JP4572535B2 - Building seismic control structure - Google Patents

Building seismic control structure Download PDF

Info

Publication number
JP4572535B2
JP4572535B2 JP2003424525A JP2003424525A JP4572535B2 JP 4572535 B2 JP4572535 B2 JP 4572535B2 JP 2003424525 A JP2003424525 A JP 2003424525A JP 2003424525 A JP2003424525 A JP 2003424525A JP 4572535 B2 JP4572535 B2 JP 4572535B2
Authority
JP
Japan
Prior art keywords
building
frame
seismic
control structure
member element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003424525A
Other languages
Japanese (ja)
Other versions
JP2005180089A (en
Inventor
勝尚 西村
義之 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003424525A priority Critical patent/JP4572535B2/en
Publication of JP2005180089A publication Critical patent/JP2005180089A/en
Application granted granted Critical
Publication of JP4572535B2 publication Critical patent/JP4572535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、建物の制震構造および建物の制震方法に関する。   The present invention relates to a building vibration control structure and a building vibration control method.

従来、高層建物は、地震力や風荷重による大きな水平力が入力されると、大きな水平方向の変形が生じるため、柱や梁の本数を多くしたり、これらの断面を大きくしたりする構成や、耐震要素としての連層耐震壁を架構内に設ける構成を採用することにより、水平力を負担していた。しかしながら、このように柱や梁の本数を増やしたり、断面を大きくしたりすると、建物内の居室空間等が狭小となって、建物の平面計画や断面計画の障害になるという問題があった。また、大きな力を負担する連層の耐震壁を採用したとしても、耐震壁の断面が大きくなることにより、前述同様に、建物の平面計画や断面計画の障害となっていた。   Conventionally, high-rise buildings are subject to large horizontal deformations when large horizontal forces due to seismic forces or wind loads are input, so the number of columns and beams can be increased, or the cross-section can be increased. The horizontal force was borne by adopting a structure in which a multi-layer earthquake-resistant wall as an earthquake-resistant element was installed in the frame. However, if the number of columns or beams is increased or the section is increased in this way, there is a problem that the room space in the building becomes narrow, which obstructs the plan and section plans of the building. In addition, even if a multi-story shear wall that bears a large force is adopted, the cross section of the shear wall becomes large, and as described above, it has become an obstacle to the plan and cross section plans of buildings.

これに対して、例えば特許文献1には、連層耐震壁を有するコアの頂部に連層耐震壁の曲げ変形を誘起するトップガーダーと呼ばれる巨大な梁を形成し、このトップガーダーの端部とコアの周囲に配置される外周壁の頂部とを制震装置を介して連結する構造が開示されている。このような構造によれば、地震等の外力が入力された際に、トップガーダーを含むコアが下層階では入力外力を負担しつつ、上層階では曲げ変形するものの、この上層階の曲げ変形を制震装置が吸収することにより建物の耐震性能を十分に確保できる上、コアが外力の多くを吸収するため、外周部分の柱や梁を比較的小さくできて、建物の平面計画の自由度を増すことができた。
特開平7−26786号公報
On the other hand, for example, in Patent Document 1, a giant beam called a top girder that induces bending deformation of a multi-layer earthquake-resistant wall is formed at the top of a core having a multi-layer earthquake-resistant wall. A structure is disclosed in which a top portion of an outer peripheral wall disposed around a core is connected via a vibration control device. According to such a structure, when an external force such as an earthquake is input, the core including the top girder bears the input external force on the lower floor, but bends and deforms on the upper floor. The seismic control device can absorb the building's seismic performance sufficiently, and the core absorbs much of the external force. I was able to increase.
Japanese Unexamined Patent Publication No. 7-26786

しかしながら、このような構造では、コアを構成するトップガーダーや連層耐震壁の断面をかなり大きなものとして構成しなければならず、高層建物の建設に掛かるコストが高くなるという問題があった。
本発明の目的は、建物の耐震性能および建物の平面計画の自由度を十分に確保できた上で、建物を構成する部材の点数を減少させてコストを抑えることができる建物の制震構造および建物の制震方法を提供することにある。
However, in such a structure, the top girder and the multistory earthquake-resistant wall that constitute the core must be configured to have a considerably large cross section, and there is a problem that the cost for the construction of a high-rise building increases.
An object of the present invention is to provide a seismic control structure for a building capable of reducing cost by reducing the number of members constituting the building, while sufficiently securing the seismic performance of the building and the floor plan of the building. The purpose is to provide a vibration control method for buildings.

