JP4788134B2 - Damping structure of structure - Google Patents

Damping structure of structure Download PDF

Info

Publication number
JP4788134B2
JP4788134B2 JP2004352065A JP2004352065A JP4788134B2 JP 4788134 B2 JP4788134 B2 JP 4788134B2 JP 2004352065 A JP2004352065 A JP 2004352065A JP 2004352065 A JP2004352065 A JP 2004352065A JP 4788134 B2 JP4788134 B2 JP 4788134B2
Authority
JP
Japan
Prior art keywords
vibration
pair
damper
building
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004352065A
Other languages
Japanese (ja)
Other versions
JP2006161341A (en
Inventor
一登 背戸
郁夫 下田
和也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2004352065A priority Critical patent/JP4788134B2/en
Publication of JP2006161341A publication Critical patent/JP2006161341A/en
Application granted granted Critical
Publication of JP4788134B2 publication Critical patent/JP4788134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、同一又は接近した振動特性を有する複数のビルやタワー等の構造物を振動振幅の異なる場所で連結し、構造物同士の相互作用力を利用して、一蓮托生に構造物を振動制御する制振構造に関する。   The present invention connects a plurality of structures such as buildings and towers having the same or close vibration characteristics at places having different vibration amplitudes, and utilizes the interaction force between the structures, The present invention relates to a vibration control structure for controlling vibration.

特開平7−190136号公報Japanese Patent Laid-Open No. 7-190136

現在、ビルの高層化が進んでいる。しかし、ビルの高層化が進めば進むほど、ビルの剛性が低くなり、固有振動数が低下する。そのため、風などの外乱によって、振動が起こり易くなる。これらの振動は居住性の悪化や、ビルの破損の原因となる。阪神淡路大地震によって、10階建てのビルが壊滅的破壊を招いたり、高層ビルが破壊に至らなくとも大きな被害を受けた。そこで、この問題を解決するために振動制御が必要となる。そのために従来、高層ビルの制振方法の研究は数多くなされてきた。中でも、錘の慣性力を利用したアクティブマスダンパー(Active Mass Damper、以下、AMDと略称)方式がよく知られている。しかし、この方式は、風などの中小レベルの外乱に対して有効であるが、大きな制振力を得ることが難しいために大地震に対応できない。さらに、ビルが更に超高層化するとビルの固有振動数が低下するので、慣性力を制御力として利用しているAMD方式では十分な制御力が得られず、風による揺れさえ制御できないという問題がある。   Currently, the number of buildings is increasing. However, the higher the building height, the lower the building rigidity and the lower the natural frequency. For this reason, vibration is likely to occur due to disturbance such as wind. These vibrations cause deterioration of habitability and damage to the building. The Great Hanshin-Awaji Earthquake caused devastating destruction of 10-story buildings and high-rise buildings even if they were not destroyed. Therefore, vibration control is necessary to solve this problem. Therefore, many studies on vibration control methods for high-rise buildings have been made. In particular, an active mass damper (hereinafter abbreviated as AMD) system using the inertial force of a weight is well known. However, this method is effective against small and medium level disturbances such as wind, but it is difficult to obtain a large damping force and cannot cope with a large earthquake. Furthermore, since the natural frequency of the building decreases as the building becomes even higher, the AMD system that uses inertial force as the control force cannot provide sufficient control force, and even the vibration caused by wind cannot be controlled. is there.

それらの問題を解決するために提案された制振法が連結制振方式である。これは、ビル等の構造物と構造物とをダンパやアクチュエータなどの制振装置で連結することにより、互いの作用・反作用力を制御力として利用して、ビル等の構造物相互の振動を制御する方式である。この方式はAMD方式に比べて大きな制御力が得られ、しかもその制御力は振動数に依存しないので、超高層ビルの風による揺れのみならず大地震にも対応できる。この方式は、晴海再開発地区のトリトンスクエアに建設された3棟の高層ビル(トリトンタワーズ)を2機のアクティブブリッジと呼ばれる制振装置で連結してこれら高層ビルの風による揺れを制御するためにすでに実用化されている。   The vibration control method proposed to solve these problems is the coupled vibration control method. This is because a structure such as a building is connected to the structure with a vibration damping device such as a damper or an actuator, and the mutual action / reaction force is used as a control force, and vibrations between the structures such as the building can be detected. This is a control method. Compared with the AMD method, this method can obtain a large control force, and since the control force does not depend on the frequency, it can cope with not only the vibration of the skyscraper but also a large earthquake. In this method, three high-rise buildings (Triton Towers) constructed in Triton Square in the Harumi Redevelopment Area are connected by two vibration control devices called active bridges to control the vibration of these high-rise buildings due to wind. Has already been put to practical use.

しかし、上記の提案された連結制振方式では、同一高さを有して固有振動数の同じビル同士の制御は不可能であり、また連結された構造物の固有振動数が近づくと、その制振効果は低下する。また、同一高さを有する複数のビルを、上記方式で制御する要請もあるが、ビルの固有振動数が接近するためにこの方式を採用することは困難である。また、連結制振方式は、複数のビルや構造物の相互反力を活用して制御する方法なので、独立したビルや構造物には採用できないと言う本質的な問題もある。   However, in the proposed coupled vibration control method, it is impossible to control buildings with the same height and the same natural frequency, and when the natural frequency of the connected structure approaches, The damping effect is reduced. There is also a request to control a plurality of buildings having the same height by the above method, but it is difficult to adopt this method because the natural frequency of the building approaches. In addition, since the coupled vibration control method is a method of controlling by utilizing the mutual reaction force of a plurality of buildings and structures, there is an essential problem that it cannot be adopted for an independent building or structure.

