JPH03103556A - Framing of structure - Google Patents

Framing of structure

Info

Publication number
JPH03103556A
JPH03103556A JP24066289A JP24066289A JPH03103556A JP H03103556 A JPH03103556 A JP H03103556A JP 24066289 A JP24066289 A JP 24066289A JP 24066289 A JP24066289 A JP 24066289A JP H03103556 A JPH03103556 A JP H03103556A
Authority
JP
Japan
Prior art keywords
core wall
wall
floor
sliding
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24066289A
Other languages
Japanese (ja)
Other versions
JP2749391B2 (en
Inventor
Shunji Fujii
俊二 藤井
Shiro Yajima
矢島 四朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP24066289A priority Critical patent/JP2749391B2/en
Publication of JPH03103556A publication Critical patent/JPH03103556A/en
Application granted granted Critical
Publication of JP2749391B2 publication Critical patent/JP2749391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To properly absorb the vibration of earthquake and wind by a method in which the core wall of a reinforced concrete is connected by sliding bearing with beams and also by pin bearing only for a given stair as needed. CONSTITUTION:A reinforced concrete core wall 1 is constructed, and brackets 3 with slide plates 4 such as stainless steel plate are projectionally provided on the periphery of the wall 1. A frame consisting of columns 17 and beams 5 is provided on the side of the wall 1, and the ends of the beams 5 are supported slidably through sliding bearing 6 bonded with fluororesin plate, etc., on the brackets 3. In cases where water proofing is needed, the uppermost floor 14 and the wall 1 are integrally constructed, or the beams 5 and the wall 1 are connected by pin-bearing. Also, as needed, the beams 5 and the wall 1 are connected by pin-bearing for each given stair and the floor 14 is connected with the wall 1. The earthquake input can thus be reduced, and when using pin-bearing, overmuch sliding can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は建築物の架構に係るものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a building frame.

(従来の技術) 鉄筋コンクリート造コア壁(a)をスリップフォーム工
法等で先行して構築し、これを追って外側の柱(ロ)や
梁(0を構築し、更にこれを追って床(d)のコンクリ
ートの打設及び仕上げ工事を行なう建築物の構築方法は
、米国等で汎く行なわれている。
(Prior art) A reinforced concrete core wall (a) is constructed in advance using the slip form construction method, etc. This is followed by the construction of outer columns (b) and beams (0), and this is followed by the construction of the floor (d). A building construction method that involves pouring concrete and finishing work is widely used in the United States and other countries.

(第7図及び第8図参照) この際、柱や梁には通常鉄骨やプレキャストコンクリー
ト部材が使用されている。また梁とコア壁との接合はピ
ン構造(e)とされている。
(See Figures 7 and 8) At this time, steel frames or precast concrete members are usually used for the columns and beams. Further, the joint between the beam and the core wall has a pin structure (e).

而して建物や積載物の重量は梁、柱、壁で夫々負担させ
るが、風や地震による水平力は、壁だけに負担させてい
る。
The weight of buildings and cargo is borne by the beams, columns, and walls, but the horizontal forces caused by wind and earthquakes are borne only by the walls.

前記構築方法によれば、壁の施工にスリップフォームを
用いること、柱や梁は鉄骨やプレキャストコンクリート
部材等を現場で接合するだけで済むこと、またコア壁と
梁のジョイントがピン構造で済み、剛接合とすることよ
りも簡単であること等によって、鉄筋コンクリート造建
物よりも工期が短かくて済むという利点がある。
According to the above construction method, slipform is used for wall construction, columns and beams only need to be joined on site with steel frames, precast concrete members, etc., and the joint between the core wall and beam is a pin structure. It has the advantage of being simpler than rigid joints, and requires a shorter construction period than reinforced concrete buildings.

また鉄骨造建物よりもコストが安く、風等による横揺れ
が小さくて済むという利点がある。
They also have the advantage of being cheaper than steel-framed buildings and less susceptible to lateral sway due to wind and other factors.

(発明が解決しようとする課題) しかしながら、地震活動が米国等よりも活発な日本等の
地域で、前記従来の構築工法をそのまま適用するのには
無理がある。
(Problems to be Solved by the Invention) However, in regions such as Japan where seismic activity is more active than in the United States, it is unreasonable to apply the conventional construction method as is.

