁12にそれぞれ一体に取り付けられた連結プレート13、14に連結して支持壁11、12の間に介装された複数のダンパ9とを備えた壁型の制震構造であってもよい。この場合には、折板15が、上部支持壁11及び下部支持壁12のそれぞれの柱6側を向く側面に一側端15a側をアンカーボルトなどで固定し、他側端15b側を柱6の外面にアンカーボルトなどで固定して設けられることで、上部支持壁11及び下部支持壁12のそれぞれと柱6が折板15を介して連結される。そして、このように折板15を設けることによって、壁型の制震構造Dであっても、本実施形態と同様に、ダンパ9の抵抗力が柱6にせん断力として作用することがなく、柱6の短柱化を防止し、柱6のせん断破壊が卓越することを確実に防止できる。また、ダンパ9の抵抗力を上方の梁1a及び下方の梁1bを経ずに、上部支持壁11及び下部支持壁12からそれぞれ直接柱6に伝達させ、上方の梁1aと下方の梁1bに大きなせん断力が作用することを防止し、確実に危険断面部Sにせん断破壊が生じることを防止できる。   Further, the building damping structure D of the present invention may be a wall-type damping structure as shown in FIGS. 7 and 8, for example, and is an upper part made of reinforced concrete connected to the upper beam 1 (1a). A support wall (upper support member) 11, a lower support wall (lower support member) 12 made of reinforced concrete connected to a lower beam 1 (1b) (slab 2 supported by the lower beam 1b), an upper support wall 11, Even if it is a wall-type vibration control structure provided with a plurality of dampers 9 connected between the support walls 11, 12 connected to the connection plates 13, 14 integrally attached to the lower support wall 12, respectively. Good. In this case, the folded plate 15 is fixed to the side face of each of the upper support wall 11 and the lower support wall 12 facing the pillar 6 side by fixing one side end 15a with an anchor bolt or the like, and the other side end 15b side on the pillar 6 side. Each of the upper support wall 11 and the lower support wall 12 and the column 6 are connected via the folded plate 15 by being fixed to the outer surface of the upper support wall 11 with an anchor bolt or the like. And by providing the folded plate 15 in this way, even in the case of the wall-type damping structure D, the resistance force of the damper 9 does not act as a shearing force on the column 6 as in this embodiment. The shortening of the column 6 can be prevented, and the shear failure of the column 6 can be surely prevented. Further, the resistance force of the damper 9 is transmitted directly from the upper support wall 11 and the lower support wall 12 to the column 6 without passing through the upper beam 1a and the lower beam 1b, and is transmitted to the upper beam 1a and the lower beam 1b. It is possible to prevent a large shearing force from acting, and to reliably prevent a shear fracture from occurring in the dangerous cross section S.

本発明の一実施形態に係る建物の制震構造(間柱型の制震構造)を示す図である。It is a figure which shows the vibration control structure of the building which concerns on one Embodiment of this invention (space pillar type vibration control structure). 図1のX2−X2線矢視図である。FIG. 2 is an X2-X2 arrow view of FIG. 1. 本発明の一実施形態に係る建物の制震構造(間柱型の制震構造)の折板を示す斜視図である。1 is a perspective view showing a folded plate of a building vibration control structure (space pillar type vibration control structure) according to an embodiment of the present invention. 本発明の一実施形態に係る建物の制震構造(間柱型の制震構造)の折板が屈曲変形した状態を示す図である。It is a figure which shows the state which the bending plate of the building damping structure (columnar type damping structure) concerning one Embodiment of this invention bent and deformed. 本発明の一実施形態に係る建物の制震構造(間柱型の制震構造)の折板が屈曲変形した状態を示す斜視図である。It is a perspective view which shows the state which the bending plate of the damping structure of the building which concerns on one Embodiment of this invention (space pillar type damping structure) bent and deformed. 本発明の一実施形態に係る建物の制震構造(間柱型の制震構造)の変形例を示す図である。It is a figure which shows the modification of the damping structure (building-column type damping structure) of the building which concerns on one Embodiment of this invention. 本発明の一実施形態に係る建物の制震構造(壁型の制震構造)を示す図である。It is a figure which shows the damping structure (wall-type damping structure) of the building which concerns on one Embodiment of this invention. 図7のX2−X2線矢視図である。It is the X2-X2 line arrow figure of FIG. 従来の制震構造(間柱型の制震構造)を示す図である。It is a figure which shows the conventional damping structure (space pillar type damping structure). 図9のX1−X1線矢視図である。FIG. 10 is a view taken along line X1-X1 in FIG. 9. 従来の制震構造(壁型の制震構造)を示す図である。It is a figure which shows the conventional damping structure (wall-type damping structure). 図11のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG.