以上述べたように、従来のAMD方式はビルの風や小地震の制御にしか適用できない上に、500メートルを超える超高層ビルにはAMD方式の適用は困難である。そこで提案されたのが連結制振方式であるが、この方式はビルとビル、あるいはタワー構造物同士を制振装置で連結して振動を制御する方法であって、相互の固有振動数が異なる場合に有効である。しかし、ビルやタワー構造物相互の固有振動数が等しい場合には作用・反作用力が得られず、振動制御ができない。また、固有振動数が異なっていたとしても、それが接近している場合は振動制御の効果は僅かである。   As described above, the conventional AMD method can be applied only to the control of building winds and small earthquakes, and it is difficult to apply the AMD method to a high-rise building exceeding 500 meters. Therefore, a joint vibration control method was proposed, but this method is a method of controlling vibration by connecting buildings and buildings or tower structures with vibration control devices, and their natural frequencies are different. It is effective in the case. However, when the natural frequencies of buildings and tower structures are equal, no action / reaction force can be obtained and vibration control cannot be performed. Even if the natural frequencies are different, the effect of the vibration control is small when they are close to each other.

また、ビルやタワー構造物が独立して立っている場合に、上記連結制振方式を適用するには、外塔と内塔とに分けてビルやタワー構造物を建設し、両者を制振装置で連結することになるが、その場合は外塔と内塔との間に剛性に大きな差が生じるので、剛性の大きい外塔を制御するために内塔が大きく揺れることになり、肝心の外塔が制御できないという問題もある。   In addition, when the building or tower structure is standing independently, in order to apply the above-mentioned connected vibration control method, the building or tower structure is constructed separately for the outer tower and the inner tower, and both are controlled. In this case, there will be a large difference in rigidity between the outer tower and the inner tower, so the inner tower will shake greatly in order to control the outer tower with high rigidity. There is also a problem that the outer tower cannot be controlled.

本発明は前記に鑑みてなされたものであって、その目的とするところは、互いに同一又は接近した固有振動数を有する構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に対しても対応することができる上に、簡単に最適設計が可能な制振構造を提供することにある。   The present invention has been made in view of the above, and the object of the present invention is to effectively control the vibration of structures having the same or close natural frequencies, and of course the vibration caused by the wind is large. An object of the present invention is to provide a vibration control structure that can cope with an earthquake and that can be easily designed optimally.

本発明の複数の構造物の制振構造は、同一又は接近した固有振動数を有する少なくとも一対の構造物をその振動振幅の異なる部位で連結手段を介して連結し、一対の構造物同士の相互作用力により当該一対の構造物の振動を制御するようにしたものである。   The vibration control structure of a plurality of structures according to the present invention connects at least a pair of structures having the same or close natural frequencies via connecting means at portions having different vibration amplitudes, and the pair of structures are mutually connected. The vibration of the pair of structures is controlled by the acting force.

本発明では、連結手段により一対の構造物をその振動振幅の異なる部位で連結し、斯かる一対の構造物同士の相互作用力により当該一対の構造物の振動を制御するようにしたものであるために、大きな相互作用力が得られる結果、構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に対しても対応することができる。   In the present invention, the pair of structures are connected by the connecting means at portions having different vibration amplitudes, and the vibration of the pair of structures is controlled by the interaction force between the pair of structures. Therefore, as a result of obtaining a large interaction force, it is possible to effectively control the vibration of the structure, and it is possible to cope with large earthquakes as well as shaking due to wind.

本発明は、対称構造物、並立する同一高さ若しくは同一若しくは接近した振動特性を有する一対の構造物、同一高さをもつ複数の中層、高層、超高層ビル等の構造物、更には例えば宇宙ステーション用太陽電池パドルや平行に置かれた配管系等の構造物に適用でき、一般の柔軟構造物の風による揺れから大地震による揺れの制振まで幅広く適用でき、更に本発明によれば、構造物の高さが同じでなくとも、固有振動数が接近している場合は、従来の連結制振方式では得ることができない程度の大きな制振性能を得ることができる。   The present invention relates to a symmetrical structure, a pair of structures having the same height or the same or close vibration characteristics, a plurality of middle, high, and skyscraper structures having the same height, and for example, space. It can be applied to structures such as solar cell paddles for stations and piping systems placed in parallel, and can be widely applied from vibrations of general flexible structures due to wind to vibration suppression due to large earthquakes. Even if the heights of the structures are not the same, if the natural frequency is close, it is possible to obtain a large damping performance that cannot be obtained by the conventional coupled damping system.

また本発明の構造物の制振構造は、一個の構造物を分割して少なくとも一対の分割構造物を形成し、この分割された一対の分割構造物をその振動振幅の異なる部位で連結手段を介して連結し、一対の分割構造物同士の相互作用力により当該一対の分割構造物の振動を制御するようにしたものである。   Further, the structure damping structure of the present invention divides one structure to form at least a pair of divided structures, and connects the divided pairs of divided structures with portions having different vibration amplitudes. And the vibration of the pair of divided structures is controlled by the interaction force between the pair of divided structures.

斯かる制振構造によれば、一対の分割構造物同士の相互作用力により当該一対の分割構造物の振動を制御するようにしたものであるために、1棟のビル等を分割構造にした構造物であっても、大きな相互作用力が得られる結果、構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に強い構造物を提供できる。   According to such a vibration control structure, since the vibration of the pair of divided structures is controlled by the interaction force between the pair of divided structures, one building or the like is divided. Even if it is a structure, as a result of obtaining a large interaction force, it is possible to effectively control the vibration of the structure, and it is possible to provide a structure that is resistant to large earthquakes as well as shaking due to wind.