即ち前記鉄筋コンクリートコア壁の水平方向の剛性が大
きいため、建物の固有周期が短くなり、建物に作用する
地震力は通常、鉄骨等の柔構造の建物より大きくなる。
That is, since the horizontal rigidity of the reinforced concrete core wall is large, the natural period of the building is shortened, and the seismic force acting on the building is usually larger than that of a building with a flexible structure such as a steel frame.

この地震力に抵抗できるように壁を厚くすると、建物の
固有周期は更に短かくなり、建物の重量が増大すること
も加って、地震力が増大するという悪循環が生じる。
If the walls are made thicker to resist this seismic force, the natural period of the building becomes even shorter, which also increases the weight of the building, creating a vicious cycle in which the seismic force increases.

本発明は前記従来技術の有する問題に鑑みて提案された
もので、その目的とする処は、日本等の地震活動の活発
な地域において想定される地震、その他風に対しても合
理的な鉄筋コンクリート造または鉄骨鉄筋コンクリート
造のコア壁を有する複合架構の建築物の架構を提供する
点にある。
The present invention has been proposed in view of the problems of the prior art described above, and its purpose is to develop reinforced concrete that can withstand earthquakes and other winds expected in regions with active seismic activity such as Japan. The object of the present invention is to provide a composite frame building structure having a core wall made of concrete or steel-framed reinforced concrete.

(課題を解決するための手段) 前記の目的を達或するため、本発明に係る建築物の架構
は、前記コア壁と同壁に接続する梁との接合をすべり接
合としたものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the building frame according to the present invention, the core wall and the beam connected to the wall are joined by a sliding joint.

請求項2の発明は、前記建築物の架構における所要階毎
に、前記コア壁と梁とをピン接合したものである。
According to a second aspect of the invention, the core wall and the beam are connected with pins for each required floor in the frame of the building.

請求項3の発明は、基準階のコア壁と床梁との間をずベ
リ接合とし、コア壁と同コア壁外側の床との間を構造的
に縁切りし、且つ最上階の床梁とコア壁との間をピン接
合、または剛接合したものである。
The invention of claim 3 provides a straight joint between the core wall and the floor beam on the standard floor, a structural edge cut between the core wall and the floor outside the core wall, and a joint between the core wall and the floor beam on the top floor. This is a pin connection or rigid connection between the core wall and the core wall.

(作用) 本発明に係る建築物の架構は前記したように構或されて
いるので、地震時に地表面が水平に振動した場合、柱は
前記鉄筋コンクリート造、または鉄骨鉄筋コンクリート
造のコア壁に比して剛性が低いため、振動は同コア壁を
伝って上部に伝達される。
(Function) Since the frame structure of the building according to the present invention is constructed as described above, when the ground surface vibrates horizontally during an earthquake, the columns will be more stable than the core walls of the reinforced concrete structure or steel-framed reinforced concrete structure. Since the core has low rigidity, vibrations are transmitted to the upper part through the core wall.

而して前記コア壁と同コア壁に接続される梁とがすべり
接合を介して接合されているので、前記コア壁の振動が
梁や床、柱等に伝達されようとする場合一定限以上の力
が伝達されようとすると、前記すべり接合において前記
コア壁と梁との間にすべりを生じるため、地震によるコ
ア壁の振動が梁や床、柱等の周辺に伝わり難く、地震入
力が低減される。
Since the core wall and the beam connected to the core wall are connected through a sliding joint, if the vibration of the core wall is to be transmitted to the beam, floor, column, etc., the vibration will exceed a certain limit. When force is to be transmitted, a slip occurs between the core wall and the beam at the sliding joint, making it difficult for the vibration of the core wall caused by an earthquake to be transmitted to the surrounding areas of the beam, floor, columns, etc., reducing earthquake input. be done.

また建築物の固有周期に近い振動或分を含んだ地震が生
起した場合、固有周期にかかわらずコア壁以外の部分に
おける地震入力は一定値で頭打ちになるので、建築物が
共振する惧れかない。
In addition, if an earthquake occurs that includes vibrations close to the natural period of the building, the seismic input to parts other than the core wall will reach a ceiling at a constant value regardless of the natural period, so there is no risk that the building will resonate. .