本発明は、建物の制震構造であって、前記建物は、当該建物を構成する架構と、この架構内に当該架構から独立して設けられた連層耐震壁またはブレース架構である独立部材要素とを備え、前記架構と前記独立部材要素とは、異なる振動特性を有するとともに、1箇所又は複数箇所において制震装置を介して連結されており、前記独立部材要素は、その面内の水平方向および鉛直方向には移動可能であり、面外方向の移動は前記架構により拘束されるように構成されていることを特徴とする。
ここで、振動特性の異なる架構と独立部材要素としては、以下の場合が考えられる。すなわち、ラーメン架構および連層耐震壁の場合、鉄骨造およびブレース架構もしくは鋼板耐震壁架構の場合等である。
また、制震装置としては、粘性ダンパ、粘弾性ダンパ、摩擦ダンパ、履歴型ダンパ、オイルダンパその他の制震装置を採用できる。また、これらの制震装置を組み合わせたものとしてもよい。
The present invention is a seismic control structure of a building, and the building is a frame that constitutes the building, and an independent member element that is a multi-layer earthquake-resistant wall or a brace frame provided in the frame independently from the frame. The frame and the independent member element have different vibration characteristics and are connected to each other through a vibration control device at one or a plurality of locations, and the independent member element has a horizontal direction within the plane. It is possible to move in the vertical direction, and the movement in the out-of-plane direction is constrained by the frame .
Here, as the frame and the independent member element having different vibration characteristics, the following cases can be considered. That is, in the case of a ramen frame and multi-story earthquake-resistant wall, in the case of a steel frame and brace frame or a steel plate earthquake-resistant wall frame.
Moreover, as a damping device, a viscous damper, a viscoelastic damper, a friction damper, a hysteresis type damper, an oil damper, and other damping devices can be adopted. Moreover, it is good also as what combined these damping devices.

本発明によれば、振動特性の異なる、建物を構成する架構と、この架構内に当該架構から独立して設けられた独立部材要素とを備える構成としたので、架構と独立部材要素とは、それぞれ互いに異なる変形モードを示すこととなる。このため、例えば、架構と独立部材要素との変形差が比較的大きくなる箇所に制震装置を配置して連結するだけの構成で、制震装置の数が少なくても効率的に制震効果を発揮でき、建物の水平方向の変形を小さく抑えることができる。つまり、建物には、十分な耐震性能を付与できる。このように比較的簡単な構成で十分な耐震性能を確保できるので、架構を構成する梁や柱等の寸法や本数を小さくできるから、建物の平面計画の自由度を十分に確保できるとともに、建物の建設に掛かるコストを抑えることができる。   According to the present invention, the frame and the independent member element having different vibration characteristics and the independent member element provided independently of the frame in the frame are provided. Each of them shows a different deformation mode. For this reason, for example, it is a configuration in which the vibration control device is simply arranged and connected at a location where the deformation difference between the frame and the independent member element is relatively large. The horizontal deformation of the building can be kept small. That is, sufficient seismic performance can be imparted to the building. In this way, sufficient seismic performance can be ensured with a relatively simple structure, so the dimensions and number of beams and pillars making up the frame can be reduced, so that the degree of freedom in building plan planning can be sufficiently secured, and the building The cost of construction can be reduced.

ここで、前記制震装置は、摩擦ダンパまたは履歴型ダンパであることが好ましい。
また、前記制震装置は、外力が入力された際に前記架構と前記独立部材要素との変形差が大きくなる箇所に設置されていることが好ましい。このような構成によれば、建物の水平方向の変形を効率的に減衰できるため、制震装置の設置個数を減少できるから、より一層のコストダウンを図ることができる。
Here, before Symbol Damping device is preferably a friction damper or historical damper.
Moreover, it is preferable that the said vibration control apparatus is installed in the location where the deformation | transformation difference of the said frame and the said independent member element becomes large when external force is input. According to such a configuration, since the horizontal deformation of the building can be efficiently attenuated, the number of installed vibration control devices can be reduced, so that further cost reduction can be achieved.