本発明において、連結手段は、好ましくは、制振装置と弾性装置とを有しており、この場合、制振装置と弾性装置とは直列に配されているとよい。   In the present invention, the connecting means preferably has a vibration damping device and an elastic device. In this case, the vibration damping device and the elastic device may be arranged in series.

制振装置の好ましい例として、油圧ダンパ、磁気ダンパ、摩擦ダンパ、粘性ダンパ、粘弾性ダンパ等を挙げることができるが、より好ましい例としては、永久磁石等を用いた磁気ダンパを挙げることができる。弾性装置の好ましい例として、コイルバネ、片持ち梁等を挙げることができる。   Preferred examples of the vibration damping device include a hydraulic damper, a magnetic damper, a friction damper, a viscous damper, a viscoelastic damper, and the like, and a more preferable example is a magnetic damper using a permanent magnet or the like. . Preferred examples of the elastic device include a coil spring and a cantilever beam.

本発明では、振動制御の対象となる振動レベルによって制振装置を選択すれば幅広い振動問題に対処できる。例えば、超高層ビルの風による揺れの制御には、アクティブ制振装置が適している。また、大地震にはアクティブ制振装置では不経済であり、エネルギー消費のないダンパや、少ない可変減衰ダンパなどを選択すればよい。本発明では、制振装置にダンパを用いた場合の最適設計法を得ているので、それを用いれば大地震にも効果的に対処できる。さらに連結手段をオイルダンパなどのパッシブ機器とアクティブ機器とを組み合わせてハイブリッド化することで大地震にも対応できる。   In the present invention, a wide range of vibration problems can be addressed by selecting a damping device according to the vibration level to be subjected to vibration control. For example, an active vibration control device is suitable for controlling the vibration of a high-rise building due to wind. In addition, an active vibration control device is uneconomical for a large earthquake, and a damper that does not consume energy, a small variable damping damper, or the like may be selected. In the present invention, since an optimum design method is obtained when a damper is used for the vibration damping device, a large earthquake can be effectively dealt with by using it. Furthermore, it is possible to cope with a large earthquake by combining the connecting means with passive devices such as oil dampers and active devices.

また本発明の制振構造は、上記のいずれかの制振構造において最適振動減衰が得られるように、連結手段のバネ剛性と減衰係数とを、一対の構造物の夫々を連結部位で分けられた2質点モデルで表した場合に得られる制振構造の等価モデルに基づいて決定してなるものである。   Further, in the vibration damping structure of the present invention, the spring rigidity and the damping coefficient of the coupling means can be divided by the coupling portion so that the optimum vibration damping can be obtained in any of the above damping structures. It is determined on the basis of an equivalent model of the vibration control structure obtained when represented by the two mass point model.

斯かる本発明は、一対の連結手段を介して連結された一対の構造物の夫々を連結部位で分けられた2質点モデルで表した場合に、各々簡単な等価モデル(動吸振器型モデル)に縮退できることの知見に基づくものであり、この等価モデルを用いれば、連結手段に例えば片持ち梁状構造物とダンパとを用いたとき、これら片持ち梁状構造物をバネで表したときのバネ剛性とダンパの減衰係数との値を最も効果的に制振できるという観点から決定することができ、而して、最適設計が容易に可能となるのである。   In the present invention, when each of a pair of structures connected via a pair of connecting means is expressed by a two-mass model divided by connecting portions, each is a simple equivalent model (dynamic vibration absorber type model). If this equivalent model is used, for example, when a cantilever structure and a damper are used as the connecting means, the cantilever structure is represented by a spring. The values of the spring stiffness and the damping coefficient of the damper can be determined from the viewpoint that the vibration can be most effectively suppressed, and thus the optimum design can be easily performed.

本発明では、連結手段は、上記のようの制振装置と弾性装置とを有していてもよいが、制振装置と弾性装置との両方の機能を兼ね備えたもの、例えば減衰機能と弾性機能とを有した減衰バネ装置を具備していてもよい。   In the present invention, the connecting means may have the vibration damping device and the elastic device as described above, but has both functions of the vibration damping device and the elastic device, for example, a damping function and an elastic function. A damping spring device having the following may be provided.

互いに同一又は接近した固有振動数を有する構造物の振動を効果的に制御でき、風による揺れは勿論のこと大地震に対しても対応することができる上に、簡単に最適設計が可能な連結制振構造を提供することができる。   It is possible to effectively control the vibrations of structures with the same or close natural frequency to each other, and can cope with large earthquakes as well as vibration due to wind, and can be easily designed optimally. A damping structure can be provided.

以下、本発明の実施の形態を、図に示す例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。   Hereinafter, embodiments of the present invention will be described in more detail based on examples shown in the drawings. The present invention is not limited to these examples.

図1に示す制振構造1は、互いに同一又は接近した固有振動数を有して同一振動特性をもつ一対の構造物、本例では塔状の構造物であるビル2及び3を、その振動振幅の異なる部位4、5、6及び7で一対の連結手段8及び9を介して連結し、ビル2及び3同士の相互作用力により当該ビル2及び3の振動を制御するようにしたものである。   The vibration damping structure 1 shown in FIG. 1 oscillates a pair of structures having the same or close natural frequency and the same vibration characteristics, in this example, buildings 2 and 3, which are tower-like structures. The parts 4, 5, 6 and 7 having different amplitudes are connected via a pair of connecting means 8 and 9, and the vibrations of the buildings 2 and 3 are controlled by the interaction force between the buildings 2 and 3. is there.