請求項2の発明は、すべての階で前記コア壁と、梁との
間をすべり接合とすることなく、所要階毎に前記コア壁
と梁とをピン接合したことによって、風荷重に対して、
前記コア壁にピン接合された梁を支点として、外周の柱
で対抗させることができる。この際、風荷重によって前
記コア壁及び梁のすべり接合部にすべりが生起しても、
柱が横剛性を持つため、過大なすべりが生じないで済む
。また前記すべり接合部ですべりが生起することよるF
t1!.擦減衰の効果によって、風による振動の低減効
果が生起する。
The invention according to claim 2 provides resistance against wind loads by pin-joining the core wall and the beam for each required floor without making a sliding joint between the core wall and the beam on all floors. ,
The beam pin-bonded to the core wall can be used as a fulcrum, and the pillars on the outer periphery can oppose it. At this time, even if slipping occurs at the sliding joint between the core wall and beam due to wind load,
Since the columns have lateral rigidity, excessive slipping will not occur. In addition, due to slipping occurring at the sliding joint,
t1! .. The effect of frictional damping produces the effect of reducing wind-induced vibrations.

請求項3の発明は、基準階の床梁と前記コア壁との間を
すべり接合として、同コア壁とその外側の床との間を構
造的に絶縁し、最上階の梁とコア壁との接合をピン接合
、または剛接合することによって、前記コア壁の応力を
コア壁外側の柱に伝達し、架構全体の剛性を増大せしめ
るようにしたものである。
The invention according to claim 3 provides structural insulation between the core wall and the floor outside thereof by a sliding joint between the floor beam of the standard floor and the core wall, and the beam of the top floor and the core wall. The stress of the core wall is transmitted to the pillars on the outside of the core wall by pin-joining or rigidly joining, thereby increasing the rigidity of the entire frame.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

(1)は鉄筋コンクリート造、または鉄骨鉄筋コンクリ
ート造のコア壁、(2)は同コア壁(1)内の床である
(1) is a core wall made of reinforced concrete or steel reinforced concrete, and (2) is a floor within the core wall (1).

同コア壁(1)の外周面にはブラケット(3)が突設さ
れ、同ブラケット(3)の上面にステンレス鋼板等より
措或されたすべり板(4)が取付けられる。
A bracket (3) is provided protruding from the outer peripheral surface of the core wall (1), and a sliding plate (4) made of a stainless steel plate or the like is attached to the upper surface of the bracket (3).

(5)は前記コア壁(1)の外周面に接続される梁で、
同梁(5)のコア壁(1)に対する接続端部の下部に欠
截部(5a)が設けられ、同欠截部(5a)の下面にす
べり支承(6)が取付けられている。
(5) is a beam connected to the outer peripheral surface of the core wall (1),
A notch (5a) is provided at the bottom of the connecting end of the beam (5) to the core wall (1), and a sliding support (6) is attached to the lower surface of the notch (5a).

同すべり支承(6)は第4図に示すように梁端の回転に
なじむように、ピン(7)を介して上下支承片(8)(
9)を接続するとともに、上部支承片(8)の上端面に
装着された鋼板00)を梁(5)下端部に接合し、下部
支承片(9)の下端面に弗素樹脂製支承板ODを貼着し
て構威されるか、第5図に示すように、ゴム支承021
の下端面に弗素樹脂製支承板αつを貼着して構或され、
前記ブラケット(3)上にすべり板(4)とすべり支承
(6)とを介して梁(5)が架設される。
As shown in Figure 4, the sliding bearing (6) is connected to the upper and lower bearing pieces (8) (
9), the steel plate 00) attached to the upper end surface of the upper support piece (8) is joined to the lower end of the beam (5), and the fluororesin support plate OD is attached to the lower end surface of the lower support piece (9). As shown in Fig. 5, the rubber bearing 021
It is constructed by pasting two fluororesin support plates on the lower end surface of the
A beam (5) is constructed on the bracket (3) via a sliding plate (4) and a sliding support (6).