また、前記架構と前記独立部材要素とは、前記制震装置を介して連結された箇所とは別の箇所において直接結合されている構成としてもよい。
このような構成によれば、結合箇所を任意に選択することにより、建物の固有周期に影響を与える建物剛性を設計者の意図で自由に設定できる。このため、例えば、建設地に発生する可能性が高い地震動の周期に対して建物が共振しないように、架構と独立部材要素とを含む建物の固有周期を調整することにより、建物に入力される外力を小さくできる。また、結合箇所を適宜選択することにより、架構と独立部材要素とが負担する水平力の割合を自由に変更できるため、建物設計の自由度を向上できる。
Further, the frame and the independent member element may be directly coupled to each other at a location different from the location connected via the vibration control device.
According to such a structure, the building rigidity which affects the natural period of a building can be freely set by a designer's intention by selecting a connection location arbitrarily. For this reason, for example, it is input to the building by adjusting the natural period of the building including the frame and the independent member element so that the building does not resonate with the period of earthquake motion that is highly likely to occur in the construction site. External force can be reduced. Moreover, since the ratio of the horizontal force which a frame and an independent member element bear can be changed freely by selecting a coupling | bond part suitably, the freedom degree of building design can be improved.

本発明の建物の制震構造によれば、建物の耐震性能および建物の平面計画の自由度を十分に確保できた上で、建物を構成する部材の点数を減少させてコストを抑えることができるという効果がある。   According to the building seismic control structure of the present invention, the seismic performance of the building and the degree of freedom of the floor plan of the building can be sufficiently secured, and the cost can be reduced by reducing the number of members constituting the building. There is an effect.

以下、本発明の実施形態に係る建物の制震構造を図面に基づいて説明する。
図1は、本発明の実施形態に係る建物の制震構造を模式的に示す縦断面図である。図2は、前記建物の制震構造を模式的に示す横断面図である。図3は、図2の破線で囲まれた部分Aを拡大して示す横断面図である。図4は、図3のIV−IVの断面図である。
図1に示すように、建物1の制震構造2は、柱11および梁12で構成される架構としてのラーメン架構10と、このラーメン架構10内に、このラーメン架構10から独立して設けられた独立部材要素としての連層耐震壁20と、ラーメン架構10および連層耐震壁20を複数箇所で連結する制震装置としての摩擦ダンパ30とを備えている。
Hereinafter, a building vibration control structure according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view schematically showing a building vibration control structure according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the vibration control structure of the building. 3 is an enlarged cross-sectional view of a portion A surrounded by a broken line in FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
As shown in FIG. 1, the vibration control structure 2 of the building 1 is provided with a ramen frame 10 as a frame composed of columns 11 and beams 12, and is provided in the ramen frame 10 independently of the ramen frame 10. In addition, a multi-layer seismic wall 20 as an independent member element, and a friction damper 30 as a seismic control device for connecting the rigid frame 10 and the multi-layer seismic wall 20 at a plurality of locations are provided.

建物1を構成するラーメン架構10は、連層耐震壁20よりも低剛性に構成されている。すなわち、ラーメン架構10は、従来の一般的なラーメン架構に比べて、柱11や梁12の寸法を小さく形成するとともに、これらの柱11および梁12の点数を少なくしている。これにより、ラーメン架構10内に設けられる居室空間等の建物内空間を十分に確保し、空間設計の自由度の向上を図っている。また、図2に示すように、ラーメン架構10において、隣接する柱11および梁12により形成される矩形平面10A内には、床板13が設けられている。このように、ラーメン架構10と連層耐震壁20との剛性が異なるので、ラーメン架構10と連層耐震壁20とは、外力に対して異なる振動特性を有している。   The ramen frame 10 constituting the building 1 is configured to have a lower rigidity than the multi-layer earthquake resistant wall 20. That is, the ramen frame 10 is formed with smaller dimensions of the columns 11 and beams 12 and the number of points of these columns 11 and beams 12 compared to a conventional general frame structure. As a result, a sufficient space in the building such as a living room space provided in the ramen frame 10 is secured, and the degree of freedom in space design is improved. In addition, as shown in FIG. 2, in the rigid frame 10, a floor plate 13 is provided in a rectangular plane 10 </ b> A formed by adjacent columns 11 and beams 12. Thus, since the rigidities of the rigid frame 10 and the multi-layer earthquake resistant wall 20 are different, the rigid frame 10 and the multi-layer earthquake resistant wall 20 have different vibration characteristics with respect to external force.