ビル2及び3の夫々は基礎10上に構築されており、連結手段8は、一端でビル2の上端である部位4に固着された弾性装置としての片持ち梁11と、一端で片持ち梁11の下方端である自由端12に連結されていると共に他端でビル3の上端よりも下方の部位5に連結されている制振装置としてのダンパ13とを有しており、片持ち梁11は、部位4を支点として自由端12側で弾性的に略水平方向に揺動可能となっており、ダンパ13は、略水平方向において伸縮自在となっていると共に斯かる略水平方向の振動伸縮においてその振動を減衰させるようになっている。   Each of the buildings 2 and 3 is constructed on a foundation 10, and the connecting means 8 includes a cantilever 11 as an elastic device fixed to a portion 4 which is the upper end of the building 2 at one end, and a cantilever at one end. 11 and a damper 13 as a vibration control device connected to a free end 12 which is a lower end of 11 and a portion 5 below the upper end of the building 3 at the other end. 11 is elastically swingable in the substantially horizontal direction on the free end 12 side with the part 4 as a fulcrum, and the damper 13 is expandable and contractable in the substantially horizontal direction, and the vibration in the substantially horizontal direction. The vibration is attenuated during expansion and contraction.

連結手段9は、一端でビル3の上端である部位6に固着された弾性装置としての片持ち梁15と、一端で片持ち梁15の下方端である自由端16に連結されていると共に他端でビル2の上端よりも下方の部位7に連結されている制振装置としてのダンパ17とを有しており、片持ち梁15もまた、片持ち梁11と同様に、部位6を支点として自由端16側で弾性的に略水平方向に揺動可能となっており、ダンパ17は、ダンパ13と同様に、略水平方向において伸縮自在となっていると共に斯かる略水平方向の振動伸縮においてその振動を減衰させるようになっている。   The connecting means 9 is connected to a cantilever 15 as an elastic device fixed to a portion 6 which is the upper end of the building 3 at one end, and a free end 16 which is a lower end of the cantilever 15 at one end. It has a damper 17 as a vibration control device connected to a portion 7 below the upper end of the building 2 at the end, and the cantilever 15 is also a fulcrum at the portion 6 like the cantilever 11. The damper 17 is elastically swingable in the substantially horizontal direction on the free end 16 side, and, like the damper 13, the damper 17 is extendable in the substantially horizontal direction and the vibration in the substantially horizontal direction is expanded and contracted. The vibration is damped.

連結手段8及び9を含めて対称構造をもつ図1に示す制振構造1の動作解析及び作用効果を確認するために、制振構造1に相当する図2に示すような模型制振構造Aを作成した。模型制振構造Aにおいて、2Aは、ビル2に、3Aはビル3に、11Aは片持ち梁11に、13Aはダンパ13に、15Aは片持ち梁15に、17Aはダンパ17に夫々相当し、ビル2に相当するビル模型2Aは、図3の(a)に示すように、高さ1000[mm]、幅150[mm]、厚さ2[mm]のアルミ製の2枚の平板21と、縦150[mm]、横80[mm]、厚さ25[mm]のアクリル製の2枚の板22とからなり、ダンパ模型13Aを取り付けるために2階層構造物にしてあり、下端から30[mm]までを完全固定している。図3の(b)及び(c)には、ビル模型2Aのモード解析によって得られた一次モード(4.16Hz)及び二次モード(11.14Hz)の振動モード形を夫々実線で示す。ビル3に相当するビル模型3Aも、ビル模型2Aと同様に形成されている。   In order to confirm the operation analysis and effects of the vibration damping structure 1 shown in FIG. 1 having a symmetric structure including the connecting means 8 and 9, a model vibration damping structure A as shown in FIG. It was created. In the model damping structure A, 2A corresponds to the building 2, 3A corresponds to the building 3, 11A corresponds to the cantilever 11, 13A corresponds to the damper 13, 15A corresponds to the cantilever 15, and 17A corresponds to the damper 17. The building model 2A corresponding to the building 2 is, as shown in FIG. 3A, two aluminum flat plates 21 having a height of 1000 [mm], a width of 150 [mm], and a thickness of 2 [mm]. And two acrylic plates 22 having a length of 150 [mm], a width of 80 [mm], and a thickness of 25 [mm], and a two-layer structure for attaching the damper model 13A. Up to 30 mm is completely fixed. 3B and 3C, the vibration mode shapes of the primary mode (4.16 Hz) and the secondary mode (11.14 Hz) obtained by the mode analysis of the building model 2A are shown by solid lines. A building model 3A corresponding to the building 3 is also formed in the same manner as the building model 2A.

本解析では、制御対象モードは一次及び二次モードとし、低次元化物理モデル作成法を用いて2自由度系に低次元化する。一次モードは最上階で、二次モードは中層階でそれぞれ同定する。図4にビル模型2Aにおける2自由度系の概略図と物理パラメータを示す。ここで、mは、ビル模型2A及び3Aの夫々における上階の質量であって、0.6379(kg)、mは、ビル模型2A及び3Aの夫々における下階の質量であって、0.8893(kg)、k10は、ビル模型2A及び3Aの夫々の全体のバネ剛性であって、−140.65(N/m)、k12は、ビル模型2A及び3Aの夫々の上階のバネ剛性であって、1513(N/m)、k20は、ビル模型2A及び3Aの夫々の下上階のバネ剛性であって、1539(N/m)である。 In this analysis, the control target mode is set to a primary mode and a secondary mode, and the order is reduced to a two-degree-of-freedom system using a reduced-order physical model creation method. The primary mode is identified on the top floor, and the secondary mode is identified on the middle floor. FIG. 4 shows a schematic diagram and physical parameters of a two-degree-of-freedom system in the building model 2A. Here, m 1 is the mass of the upper floor in each of the building models 2A and 3A, and 0.6379 (kg), m 2 is the mass of the lower floor in each of the building models 2A and 3A, 0.8893 (kg), k 10 is the overall spring stiffness of each of the building models 2A and 3A, and −140.65 (N / m), k 12 is above each of the building models 2A and 3A. The spring stiffness of the floor, 1513 (N / m), k 20 is the spring stiffness of the lower upper floor of each of the building models 2A and 3A, and is 1539 (N / m).