符号の説明Explanation of symbols

1 梁
1a 上方の梁
1b 下方の梁
2 スラブ
4 連結用上部鉄骨
5 連結用下部鉄骨
6 柱
6c 柱本体
6e 突出部(袖壁)
7 上部支持鉄骨(上部支持部材)
8 下部支持鉄骨(下部支持部材)
9 ダンパ
11 上部支持壁(上部支持部材)
12 下部支持壁(下部支持部材)
15 折板
15c 折曲部
15d 折曲部
15e 折曲部
15f 折曲部
15g 第1平板部
15h 第2平板部
15i 第3平板部
15k 第4平板部
15m 第5平板部
20 上部フレーム
21 下部フレーム
22 連結板
23 弾性部材
A 従来の建物の制震構造(間柱型)
B 従来の建物の制震構造(壁型)
C 建物の制震構造(間柱型)
D 建物の制震構造(壁型)
N 軸力
Q せん断力
S 危険断面部
T 建物
T1 構面
DESCRIPTION OF SYMBOLS 1 Beam 1a Upper beam 1b Lower beam 2 Slab 4 Connecting upper steel frame 5 Connecting lower steel frame 6 Column 6c Column body 6e Projection (sleeve wall)
7 Upper support steel frame (upper support member)
8 Lower support steel frame (lower support member)
9 Damper 11 Upper support wall (upper support member)
12 Lower support wall (lower support member)
15 bent plate 15c bent portion 15d bent portion 15e bent portion 15f bent portion 15g first flat plate portion 15h second flat plate portion 15i third flat plate portion 15k fourth flat plate portion 15m fifth flat plate portion 20 upper frame 21 lower frame 22 Connecting plate 23 Elastic member A Conventional building vibration control structure
B Conventional building vibration control structure (wall type)
C Seismic control structure of building (column type)
D Damping structure of building (wall type)
N Axial force Q Shear force S Hazardous cross section T Building T1 Construction surface

Claims (2)

左右一対の柱と上下一対の梁又はスラブで囲まれた構面内に設置されて、建物に作用する振動エネルギーを吸収する建物の制震構造であって、
上端側が上方の梁に支持されて下方に延設した上部支持部材と、下端側が下方の梁に支持されて上方に延設した下部支持部材と、前記上部支持部材と前記下部支持部材の間に介装され、前記振動エネルギーが作用するとともに変形して該振動エネルギーを吸収するダンパとを備え、
前記上部支持部材と前記下部支持部材がそれぞれ、上下方向に延びる折曲部を備えた折板を介して前記柱に連結されていることを特徴とする建物の制震構造。
It is a building damping structure that is installed in a structure surrounded by a pair of left and right columns and a pair of upper and lower beams or slabs, and absorbs vibration energy acting on the building,
An upper support member whose upper end is supported by the upper beam and extends downward, a lower support member whose lower end is supported by the lower beam and extends upward, and between the upper support member and the lower support member And a damper that absorbs the vibration energy by the vibration energy acting and being deformed,
A building vibration control structure, wherein the upper support member and the lower support member are each connected to the column via a folded plate having a bent portion extending in a vertical direction.
請求項1記載の建物の制震構造において、
前記折板が前記折曲部によって前記柱の外面に対向する一面を備えるように前記柱の外面に沿って形成され、該折板の一面と前記柱の外面との間に、前記折板と前記柱を相対的に変位させるように絶縁するための弾性部材が介装されていることを特徴とする建物の制震構造。
In the vibration control structure of a building according to claim 1,
The folded plate is formed along the outer surface of the column so as to have one surface facing the outer surface of the column by the bent portion, and between the one surface of the folded plate and the outer surface of the column, A building vibration control structure, wherein an elastic member for insulating the column so as to be relatively displaced is interposed.
JP2007177218A 2007-07-05 2007-07-05 Damping structure of building Withdrawn JP2009013683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177218A JP2009013683A (en) 2007-07-05 2007-07-05 Damping structure of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177218A JP2009013683A (en) 2007-07-05 2007-07-05 Damping structure of building