連層耐震壁20は、図2,図3に示すように、建物1を構成するラーメン架構10の内側にラーメン架構10と切り離し独立して構成されている。具体的には、図4に詳細構造を示すように、建物1において、隣接する梁12,12(図3)間に2本の小梁14,14を掛け渡し、これらの小梁14,14上で床板13を支持している。そして、これらの床板13,13間にラーメン架構10とは独立した連層耐震壁20を形成することにより、ラーメン架構10の内側に独立した連層耐震壁20を構成している。このような構成により、連層耐震壁20は、壁幅方向(図2の上下方向)や、図2の鉛直方向(紙面直交方向)には移動できるが、壁厚方向(図2の左右方向)の移動は拘束される構成となっている。   As shown in FIGS. 2 and 3, the multi-layer seismic wall 20 is configured to be separated from the ramen frame 10 and independently inside the ramen frame 10 constituting the building 1. Specifically, as shown in the detailed structure in FIG. 4, in the building 1, two small beams 14, 14 are spanned between adjacent beams 12, 12 (FIG. 3), and these small beams 14, 14. The floor board 13 is supported above. Then, by forming a multi-layer seismic wall 20 independent of the rigid frame 10 between the floor plates 13, 13, the multi-layer seismic wall 20 independent of the rigid frame 10 is formed. With such a configuration, the multi-layer seismic wall 20 can move in the wall width direction (vertical direction in FIG. 2) and in the vertical direction (perpendicular direction in FIG. 2), but in the wall thickness direction (horizontal direction in FIG. 2). ) Movement is restricted.

また、ラーメン架構10と連層耐震壁20とは、図1に示すように、結合箇所40において互いに直接結合されている。この結合箇所40は、建物1を建設する建設地で発生する可能性が高い地震動の周期に対して建物1が共振しないように、建物1の固有周期を調整する目的で設けられている。   Further, as shown in FIG. 1, the rigid frame 10 and the multistory earthquake-resistant wall 20 are directly coupled to each other at a coupling point 40. The coupling point 40 is provided for the purpose of adjusting the natural period of the building 1 so that the building 1 does not resonate with the period of earthquake motion that is likely to occur in the construction site where the building 1 is constructed.

摩擦ダンパ30は、前述した結合箇所40による固有周期の調整を考慮し、固有周期調整後の建物1において、ラーメン架構10と連層耐震壁20との変形差が最大となる箇所に適宜設置されている。
摩擦ダンパ30は、図3に示すように、床板13と連層耐震壁20の表裏面20A,20Bとの間に配置されている。より具体的には、図4に示すように、摩擦ダンパ30は、連層耐震壁20の表裏面20A,20Bに接合されたベース板31と、各ベース板31の表面31Aおよび小梁14の上面14Aにそれぞれ当接する断面L字状の摩擦板32と、摩擦板32の表面32Aおよび床板13の端部13Aを接続するリブ材33と、連層耐震壁20を挟んでベース板31および摩擦板32を締め付ける皿ばね34とを備えている。この連層耐震壁20に外力が入力されると、ベース板31と摩擦板32との当接部分が図4中紙面直交方向、および、図4中の上下方向に摺動することにより、当該建物1は、水平方向への変形や鉛直方向への変形に対応できるようになっている。
The friction damper 30 is appropriately installed at a location where the deformation difference between the ramen frame 10 and the multistory seismic wall 20 is maximized in the building 1 after the natural cycle adjustment in consideration of the natural cycle adjustment by the coupling point 40 described above. ing.
As shown in FIG. 3, the friction damper 30 is disposed between the floor plate 13 and the front and back surfaces 20 </ b> A and 20 </ b> B of the multistory earthquake resistant wall 20. More specifically, as shown in FIG. 4, the friction damper 30 includes a base plate 31 joined to the front and back surfaces 20 </ b> A and 20 </ b> B of the multi-layer earthquake resistant wall 20, and the surface 31 </ b> A of each base plate 31 and the small beam 14. The friction plate 32 having an L-shaped cross section that abuts on the upper surface 14A, the rib member 33 that connects the surface 32A of the friction plate 32 and the end portion 13A of the floor plate 13, and the base plate 31 and the friction with the multi-layer earthquake resistant wall 20 interposed therebetween. A disc spring 34 for fastening the plate 32 is provided. When an external force is input to the multi-layer seismic wall 20, the contact portion between the base plate 31 and the friction plate 32 slides in the direction perpendicular to the paper surface in FIG. 4 and the vertical direction in FIG. The building 1 can cope with deformation in the horizontal direction and deformation in the vertical direction.