図5に、片持ち梁模型11A及び15Aをバネとして表し、直列に配された斯かる片持ち梁模型11A及び15A並びにダンパ模型13A及び17Aで互いに連結した時の模型制振構造Aの解析モデルを示し、m11は、ビル模型2Aにおける上階の質量、m12は、ビル模型2Aにおける下階の質量、k110は、ビル模型2A全体のバネ剛性、k112は、ビル模型2Aの上階のバネ剛性、k120は、ビル模型2Aの下上階のバネ剛性、m21は、ビル模型3Aにおける上階の質量、m22は、ビル模型3Aにおける下階の質量、k210は、ビル模型3A全体のバネ剛性、k212は、ビル模型3Aの上階のバネ剛性、k220は、ビル模型3Aの下上階のバネ剛性、kは、片持ち梁模型11A及び15Aの夫々のバネ剛性、そして、cは、ダンパ模型13A及び17Aの夫々の減衰係数である。ここで、模型制振構造Aでは一対の互いに同一振動特性をもつビル模型2A及び3Aを並列に配しているので、左右の2自由度系モデルは同じ物理パラメータを有することになる。このモデルの特徴は、片持ち梁模型11A及び15A(バネ要素)とダンパ模型13A及び17A(減衰要素)とが直列に配置されていることにある。また、この連結されたモデルは左右対称であるので、地面(基礎10)加振時においては図6のような簡単な等価モデルとして表せる。これは動吸振器型モデルに他ならないので、動吸振器の最適設計法を参考に最適設計のためのパラメータを導出できる。 FIG. 5 shows the model damping structure A when the cantilever models 11A and 15A are represented as springs and are connected to each other by such cantilever models 11A and 15A and damper models 13A and 17A arranged in series. M 11 is the mass of the upper floor in the building model 2A, m 12 is the mass of the lower floor in the building model 2A, k 110 is the spring rigidity of the entire building model 2A, and k 112 is the upper mass of the building model 2A. The spring stiffness of the floor, k 120 is the spring stiffness of the upper floor of the building model 2A, m 21 is the mass of the upper floor of the building model 3A, m 22 is the mass of the lower floor of the building model 3A, and k 210 is The spring rigidity of the entire building model 3A, k 212 is the spring rigidity of the upper floor of the building model 3A, k 220 is the spring rigidity of the lower upper floor of the building model 3A, and k is the spring rigidity of each of the cantilever models 11A and 15A. Spring stiffness, C is the damping coefficient of each of the damper models 13A and 17A. Here, in the model damping structure A, since the pair of building models 2A and 3A having the same vibration characteristics are arranged in parallel, the left and right two-degree-of-freedom system models have the same physical parameters. The feature of this model is that cantilever models 11A and 15A (spring elements) and damper models 13A and 17A (damping elements) are arranged in series. Further, since the connected models are symmetrical, they can be expressed as a simple equivalent model as shown in FIG. 6 when the ground (base 10) is vibrated. Since this is nothing but a dynamic vibration absorber type model, parameters for optimum design can be derived with reference to the optimum design method of the dynamic vibration absorber.

本発明では、制振構造1の最適設計法には、動吸振器の設計に用いられている定点理論の適用する。図6によれば、基礎10の変位uに対する質点1の変位x1の周波数応答曲線は図7のようになる。一点鎖線は減衰係数cがゼロの場合の応答であり、点線は減衰係数cが無限大の場合の応答である。この周波数応答には交点(小円で示す)が3つ存在する。減衰が変わっても全て周波数応答曲線はこの交点を通るので、これを定点という。したがって、定点を最大値とするような応答曲線を作る条件を求めれば連結手段8及び9の最適設計となる。その設計手順は以下のようになる。   In this invention, the fixed point theory currently used for the design of a dynamic vibration damper is applied to the optimal design method of the damping structure 1. FIG. According to FIG. 6, the frequency response curve of the displacement x1 of the mass point 1 with respect to the displacement u of the foundation 10 is as shown in FIG. A one-dot chain line is a response when the attenuation coefficient c is zero, and a dotted line is a response when the attenuation coefficient c is infinite. There are three intersections (indicated by small circles) in this frequency response. Even if the attenuation changes, the frequency response curve passes through this intersection point, so this is called a fixed point. Therefore, the optimum design of the connecting means 8 and 9 can be obtained by obtaining the conditions for creating a response curve that maximizes the fixed point. The design procedure is as follows.

1.減衰係数cがゼロの場合と無限大の場合の周波数応答曲線を描き、バネ剛性kの値を変化させて、3つの交点(定点)の内、一次モードに関する低周波数の定点の高さが低くなる様なバネ剛性kの値を決定する。
2.低周波数の定点で、周波数応答曲線が最大値を持つ減衰係数cを決定する。
1. Draw a frequency response curve when the damping coefficient c is zero and when it is infinite, change the value of the spring stiffness k, and among the three intersections (fixed points), the height of the low frequency fixed point for the primary mode is low The value of the spring stiffness k is determined as follows.
2. An attenuation coefficient c having a maximum frequency response curve is determined at a low frequency fixed point.

以上の手順によって、最適バネ剛性kopt=2800[N/m]、最適減衰係数copt=33[Ns/m]となる。 By the above procedure, the optimum spring stiffness k opt = 2800 [N / m] and the optimum damping coefficient c opt = 33 [Ns / m].