前記梁(5)上には床0/Dのコンクリートが打設され
、同床(+41及び梁(5)と、前記コア壁(1)との
間にはすべりしろiに相当する隙間を設けておき、同隙
間上にはコア壁(1)からスライディングボード0つを
突設し、同スライディングボード05)と床04)との
間には踏み込み0ωを敷設する。このように通常は床が
連続しているが、地震時には、踏み込み0ωが跳ね上る
等して、床04)とスライディングボード0つとが衝突
することなく、床04)とコア壁(1)とが構造的に絶
縁されている。第2図中、Xは同床041及びコア壁(
1)の構造的絶縁部、第1図及び第2図のyは前記梁0
褐とコア壁とのすべり接合部を示す。
Concrete with a floor of 0/D is placed on the beam (5), and a gap corresponding to the sliding margin i is provided between the floor (+41 and beam (5)) and the core wall (1). Then, 0 sliding boards are provided protruding from the core wall (1) on the same gap, and a tread of 0ω is installed between the sliding board 05) and the floor 04). In this way, normally the floors are continuous, but in the event of an earthquake, the stepping 0ω jumps up, so that the floor 04) and the core wall (1) do not collide with the sliding board 0, and the floor 04) and the core wall (1) Structurally insulated. In Figure 2, X is the same floor 041 and the core wall (
1) Structural insulation part, y in FIGS. 1 and 2 is the beam 0
The sliding joint between the brown and core walls is shown.

その他、図中、0恥ま柱、00は外周の梁である。In addition, in the figure, 0 is a pillar, and 00 is a beam on the outer periphery.

図示の実施例は前記したように構成されているので、地
震時に地表面が水平に振動した場合、柱ODはコア壁(
1)に比して剛性が低いため、振動はコア壁(1)を伝
って上方に伝達される。
Since the illustrated embodiment is configured as described above, when the ground surface vibrates horizontally during an earthquake, the column OD is moved from the core wall (
Since the rigidity is lower than that of core wall (1), vibrations are transmitted upward through the core wall (1).

前記従来技術ではコア壁と梁とがピン接合されているた
め、コア壁と梁とは同様な振動をし、梁に接合されてい
る床や柱、仕上げ材もコア壁と同様な振動をする。
In the prior art, the core wall and the beam are joined by pins, so the core wall and the beam vibrate in the same way, and the floors, columns, and finishing materials connected to the beam also vibrate in the same way as the core wall.

仮に、ある階についてコア壁の加速度を重力加速度のα
倍、コア部分の重量をW,、床、梁及びこれらに支持さ
れた仕上げ材や積載荷重の合計をW2、柱や外周の梁及
びこれらに支持された仕上げ材や積載荷重の合計をW3
とすると、この階の地震力は FI=αx (W,+Wz+Wi) となる。
Suppose that for a certain floor, the acceleration of the core wall is α of the gravitational acceleration.
Double, the weight of the core part is W, the total of the floor, beams, and the finishing materials and live loads supported by these is W2, and the total of the columns and outer beams, and the finishing materials and live loads supported by these is W3.
Then, the seismic force on this floor is FI=αx (W, +Wz+Wi).

一方、本発明によれば、コア壁(1)の振動が梁(5)
や柱c力等に伝わろうとすると、前記すべり板(4)と
すべり支承(6)との間ですべりが生じるため、地震に
よるコア壁(1)の振動が梁(5)や床04),柱0′
I)等の周辺の部材に伝わり難いという一種の免震効果
が発揮される。
On the other hand, according to the present invention, the vibration of the core wall (1) is caused by the vibration of the beam (5).
When the force is transmitted to the beam (5), the column (04), etc., a slip occurs between the sliding plate (4) and the sliding bearing (6), and the vibration of the core wall (1) due to the earthquake is transmitted to the beam (5), floor (04), etc. Column 0'
A type of seismic isolation effect is exerted that is difficult to transmit to surrounding members such as I).

次にこの免震効果を数値で概算的に示す。Next, this seismic isolation effect is roughly shown numerically.

すべり支承(6)とすべり板(4)との間の摩擦係数を
μとする。このすべり面に作用する面圧は床04),梁
(5)及びこれらに支持された仕上げ材や積載荷重の合
計の半分の0 . 5 W tである。
Let μ be the coefficient of friction between the sliding bearing (6) and the sliding plate (4). The surface pressure acting on this sliding surface is 0.0. 5 Wt.

従ってコア壁(1)と周辺部との水平力のやり取りはμ
X 0 . 5 W tが上限で頭打ちとなる。
Therefore, the horizontal force exchange between the core wall (1) and the surrounding area is μ
X 0. It reaches a ceiling at the upper limit of 5 W t.

ここでコア壁(1)の加速度を重量加速度のα倍とする
と、 この階の地震力は、 F.=α×W,+μX0.5W2 となる。
If the acceleration of the core wall (1) is α times the weight acceleration, the seismic force on this floor is F. =α×W, +μX0.5W2.