Publications (1)

Publication Number Publication Date
JP2009013683A true JP2009013683A (en) 2009-01-22

Family

ID=40354908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177218A Withdrawn JP2009013683A (en) 2007-07-05 2007-07-05 Damping structure of building

Country Status (1)

Country Link
JP (1) JP2009013683A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103195168A (en) * 2013-03-26 2013-07-10 东南大学 Composite three-dimensional shock isolation support of sandwich rubber-high damping disc spring
KR101442487B1 (en) 2013-03-08 2014-09-25 삼영엠텍(주) Building structure seismic retrofit method using lateral beam-type damper and damper fixing apparatus
JP2017053178A (en) * 2015-09-11 2017-03-16 株式会社竹中工務店 Seismic strengthening frame and seismic strengthening structure
CN106760860A (en) * 2017-03-14 2017-05-31 中国地震局工程力学研究所 A kind of folded plate type shearing damp device
JP2017166233A (en) * 2016-03-16 2017-09-21 株式会社熊谷組 Earthquake energy absorption mechanism for building
JP2018009309A (en) * 2016-07-12 2018-01-18 Jfeシビル株式会社 Antivibration device and antivibration structure
JP7395034B1 (en) 2022-07-21 2023-12-08 莊 ▲員▼任 A vibration control device with a load-bearing wall structure that enhances the vibration damping performance of a building, and a vibration control system equipped with the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442487B1 (en) 2013-03-08 2014-09-25 삼영엠텍(주) Building structure seismic retrofit method using lateral beam-type damper and damper fixing apparatus
CN103195168A (en) * 2013-03-26 2013-07-10 东南大学 Composite three-dimensional shock isolation support of sandwich rubber-high damping disc spring
CN103195168B (en) * 2013-03-26 2015-02-11 东南大学 Composite three-dimensional shock isolation support of sandwich rubber-high damping disc spring
JP2017053178A (en) * 2015-09-11 2017-03-16 株式会社竹中工務店 Seismic strengthening frame and seismic strengthening structure
JP2017166233A (en) * 2016-03-16 2017-09-21 株式会社熊谷組 Earthquake energy absorption mechanism for building
JP2018009309A (en) * 2016-07-12 2018-01-18 Jfeシビル株式会社 Antivibration device and antivibration structure
CN106760860A (en) * 2017-03-14 2017-05-31 中国地震局工程力学研究所 A kind of folded plate type shearing damp device
JP7395034B1 (en) 2022-07-21 2023-12-08 莊 ▲員▼任 A vibration control device with a load-bearing wall structure that enhances the vibration damping performance of a building, and a vibration control system equipped with the same
JP2024014679A (en) * 2022-07-21 2024-02-01 莊 ▲員▼任 Vibration control device having structure of bearing wall enhancing vibration damping performance of building and vibration control system having the same

Similar Documents

Publication Publication Date Title
JP2009013683A (en) Damping structure of building
JP5336145B2 (en) Damping structure and building with damping structure
JP2011241627A (en) Steel earthquake resisting wall, and building equipped with the same
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
JP4070117B2 (en) Vibration control device
JP2009047193A (en) Damper device and structure
JP2010001700A (en) Vibration control damper
JP2010216611A (en) Seismic response control metallic plate
JP5132503B2 (en) Seismic structure and building
JP4395419B2 (en) Vibration control pillar
JP2006336378A (en) Earthquake resisting wall
JP2007277911A (en) Structure of seismic response control column
JP2010043415A (en) Seismic control device
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP2009264015A (en) Seismic response control apparatus
JP2006037585A (en) Earthquake-resisting wall using corrugated steel plate with opening
JP6057371B2 (en) Seismic reinforcement
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP5305756B2 (en) Damping wall using corrugated steel
JP7052953B2 (en) Damping structure
JP6268998B2 (en) End structure of steel member
KR20130021261A (en) Moment connection structure using panel zone of rectangular shape
JP4884914B2 (en) Vibration control device installation structure of unit building
JP2019157593A (en) Support structure of ceiling surface material, and unit building
JP2001020557A (en) Vibration control device of building

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907