これらの最適値を用いて周波数応答曲線を計算したものを図7の実線で示す。大地震でビルを破壊に至らしめるのは一次モードの振動であるが、この一次モードの共振ピークが良く抑制されており、しかもそのピーク値は定点を通っていることから、連結手段8及び9のバネ剛性kと減衰係数cとが最適に設計されていることになる。この時の、地面をインパルス的に加振したことによる質点1のインパルス応答を図8に示す。ビル模型2A及び3Aの振動が速やかに減衰していることが分かる。これは一対のビル模型2A及び3Aで同時に同じに減衰されている。   A frequency response curve calculated using these optimum values is shown by a solid line in FIG. It is the vibration of the primary mode that leads to the destruction of the building in the event of a large earthquake. Since the resonance peak of this primary mode is well suppressed and the peak value passes through a fixed point, the connecting means 8 and 9 The spring stiffness k and the damping coefficient c are optimally designed. FIG. 8 shows the impulse response of the mass point 1 due to the vibration of the ground at the time. It can be seen that the vibrations of the building models 2A and 3A are quickly damped. This is simultaneously attenuated by the pair of building models 2A and 3A.

以上のように得られたシミュレーション結果を実験的に確認することにより、本発明の効果を示す。最適設計されたバネ剛性koptと減衰係数coptとを基に連結手段8及び9に係る片持ち梁模型11A及び15Aとダンパ模型13A及び17Aとを作成した。 The effects of the present invention are shown by experimentally confirming the simulation results obtained as described above. Based on the optimally designed spring stiffness k opt and damping coefficient c opt , cantilever models 11A and 15A and damper models 13A and 17A related to the connecting means 8 and 9 were created.

片持ち梁模型11A及び15Aは厚さ6[mm]×長さ550[mm]×幅50[mm]のアルミ製で、厚さは最適バネ剛性koptを使って、理論式より決定した。また、ダンパは、銅板と磁石とを使った磁気ダンパであり、最適減衰係数coptをもつように、理論式を用いて設計した。 The cantilever models 11A and 15A are made of aluminum having a thickness of 6 [mm] × a length of 550 [mm] × a width of 50 [mm], and the thickness was determined from a theoretical formula using an optimal spring stiffness k opt . The damper is a magnetic damper using a copper plate and a magnet, and is designed using a theoretical formula so as to have an optimum attenuation coefficient c opt .

図9の周波数応答より、シミュレーションと同様に各共振ピークがよく低減されている。また、図10のインパルス応答でも、振動発生から約3[sec]と振動が素早く収束しており、本発明の効果が示されている。   From the frequency response of FIG. 9, each resonance peak is well reduced as in the simulation. In the impulse response of FIG. 10 as well, the vibration converges quickly about 3 [sec] from the occurrence of the vibration, and the effect of the present invention is shown.

以上のように制振構造1において連結手段8又は9のバネ剛性kと減衰係数cとを、一対のビル2及び3の夫々を連結部位5及び7で分けられた図5に示す2質点m11及びm12並びにm21及びm22モデルで表した場合に得られる図6に示す制振構造1の等価モデルに基づいて決定して、最適振動減衰が得られるようにしている。 As described above, in the damping structure 1, the spring stiffness k and the damping coefficient c of the connecting means 8 or 9 are divided into the two mass points m shown in FIG. 5 in which the pair of buildings 2 and 3 are separated by the connecting portions 5 and 7, respectively. It is determined on the basis of the equivalent model of the vibration control structure 1 shown in FIG. 6 obtained by the 11 and m 12 and m 21 and m 22 models, so that optimum vibration damping is obtained.

図11及び図12に示す他の例の制振構造1では、ビル2の頂部である部位4に連結手段8の片持ち梁11が固着されており、その自由端12には制振装置の内筒31が取り付けられており、ビル3の中ほどの部位5には制振装置の外筒32の一端が剛に固着されて取り付けられており、その外筒32の他端はビル2の中ほどでスライド機構33によって水平方向に移動自在に支持されており、内筒31は外筒32の内部でガイド34によって滑らかに軸方向に移動できるようになっており、内筒31と外筒32とは単数又は複数の油圧ダンパ等のダンパ35で結合されている。連結手段9側も図示しないが同様に構成されている。   In another example of the vibration damping structure 1 shown in FIGS. 11 and 12, the cantilever 11 of the connecting means 8 is fixed to the portion 4 which is the top of the building 2, and the free end 12 of the vibration damping device is attached to the free end 12. An inner cylinder 31 is attached, and one end of the outer cylinder 32 of the vibration damping device is firmly fixed to the middle part 5 of the building 3 and the other end of the outer cylinder 32 is attached to the building 2. The middle cylinder 31 is supported by the slide mechanism 33 so as to be movable in the horizontal direction. The inner cylinder 31 can be smoothly moved in the axial direction by the guide 34 inside the outer cylinder 32. 32 is connected by a damper 35 such as one or a plurality of hydraulic dampers. Although not shown, the connecting means 9 side is configured in the same manner.

以上のように図11及び図12に示す制振構造1もまた、内筒31、外筒32、スライド機構33、ガイド34及びダンパ35を具備した制振装置と片持ち梁11を具備した弾性装置とを有した連結手段8を介してビル2及び3をその振動振幅の異なる部位4及び5で連結しており、同様の連結手段9を介してビル2及び3をその振動振幅の異なる部位6及び7で連結しており、而して、ビル2及び3の相互作用力によりビル2及び3の振動を制御するようにしている。   As described above, the vibration damping structure 1 shown in FIGS. 11 and 12 also includes the vibration damping device including the inner cylinder 31, the outer cylinder 32, the slide mechanism 33, the guide 34, and the damper 35 and the elastic structure including the cantilever 11. Buildings 2 and 3 are connected by parts 4 and 5 having different vibration amplitudes via connecting means 8 having a device, and parts 2 and 3 having different vibration amplitudes are connected by similar connecting means 9. 6 and 7, and thus the vibration of the buildings 2 and 3 is controlled by the interaction force between the buildings 2 and 3.