以上のような建物1の制震構造2において、地震力等の外力が入力されると、ラーメン架構10と連層耐震壁20との振動特性が異なることから、ラーメン架構10および連層耐震壁20は以下のような挙動を示す。すなわち、ラーメン架構10は、建物1が受けるせん断力に応じて水平方向変形が生じるため、低層部では大きな層間水平方向変形が生じ、高層部では水平方向の層間変形が小さくなる。一方、連層耐震壁20は、低層部では層間変形が小さく、高層部では曲げ変形により大きな層間変形を生じる。ここで、ラーメン架構10と連層耐震壁20とを独立した構成としたので、連層耐震壁20は、周囲のラーメン架構10の影響を受けないから、連層耐震壁20の高層部では、水平方向の層間変形がより一層大きくなる。また、振動特性の違いから、ラーメン架構10が右側へと変形する場合には、連層耐震壁20が左側に変形するような状態となる場合もある。このような変形差が大きい箇所には摩擦ダンパ30を配置したので、この摩擦ダンパ30に大きな変形が生じることにより減衰効果が高くなり、建物1には十分な制震機能が付与されている。   In the seismic control structure 2 of the building 1 as described above, when external force such as seismic force is input, the vibration characteristics of the ramen frame 10 and the multistory shear wall 20 are different. 20 shows the following behavior. That is, the frame structure 10 is deformed in the horizontal direction according to the shearing force applied to the building 1, so that a large interlayer horizontal deformation occurs in the low-rise part and a horizontal interlayer deformation becomes small in the high-rise part. On the other hand, the multistory earthquake-resistant wall 20 has a small interlayer deformation at the lower layer part and a large interlayer deformation by a bending deformation at the higher layer part. Here, since the ramen frame 10 and the multistory shear wall 20 are configured independently, the multistory seismic wall 20 is not affected by the surrounding ramen frame 10. Horizontal interlayer deformation becomes even greater. In addition, when the frame structure 10 is deformed to the right side due to the difference in vibration characteristics, the multistory earthquake-resistant wall 20 may be deformed to the left side. Since the friction damper 30 is disposed in such a large deformation difference, a large deformation occurs in the friction damper 30 to increase the damping effect, and the building 1 is provided with a sufficient damping function.

本実施形態においては、次のような効果がある。
(1)振動特性の異なるラーメン架構10と連層耐震壁20とを独立した構成としたので、これらのラーメン架構10と連層耐震壁20とは、それぞれ互いに異なる変形モードを示すこととなる。この際、ラーメン架構10と連層耐震壁20との振動特性の差が最も大きい、すなわちラーメン架構10と連層耐震壁20との変形差が最大となる箇所に摩擦ダンパ30を配置したので、少ない摩擦ダンパ30でも効率的な制震効果を発揮でき、建物1の変形を小さく抑えることができる。このように比較的簡単な構成で十分な耐震性能を確保できるので、ラーメン架構10および連層耐震壁20を構成する部材の使用点数や寸法を小さくできるから、建物1の平面計画の自由度を十分に確保できるとともに、建物1の建設に掛かるコストを抑えることができる。
The present embodiment has the following effects.
(1) Since the rigid frame 10 and the multistory earthquake-resistant wall 20 having different vibration characteristics are configured independently, the rigid frame 10 and the multistory earthquake-resistant wall 20 exhibit different deformation modes. At this time, since the friction damper 30 is disposed at a position where the difference in vibration characteristics between the rigid frame 10 and the multi-layer seismic wall 20 is the largest, that is, the deformation difference between the rigid frame 10 and the multi-layer seismic wall 20 is maximum. Even with a small number of friction dampers 30, an effective vibration control effect can be exhibited, and deformation of the building 1 can be suppressed to a small level. Since sufficient seismic performance can be secured with such a relatively simple configuration, the number of members used and the dimensions of the members constituting the rigid frame 10 and the multi-layer seismic wall 20 can be reduced. Sufficiently secured and cost for construction of the building 1 can be suppressed.

(2)また、連層耐震壁20の表裏面20A,20Bと、床板13,13との間に水平方向および鉛直方向に摺動する摩擦ダンパ30を設置したので、建物1は、水平方向の変形に加えて鉛直方向の変形にも対応できる。   (2) Since the friction damper 30 that slides in the horizontal direction and the vertical direction is installed between the front and back surfaces 20A and 20B of the multi-layer earthquake resistant wall 20 and the floor plates 13 and 13, the building 1 is installed in the horizontal direction. In addition to deformation, it can also handle vertical deformation.