通常αとして0.2がよく用いられ、またμは弗素樹脂
とステンレス鋼板との間では0.1程度の値であるので
、これらの数値を用いると、前記従来技術と本発明によ
る架構との間のこの階における地震力の差は次の如くに
なる。
Normally, 0.2 is often used as α, and μ is a value of about 0.1 between fluororesin and stainless steel plates, so if these values are used, the difference between the above-mentioned conventional technology and the frame according to the present invention is The difference in seismic force on this floor between the two floors is as follows.

F.−F.=α(W!+WX)一μx 0 . 5 W
 z=0.15Wz + 0.20V/3 即ち本発明の架構によれば、このように地震力の低減が
可能である。従って第7図及び第8図に示したような建
築物であっても、日本のような地震地域でも十分に耐震
設計が可能なレベルとできる。
F. -F. =α(W!+WX)-μx 0. 5W
z=0.15Wz+0.20V/3 That is, according to the frame of the present invention, it is possible to reduce seismic force in this way. Therefore, even buildings such as those shown in FIGS. 7 and 8 can be designed to be sufficiently seismically resistant even in earthquake areas such as Japan.

建築物は固有周期を有し、たまたま建築物の固有周期に
近い振動M威分を含んだ地震が起ると、建築物が共振し
て思わぬ被害が生じる惧れがあるが、本発明に係る架構
によれば建築物の固有周期にかかわらず、コア壁以外の
部分による地震力は前述のように一定値で頭打ちとなる
Buildings have a natural period, and if an earthquake that happens to include a vibration M frequency close to the natural period of the building occurs, there is a risk that the building will resonate and cause unexpected damage. According to such a structure, regardless of the natural period of the building, the seismic force due to parts other than the core wall peaks out at a constant value as described above.

次に風荷重について説明する。Next, wind load will be explained.

風荷重は先ず建築物外周に作用する。この荷重は、梁と
コア壁との間のジョイントがすべらない場合、コア壁に
伝達される。同コア壁の剛性は一般の鉄骨架構よりも可
戒り高いため鉄骨造よりも風に対して揺れ難い建築物を
作ることができる。
Wind loads first act on the outer periphery of the building. This load is transferred to the core wall if the joint between the beam and the core wall does not slip. The rigidity of the core wall is considerably higher than that of ordinary steel frames, so it is possible to create buildings that are more resistant to shaking in the wind than steel frames.

日本では通常、超高層建築物でない限り、風荷重よりも
地震力の方が遥かに大きいため、地震時にはコア壁(1
)と梁(5)とのジョイントがすべって、前述の地震力
低減効果があり、風荷重に対しては同ジョイントがすべ
らないという条件は十分にあり得る。
In Japan, unless it is a very high-rise building, the earthquake force is usually much larger than the wind load, so the core wall (1
) and the beam (5) slips, which has the aforementioned seismic force reduction effect, and it is quite possible that the joint does not slip against wind loads.

またずベリ面の材料選択によって前記した免震効果と風
に対して揺れにくいという効果とが共に得られる摩擦係
数のすべり接合とすることもできる。
Also, by selecting the material for the edge surface, it is possible to obtain a sliding joint with a friction coefficient that provides both the above-mentioned seismic isolation effect and the effect of being less likely to sway in the wind.

なお防水の納まり上で必要な場合には、最上階の床04
)をコア壁(1)と一体打ちとするか、梁(5)とコア
壁(1)との接合はピン接合とする。第1図の2はこの
ピン接合部を示す。
In addition, if it is necessary for waterproofing, please use the floor 04 on the top floor.
) are integrally cast with the core wall (1), or the beam (5) and the core wall (1) are connected with pins. 2 in FIG. 1 shows this pin joint.

また最上階の梁0引よ剛性の高いハット梁としてコア壁
(1)とrill+ 積合し、コア壁(1)の回転を柱
Q7)に伝達する構造として、架構全体の剛性を上げる
ようにしてもよい。
In addition, the beam on the top floor is connected to the core wall (1) as a highly rigid hat beam to increase the rigidity of the entire structure by transmitting the rotation of the core wall (1) to the column Q7). You can.