図11及び図12に示す制振構造1の例では、制振のための制振装置としてパッシブなダンパ35を用いているが、これに代えて、セミアクティブ制振器又はアクティブ制振器を用いてもよく、また、パッシブ制振器とアクティブ制振器とを組み合わせたハイブリッド制振器を用いて、風などの微振動に対してアクティブ制振器が働き、大地震に対してパッシブ制振器が働くようにすると、あらゆる振動外乱に対して対応することができる。図11及び図12に示す例において、内筒31に通路を施せば火災などの緊急時に避難路として機能させることができる。   In the example of the damping structure 1 shown in FIGS. 11 and 12, the passive damper 35 is used as a damping device for damping. Instead, a semi-active damping device or an active damping device is used. It is also possible to use a hybrid damper that combines a passive damper and an active damper. When the vibrator is activated, it can cope with any vibration disturbance. In the example shown in FIGS. 11 and 12, if a passage is provided in the inner cylinder 31, it can function as an evacuation route in an emergency such as a fire.

また連結手段8及び9を上下逆に配置して制振構造1を構成してもよい。即ち、図13に示すように、片持ち梁11の一端を部位5に固着すると共にその自由端12をダンパ13の一端に連結し、ダンパ13の他端を部位4に連結し、片持ち梁15の一端を部位7に固着すると共にその自由端16をダンパ17の一端に連結し、ダンパ17の他端を部位6に連結してもよい。   Moreover, you may comprise the damping structure 1 by arrange | positioning the connection means 8 and 9 upside down. That is, as shown in FIG. 13, one end of the cantilever 11 is fixed to the part 5, the free end 12 is connected to one end of the damper 13, and the other end of the damper 13 is connected to the part 4. One end of 15 may be fixed to the part 7, the free end 16 may be connected to one end of the damper 17, and the other end of the damper 17 may be connected to the part 6.

更に、一対の連結手段8及び9のうち一方の連結手段、例えば図14に示すように連結手段9を用いて制振構造1を構成してもよい。この場合は、前記した最適減衰程ではないがある程度の制振効果は持たすことができる。   Furthermore, you may comprise the damping structure 1 using one connection means among a pair of connection means 8 and 9, for example, as shown in FIG. In this case, a certain level of vibration damping effect can be obtained, although not as much as the optimum attenuation described above.

さらに本発明は、一対以上のビル、一個のビル又は並立する一般構造物にも適用できる。例えば、図15に示すようにビル40を四つ割りにして分割ビル41を形成し、これら分割ビル41を連結手段8及び/又は9で連結して制振構造42にすれば、あたかも1棟のビル40でありながら、大地震や強風に強い高層ビルが実現できる。また、図15の制振構造42によれば、あらゆる方向からの風又は地震が襲っても全方向に耐える制振構造が実現できる。   Furthermore, the present invention can also be applied to a pair of buildings, a single building, or a general structure in parallel. For example, as shown in FIG. 15, if a building 40 is divided into four to form divided buildings 41, and these divided buildings 41 are connected by connecting means 8 and / or 9 to form a vibration control structure 42, one building will be formed. In spite of this building 40, a high-rise building that is strong against large earthquakes and strong winds can be realized. Further, according to the vibration control structure 42 of FIG. 15, it is possible to realize a vibration control structure that can endure in all directions even if wind or an earthquake strikes from any direction.

本発明による好ましい実施例の斜視説明図である。It is a perspective explanatory view of a preferred embodiment according to the present invention. 図1に示す例の制振効果を確認するためのビル模型構造物の説明図である。It is explanatory drawing of the building model structure for confirming the vibration damping effect of the example shown in FIG. 図2に示す例のビル模型構造物と振動モード形との説明図であって、(a)はビル模型構造物の説明図、(b)は一次振動モードの説明図、(c)は二次振動モードの説明図である。It is explanatory drawing of the building model structure and vibration mode form of the example shown in FIG. 2, Comprising: (a) is explanatory drawing of a building model structure, (b) is explanatory drawing of a primary vibration mode, (c) is two. It is explanatory drawing of a next vibration mode. 2自由度系モデルと物理パラメータとの説明図である。It is explanatory drawing of a 2-degree-of-freedom system model and a physical parameter. 連結された2自由度系モデルと物理パラメータとの説明図である。It is explanatory drawing of the connected 2 degree-of-freedom system model and a physical parameter. 図5に示す2自由度系モデルの等価モデルの説明図である。FIG. 6 is an explanatory diagram of an equivalent model of the two-degree-of-freedom system model shown in FIG. 5. 質点1の周波数応答曲線図である。It is a frequency response curve figure of the mass point 1. FIG. インパルス応答曲線図である。It is an impulse response curve diagram. 実験で得られた周波数応答曲線図である。It is the frequency response curve figure obtained by experiment. 実験で得られたインパルス応答曲線図である。It is the impulse response curve figure obtained by experiment. 本発明による好ましい他の実施例の正面説明図である。It is front explanatory drawing of another preferable Example by this invention. 図11に示す例の一部拡大説明図である。It is a partially expanded explanatory view of the example shown in FIG. 本発明による好ましい更に他の実施例の正面説明図である。It is front explanatory drawing of the further another Example preferable by this invention. 本発明による好ましい更に他の実施例の正面説明図である。It is front explanatory drawing of the further another Example preferable by this invention. 本発明による好ましい更に他の実施例の正面説明図である。It is front explanatory drawing of the further another Example preferable by this invention.

符号の説明Explanation of symbols

1 制振構造
2、3 ビル
4、5、6、7 部位
8、9 連結手段
1 Damping structure 2, 3 Building 4, 5, 6, 7 Site 8, 9 Connecting means

Claims (1)

一個の構造物を分割して少なくとも一対の分割構造物を形成し、この分割された一対の分割構造物をその振動振幅の異なる部一対の連結手段を介して連結し、一対の分割構造物同士の相互作用力により当該一対の分割構造物の振動を制御するようにした構造物の制振構造であって、一対の連結手段のうちの一方の連結手段は、一端で一対の分割構造物のうちの一方の分割構造物に固着された一方の弾性装置としての一方の片持ち梁と、一端で一方の片持ち梁の自由端に連結されていると共に他端で他方の分割構造物に連結されている一方の制振装置としての一方のダンパとを有しており、一方の片持ち梁は、一方の分割構造物を支点としてその自由端側で弾性的に略水平方向に揺動可能となっており、一方のダンパは、略水平方向において伸縮自在となっていると共に当該略水平方向の振動伸縮においてその振動を減衰させるようになっており、一対の連結手段のうちの他方の連結手段は、一端で一対の分割構造物のうちの他方の分割構造物に固着された他方の弾性装置としての他方の片持ち梁と、一端で他方の片持ち梁の自由端に連結されていると共に他端で一方の分割構造物に連結されている他方の制振装置としての他方のダンパとを有しており、他方の片持ち梁は、他方の分割構造物を支点としてその自由端側で弾性的に略水平方向に揺動可能となっており、他方のダンパは、略水平方向において伸縮自在となっていると共に当該略水平方向の振動伸縮においてその振動を減衰させるようになっている構造物の制振構造By dividing one of the structure forms at least a pair of split structure, the divided pair of divided structures are connected via a pair of connecting means on different parts component of the vibration amplitude, a pair of divided structure A vibration damping structure for a structure in which vibration of the pair of divided structures is controlled by an interaction force between objects , wherein one of the pair of connecting means is a pair of divided structures at one end. One cantilever as one elastic device fixed to one split structure of the object, and one end connected to the free end of one cantilever and the other split structure at the other end One damper as one damping device connected to the other, and one cantilever is elastically shaken in a substantially horizontal direction on the free end side with one divided structure as a fulcrum. One damper is placed in a substantially horizontal direction. In addition, the vibration can be attenuated in the substantially horizontal vibration expansion and contraction, and the other of the pair of connection means is connected to the other of the pair of divided structures at one end The other cantilever as the other elastic device fixed to the split structure, and one end connected to the free end of the other cantilever and the other end connected to the one split structure The other damper as the other vibration damping device, and the other cantilever is elastically swingable in a substantially horizontal direction on the free end side with the other divided structure as a fulcrum. The other damper is a structure for damping the structure which is extendable in a substantially horizontal direction and is adapted to attenuate the vibration in the vibration extension / contraction in the substantially horizontal direction .
JP2004352065A 2004-12-03 2004-12-03 Damping structure of structure Active JP4788134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352065A JP4788134B2 (en) 2004-12-03 2004-12-03 Damping structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352065A JP4788134B2 (en) 2004-12-03 2004-12-03 Damping structure of structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010184472A Division JP5251936B2 (en) 2010-08-19 2010-08-19 Damping structure of structure

Publications (2)

Publication Number Publication Date
JP2006161341A JP2006161341A (en) 2006-06-22
JP4788134B2 true JP4788134B2 (en) 2011-10-05

Family

ID=36663666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352065A Active JP4788134B2 (en) 2004-12-03 2004-12-03 Damping structure of structure

Country Status (1)

Country Link
JP (1) JP4788134B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730292B2 (en) * 2006-12-20 2011-07-20 積水ハウス株式会社 Damping pendulum device and damping system comparison experience device using the same
JP5303874B2 (en) * 2007-06-29 2013-10-02 株式会社大林組 Damping building, damping system, damping method
JP5586982B2 (en) * 2010-02-17 2014-09-10 株式会社熊谷組 building
JP5382457B2 (en) * 2010-04-16 2014-01-08 清水建設株式会社 Connected vibration control structure
JP5720718B2 (en) * 2013-04-18 2015-05-20 株式会社大林組 Vibration control building

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285599A (en) * 2003-03-19 2004-10-14 Shimizu Corp Vibration control structure of structure

Also Published As

Publication number Publication date
JP2006161341A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP5570605B2 (en) Method and structure for dampening motion in a building
Kim et al. Hybrid control of smart structures using a novel wavelet‐based algorithm
JP6372034B2 (en) Anti-vibration vibration reduction device
JP2020101081A (en) Vibration control device and architectural structure having this
JP2010007793A (en) Base isolation structure
JP5403372B2 (en) Truss beam structure
JP4788134B2 (en) Damping structure of structure
JP3858432B2 (en) Vibration control method for linked structures
JP5251936B2 (en) Damping structure of structure
JP2007231718A (en) Multistory structure
JP5458374B2 (en) Vibration control system
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP6853869B2 (en) Vibration control structure of the building
Hassani et al. Optimization of pendulum tuned mass damper in tall building under horizontal earthquake excitation
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
JP2008240290A (en) Base-isolating device and its construction method
JP2005299173A (en) Aseismatic structure of towering construction
JP2005090101A (en) Seismic response control structure
JP2018145626A (en) Damping structure
JP7374694B2 (en) Design method for seismically isolated buildings
JP2011099538A (en) Vertical base isolation system
Gordan et al. Experimental Study on the Effectiveness of Tuned Mass Damper on a steel frame under Harmonic Load
JP2022181129A (en) Anti-vibration foundation
JP2011069149A (en) Seismic isolation system
JP6924599B2 (en) Floor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250