(3)建設地に発生する可能性が高い地震動の周期に対して建物1が共振しないように、ラーメン架構10と連層耐震壁20との間に結合箇所40を適宜形成して接合したので、建物1に入力される外力を小さくできる。また、結合箇所40を適宜設定することにより、ラーメン架構10および連層耐震壁20が負担する水平力の割合を自由に変更できるため、建物1の設計の自由度を向上できる。   (3) Since the joint 40 is appropriately formed and joined between the rigid frame 10 and the multi-layer earthquake resistant wall 20 so that the building 1 does not resonate with the period of earthquake motion that is likely to occur in the construction site. The external force input to the building 1 can be reduced. Moreover, since the ratio of the horizontal force which the frame structure 10 and the multistory earthquake-resistant wall 20 bear can be changed freely by setting the coupling | bond part 40 suitably, the freedom degree of design of the building 1 can be improved.

なお、本発明は、前記実施形態に限定されず、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、前記実施形態では、ラーメン架構10と連層耐震壁20とを複数箇所で部分的に連結することにより、ラーメン架構10および連層耐震壁20の振動特性を調整していたが、建物1の頂部の構成を変更して頂部の剛性を変更することにより、ラーメン架構10および連層耐震壁20の振動特性を調整してもよい。具体的には、例えば、図5に示すように、連層耐震壁20の頂部を外周へと延出した延出部101を形成し、この延出部101とラーメン架構10とを摩擦ダンパ30を介して接合する構成を採用できる。また、例えば、図6に示すように、建物1の頂部をラーメン架構10および連層耐震壁20を含む構成とし、このような構成の頂部と連層耐震壁20の頂部とを摩擦ダンパ30を介して接合する構成としてもよい。   In addition, this invention is not limited to the said embodiment, Other structures etc. which can achieve the objective of this invention are included, The deformation | transformation etc. which are shown below are also contained in this invention. For example, in the above-described embodiment, the vibration characteristics of the rigid frame 10 and the multi-layer earthquake resistant wall 20 are adjusted by partially connecting the rigid frame 10 and the multi-layer earthquake resistant wall 20 at a plurality of locations. The vibration characteristics of the rigid frame 10 and the multistory seismic wall 20 may be adjusted by changing the top configuration to change the top stiffness. Specifically, for example, as shown in FIG. 5, an extension part 101 is formed by extending the top part of the multi-layer earthquake resistant wall 20 to the outer periphery, and the extension part 101 and the rigid frame 10 are connected to the friction damper 30. The structure which joins via can be employ | adopted. Further, for example, as shown in FIG. 6, the top of the building 1 includes a ramen frame 10 and a multistory earthquake resistant wall 20, and a friction damper 30 is provided between the top of such a configuration and the top of the multistory earthquake resistant wall 20. It is good also as a structure joined via.

また、前記実施形態において、制震装置として摩擦ダンパを採用したが、これに限らず、例えば、粘性ダンパ、粘弾性ダンパ、履歴型ダンパ、オイルダンパその他の制震装置を採用でき、また、これらの制震装置のうちから複数個を選んで組み合わせた構成も採用できる。具体的には、図7,図8に示すように、建物1の制震構造2としては、連層耐震壁20の表裏面20A,20Bにベース板31を接合し、このベース板31の表面31Aに粘弾性体または粘性体102を配置し、この粘弾性体または粘性体102および小梁14,14の上面14Aに接合する断面L字型の板材103を配置し、この板材103上に床板13を設置する。さらに、図7に示すように、連層耐震壁20の両端部20X,20Yと柱11,11との間も粘弾性体または粘性体102で接合する構成を採用できる。このような構成においても、前記実施形態と同様の効果を奏することができる。   In the above embodiment, the friction damper is adopted as the damping device. However, the invention is not limited thereto, and for example, a viscous damper, a viscoelastic damper, a hysteretic damper, an oil damper, and other damping devices can be adopted. A configuration in which a plurality of seismic control devices are selected and combined can also be employed. Specifically, as shown in FIG. 7 and FIG. 8, as the seismic control structure 2 of the building 1, a base plate 31 is joined to the front and back surfaces 20 </ b> A and 20 </ b> B of the multi-layer seismic wall 20. A viscoelastic body or viscous body 102 is disposed at 31A, and a plate member 103 having an L-shaped cross section is disposed to be joined to the viscoelastic body or viscous body 102 and the upper surface 14A of the small beams 14 and 14, and a floor panel is disposed on the plate member 103. 13 is installed. Furthermore, as shown in FIG. 7, the structure which joins between the both ends 20X and 20Y of the multi-layer earthquake-resistant wall 20 and the pillars 11 and 11 with the viscoelastic body or the viscous body 102 is employable. Even in such a configuration, the same effects as those of the above-described embodiment can be obtained.

また、図9に示すように、建物1の制震構造2としては、梁12の表裏面12A,12Bに粘弾性体104を介して2枚の連層耐震壁20を接合するとともに、この連層耐震壁20の表面と床板13とを粘弾性体104を介して接合する構成を採用できる。このような構成においても、前記実施形態と同様の効果を奏することができる。   Further, as shown in FIG. 9, as the seismic control structure 2 of the building 1, two multi-layer earthquake resistant walls 20 are joined to the front and rear surfaces 12A and 12B of the beam 12 via the viscoelastic body 104. The structure which joins the surface of the layer earthquake-resistant wall 20 and the floor board 13 via the viscoelastic body 104 is employable. Even in such a configuration, the same effects as those of the above-described embodiment can be obtained.

また、前記実施形態において、架構と独立部材要素とをラーメン架構10と連層耐震壁20としたが、これには限定されず、例えば、鉄骨造とブレース架構もしくは鋼板耐震壁架構とした構成としてもよい。
Further, in the above embodiment it has an independent member elements as Frame ramen Frame 10 and Shear wall 20 is not limited to this, for example, and iron bone forming and braced frames or steel shear wall Frames structure It is good.

本発明の実施形態に係る建物の制震構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the vibration control structure of the building which concerns on embodiment of this invention. 前記建物の制震構造を模式的に示す横断面図である。It is a cross-sectional view which shows typically the vibration control structure of the said building. 図2の破線で囲まれた部分Aを拡大して示す横断面図である。It is a cross-sectional view which expands and shows the part A enclosed with the broken line of FIG. 図3のIV−IVの断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 前記建物の制震構造の変形例を部分的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the damping structure of the said building partially. 前記建物の制震構造の他の変形例を部分的に示す縦断面図であるIt is a longitudinal cross-sectional view partially showing another modification of the vibration control structure of the building 前記建物の制震構造の他の変形例を部分的に示す横断面図であるIt is a cross-sectional view partially showing another modification of the vibration control structure of the building 図7のIX−IXの断面図である。It is sectional drawing of IX-IX of FIG. 前記建物の制震構造の他の変形例を部分的に示す横断面図であるIt is a cross-sectional view partially showing another modification of the vibration control structure of the building

符号の説明Explanation of symbols

1 建物
2 制震構造
10 建物を構成する架構としてのラーメン架構
20 独立部材要素としての連層耐震壁
30 制震装置である摩擦ダンパ
40 結合箇所
DESCRIPTION OF SYMBOLS 1 Building 2 Damping structure 10 Ramen frame as a frame which comprises a building 20 Multistory earthquake-resistant wall as an independent member element 30 Friction damper which is a damping device 40 Joint location

Claims (4)

建物の制震構造であって、
前記建物は、当該建物を構成する架構と、この架構内に当該架構から独立して設けられた連層耐震壁またはブレース架構である独立部材要素とを備え、
前記架構と前記独立部材要素とは、異なる振動特性を有するとともに、1箇所又は複数箇所において制震装置を介して連結されており、
前記独立部材要素は、その面内の水平方向および鉛直方向には移動可能であり、面外方向の移動は前記架構により拘束されるように構成されていることを特徴とする建物の制震構造。
The building's seismic control structure,
The building includes a frame that constitutes the building, and an independent member element that is a multi-layer seismic wall or a braced frame provided independently from the frame in the frame,
The frame and the independent member element have different vibration characteristics and are connected via a vibration control device at one place or a plurality of places .
The independent member element is movable in a horizontal direction and a vertical direction in the plane thereof, and is configured such that movement in the out-of-plane direction is restricted by the frame. .
請求項に記載の建物の制震構造において、
前記制震装置は、摩擦ダンパまたは履歴型ダンパであることを特徴とする建物の制震構造。
In the building vibration control structure according to claim 1 ,
The seismic control structure of a building is a friction damper or a hysteretic damper.
請求項1又は2に記載の建物の制震構造において、
前記制震装置は、外力が入力された際に前記架構と前記独立部材要素との変形差が大きくなる箇所に設置されていることを特徴とする建物の制震構造。
In the vibration control structure of the building according to claim 1 or 2 ,
The building damping system according to claim 1, wherein the damping device is installed at a location where a deformation difference between the frame and the independent member element increases when an external force is input.
請求項に記載の建物の制震構造において、
前記架構と前記独立部材要素とは、前記制震装置を介して連結された箇所とは別の箇所において、直接結合されていることを特徴とする建物の制震構造。
In the building vibration control structure according to claim 3 ,
The building seismic damping structure, wherein the frame and the independent member element are directly coupled to each other at a place different from a place where the frame and the independent member element are connected via the damping device.
JP2003424525A 2003-12-22 2003-12-22 Building seismic control structure Expired - Lifetime JP4572535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424525A JP4572535B2 (en) 2003-12-22 2003-12-22 Building seismic control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424525A JP4572535B2 (en) 2003-12-22 2003-12-22 Building seismic control structure