第6図は本発明の他の実施例を示し、すべての階で梁(
5)、床07I)とコア壁(1)との間をすべり接合と
するのではなく、所定階毎に梁(5)とコア壁(1)と
はピン接合とし、床04)もコア壁(1)に連続させる
FIG. 6 shows another embodiment of the invention, in which beams (
5) Instead of making a sliding connection between the floor 07I) and the core wall (1), a pin connection is made between the beam (5) and the core wall (1) for each predetermined floor, and the floor 04) is also connected to the core wall. Continue to (1).

本実施例によれば、風荷重に対してコア壁(1)にピン
接合された梁(5)を支点として、外周の柱θ力で対抗
させることができる。
According to this embodiment, the wind load can be counteracted by the column θ force on the outer periphery, using the beam (5) pin-bonded to the core wall (1) as a fulcrum.

このとき、風荷重によってすべり接合部yにすべりが生
じても、柱0′7)が横剛性を有するため、過大なすべ
りが生じなくて済む。またずベリ接合部ですべりが生じ
ることによって、摩擦抵抗による履歴減衰の効果によっ
て、風による振動の低減効果も生じる。
At this time, even if a slip occurs in the sliding joint y due to wind load, the column 0'7) has lateral rigidity, so that no excessive slip occurs. Furthermore, the occurrence of slippage at the veri joint also produces the effect of reducing wind-induced vibrations due to the hysteresis damping effect due to frictional resistance.

図中、前記実施例と均等部分には同一符号が附されてい
る。
In the figure, parts equivalent to those of the above embodiment are given the same reference numerals.

(発明の効果) 本発明によれば前記したように、鉄筋コンクリート造ま
たは鉄骨鉄筋コンクリート造のコア壁を有する架構にお
いて、同コア壁に接続する梁との接合をすべり接合とし
たごとによって、地震入力を低減するとともに、建築物
の固有周期に近い振動成分を含んだ地震が生起した場合
において、建築物の共振を防止するものである。
(Effects of the Invention) According to the present invention, as described above, in a frame having a core wall made of reinforced concrete or steel-framed reinforced concrete, earthquake input is reduced by making the connection with the beam connected to the core wall a sliding joint. It also prevents resonance of the building in the event of an earthquake that includes a vibration component close to the natural period of the building.

また本発明によれば前述した従来技術の有する鉄筋コン
クリート造よりも工期が短かく、鉄骨構造よりもコスト
が安いという利点がそのまま保有されるものである。
Further, according to the present invention, the advantages of the prior art such that the construction period is shorter than the reinforced concrete structure and the cost is lower than the steel frame structure are maintained.

請求項2の発明はすべての階で前記コア壁と梁との間を
すべり接合とすることなく、所定階毎に前記コア壁と梁
とをピン接合したことによって、風荷重に対して同梁を
支点として外周の柱で対抗せしめるとともに、前記コア
壁と梁とのすべり接合部にずベリが生しても同社の横剛
性によって、過大なずベリが生起することのないように
し、更に前記すべり接合部ですべりが生起することによ
る摩擦減衰効果によって風による振動の低減効果が得ら
れるようにしたものである。
The invention according to claim 2 is characterized in that the core wall and the beam are connected with pins for each predetermined floor without making a sliding connection between the core wall and the beam on all floors, so that the beam can withstand wind loads. The pillars on the outer periphery are used as fulcrums to counteract each other, and even if sag occurs at the sliding joint between the core wall and the beam, the company's lateral rigidity prevents excessive sag from occurring. The friction damping effect caused by slippage at the sliding joint reduces vibrations caused by wind.

請求項3の発明は、基準階の床梁と前記コア壁との間を
すべり接合として、同コア壁とその外側の床との間を構
造的に!!!録し、最上階の梁とコア壁との接合をピン
接合、または剛接合としたことによって、架構全体の剛
性を増大せしめたものである。
The invention according to claim 3 provides a sliding connection between the floor beam of the standard floor and the core wall, and a structural connection between the core wall and the floor outside the core wall! ! ! The rigidity of the entire structure was increased by using a pin or rigid connection between the top floor beam and the core wall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る建築物の架構の一実施例を示す正
面図で第2図の矢視1−1図、第2図はその平面図、第
3図はコア壁と梁とのずベリ接合部を示す縦断面図、第
4図及び第5図は夫々すべり支承の各実施例を示す正面
図、第6図は本発明の他の実施例を示す正面図、第7図
は従来の架構を示す正面図、第8図は第7図の矢視■−
■図である。 (1)・・・コア壁、      (3)・・・ブラケ
ット、(4)・・・ずベリ板、    (5)・・・梁
、(6)・・・ずベリ支承、   04)・・・床、X
・・・床及びコア壁の構造的絶縁部、y・・・すべり接
合部、   2・・・ピン接合部。
Fig. 1 is a front view showing one embodiment of a building frame according to the present invention, a view taken from the arrow 1-1 in Fig. 2, a plan view thereof, and Fig. 3 a diagram showing the structure of a core wall and a beam. 4 and 5 are front views showing each embodiment of the sliding bearing, FIG. 6 is a front view showing another embodiment of the present invention, and FIG. A front view showing the conventional frame, Fig. 8 is the arrow direction in Fig. 7 -
■It is a diagram. (1) Core wall, (3) Bracket, (4) Horizontal plate, (5) Beam, (6) Horizontal support, 04)... floor, X
...Structural insulation of floors and core walls, y...Sliding joints, 2...Pin joints.