Publications (2)

Publication Number Publication Date
JP2005180089A JP2005180089A (en) 2005-07-07
JP4572535B2 true JP4572535B2 (en) 2010-11-04

Family

ID=34784694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424525A Expired - Lifetime JP4572535B2 (en) 2003-12-22 2003-12-22 Building seismic control structure

Country Status (1)

Country Link
JP (1) JP4572535B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422905B2 (en) * 2008-04-09 2014-02-19 株式会社大林組 Damping structure
JP2017043988A (en) * 2015-08-27 2017-03-02 株式会社大林組 Vibration control building
JP7169903B2 (en) * 2019-02-27 2022-11-11 大成建設株式会社 building

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103556A (en) * 1989-09-19 1991-04-30 Taisei Corp Framing of structure
JPH0658017A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Structure with vibration isolation
JPH08109760A (en) * 1994-10-11 1996-04-30 Shimizu Corp Vibration control building
JPH09112063A (en) * 1995-10-20 1997-04-28 Takenaka Komuten Co Ltd Base isolation method of structure and base isolation structure
JPH11200661A (en) * 1998-01-14 1999-07-27 Ohbayashi Corp Vibration control method for connected structure
JPH11270175A (en) * 1998-03-19 1999-10-05 Ohbayashi Corp Vibration damping method of connected structure
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103556A (en) * 1989-09-19 1991-04-30 Taisei Corp Framing of structure
JPH0658017A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Structure with vibration isolation
JPH08109760A (en) * 1994-10-11 1996-04-30 Shimizu Corp Vibration control building
JPH09112063A (en) * 1995-10-20 1997-04-28 Takenaka Komuten Co Ltd Base isolation method of structure and base isolation structure
JPH11200661A (en) * 1998-01-14 1999-07-27 Ohbayashi Corp Vibration control method for connected structure
JPH11270175A (en) * 1998-03-19 1999-10-05 Ohbayashi Corp Vibration damping method of connected structure
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building

Also Published As

Publication number Publication date
JP2005180089A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP2009249973A (en) Vibration control structure
JP2007046410A (en) Vibration proof device
JP4579615B2 (en) Multi-layer core wall type seismic control high-rise apartment building
JP4572535B2 (en) Building seismic control structure
JP2009052251A (en) Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP4802516B2 (en) Building seismic control structure
JP4706281B2 (en) Building seismic control structure
JP2009155801A (en) Vibration control structure
JP5503200B2 (en) Unit building
JP2008240289A (en) Vibration control device and building equipped with the same
JP4155928B2 (en) Structure of apartment building
JP6143058B2 (en) Vibration control structure
JP5609000B2 (en) Damping method, damping structure, and seismic reinforcement method
JP5600378B2 (en) Seismic control building
JP5586566B2 (en) Damping structure
JP5180559B2 (en) Damping structure and building
JP5240273B2 (en) Building seismic control structure
JP7094870B2 (en) Vibration control building
JP2001207676A (en) Damping structure for building
JP5348860B2 (en) Damping structure
JP2009197501A (en) Vibration control structure for building
JP2011132690A (en) Vibration control structure
JP3728646B2 (en) Vibration control structure
JP7022515B2 (en) Vibration control building
JP2006336336A (en) Earthquake resistant structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Ref document number: 4572535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4