Claims (1)

【特許請求の範囲】 1、鉄筋コンクリート造または鉄骨鉄筋コンクリート造
のコア壁を有する架構において、同コア壁に接続する梁
との接合をすべり接合としてなることを特徴とする建築
物の架構。 2、所要階毎に前記コア壁と梁とをピン接合してなる請
求項1記載の建築物の架構。 3、基準階の梁と前記コア壁との間をすべり接合とし、
同コア壁と最上階の梁との間をピン接合、若しくは剛接
合としてなる請求項1記載の建築物の架構。
[Scope of Claims] 1. A building frame having a core wall made of reinforced concrete or steel-framed reinforced concrete, characterized in that the joint with a beam connected to the core wall is a sliding joint. 2. The building structure according to claim 1, wherein the core wall and the beam are connected with pins for each required floor. 3. A sliding connection is made between the beam of the standard floor and the core wall,
2. The building structure according to claim 1, wherein the core wall and the beam on the top floor are connected by a pin connection or a rigid connection.
JP24066289A 1989-09-19 1989-09-19 Building frame Expired - Fee Related JP2749391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24066289A JP2749391B2 (en) 1989-09-19 1989-09-19 Building frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24066289A JP2749391B2 (en) 1989-09-19 1989-09-19 Building frame

Publications (2)

Publication Number Publication Date
JPH03103556A true JPH03103556A (en) 1991-04-30
JP2749391B2 JP2749391B2 (en) 1998-05-13

Family

ID=17062836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24066289A Expired - Fee Related JP2749391B2 (en) 1989-09-19 1989-09-19 Building frame

Country Status (1)

Country Link
JP (1) JP2749391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658017A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Structure with vibration isolation
JP2005180089A (en) * 2003-12-22 2005-07-07 Ohbayashi Corp Building damping structure and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658017A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Structure with vibration isolation
JP2005180089A (en) * 2003-12-22 2005-07-07 Ohbayashi Corp Building damping structure and method
JP4572535B2 (en) * 2003-12-22 2010-11-04 株式会社大林組 Building seismic control structure

Also Published As

Publication number Publication date
JP2749391B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JP2001512198A (en) Building panels used for building construction
JP3226492B2 (en) Seismic isolation structure of high-rise building
JP3884645B2 (en) Damping wall
JPH03103556A (en) Framing of structure
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JPH11172952A (en) Seisemic resistant and wind resistant structure
JP5290786B2 (en) Damping structure
JP3425609B2 (en) Seismic isolation method for structures and seismic isolation structures
JPH1171821A (en) Floor board structure of connecting corridor
JPH09264050A (en) Building structure
JP2001207675A (en) Damping construction method incorporating damping structure and damping device
JP3777533B2 (en) Seismic reinforcement building
JP3779797B2 (en) Seismic isolation system for steel frame ramen construction
JP2001140497A (en) Earthquake-resistant house
JPS6411796B2 (en)
JPH01102181A (en) Structure of wall body
JP2000073482A (en) Vibration-damping floor
JPH03107047A (en) Constructing method for slab
JPH04237743A (en) Unit house
JPH10196720A (en) Passive vibration control system
JP4307762B2 (en) Balconi, Balconi construction method and unit building
JP3343733B2 (en) Seismic components
JPH0565669B2 (en)
JP2733559B2 (en) Damping floor structure
KR20230008981A (en) Floor structure using steel concrete composite beam and concrete panel and method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees