JPS6411796B2 - - Google Patents

Info

Publication number
JPS6411796B2
JPS6411796B2 JP24177083A JP24177083A JPS6411796B2 JP S6411796 B2 JPS6411796 B2 JP S6411796B2 JP 24177083 A JP24177083 A JP 24177083A JP 24177083 A JP24177083 A JP 24177083A JP S6411796 B2 JPS6411796 B2 JP S6411796B2
Authority
JP
Japan
Prior art keywords
wall
shear
reinforcing bars
column
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24177083A
Other languages
Japanese (ja)
Other versions
JPS60133171A (en
Inventor
Ikuo Yamaguchi
Yasuo Higashihata
Takahiro Kei
Jitsusaburo Imamya
Yasumasa Myauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP24177083A priority Critical patent/JPS60133171A/en
Publication of JPS60133171A publication Critical patent/JPS60133171A/en
Publication of JPS6411796B2 publication Critical patent/JPS6411796B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、主に中低層建物に実施される現場
打ちの鉄筋コンクリート造耐震壁(以下RC造耐
震壁という。)に係り、さらにいえば、最大耐力
の低下を生じさせないで大きな変形能力を得るこ
とができ、しかも壁の外観上破壊の形跡はほとん
ど生じさせず、しかも初期からの耐力計算が明快
な構成のRC造耐震壁に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to cast-in-place reinforced concrete shear walls (hereinafter referred to as RC shear walls) that are mainly implemented in medium- and low-rise buildings, and more specifically, to This article concerns an RC shear wall that has a structure that allows for large deformation capacity without causing a decrease in the strength of the wall, hardly any evidence of failure on the wall's appearance, and that allows for easy calculation of resistance from the initial stage.

従来の技術 従来一般のせん断破壊型耐震壁の力学性状
は、第2図に点線曲線で示したように耐力及び
剛性は大きいが、耐力の計算が困難であり、最
大耐力時の変形が小さく、最大耐力以降は急激
な耐力低下を生ずる脆性的な破壊性状を示し、
変形性能が劣る。
Conventional technology The mechanical properties of conventional shear failure type shear walls are as shown by the dotted line curve in Figure 2, which have high yield strength and rigidity, but it is difficult to calculate the yield strength, and the deformation at the maximum yield strength is small. After the maximum yield strength, it exhibits brittle fracture behavior that causes a rapid decrease in yield strength.
Deformation performance is poor.

曲げ降伏型耐震壁も公知である。これは変形
性能に優れ、耐力の計算は容易であるが、中低
層建物ではどうしても柱主筋を多くせざるを得
ない。その結果、上記せん断破壊型耐震壁の性
状に近にものとなつてしまうほか、連層耐震壁
とした場合にはせん断耐力が低いものとなつて
しまう。
Bending yield type shear walls are also known. This has excellent deformation performance and the calculation of the strength is easy, but in medium and low-rise buildings, it is inevitable to increase the number of main reinforcements in the columns. As a result, the properties are similar to those of the shear failure type shear wall described above, and in the case of a continuous shear wall, the shear strength will be low.

柱梁架構とプレキヤスト壁板とをコネクタで
連結し、コネクタが降伏し変形するのを利用し
て変形能力を増す構成の可撓耐震壁が公知であ
る。これは耐力、剛性、変形ともにコネクター
(鋼材)で決定されるため、その計算が容易で
あるが、コネクタによる壁板の取付けに手数を
要する上に、柱梁架構と壁板との間に隙間が生
ずるし、高価である。
A flexible shear wall is known in which a column-beam frame and a precast wall plate are connected by a connector, and the deformation capacity is increased by utilizing the yielding and deformation of the connector. This is easy to calculate because the strength, rigidity, and deformation are determined by the connector (steel material), but it is time-consuming to attach the wall plate using the connector, and there is a gap between the column and beam frame and the wall plate. and is expensive.

壁板の縦方向に数条のスリツトを形成したス
リツト型耐震壁も知られている。これは剛性が
可変で、粘り強いけれども、壁の外観上スリツ
トが傷の如き存在となるほか、耐力が不確定で
ある。
A slit-type shear wall in which several slits are formed in the vertical direction of the wall plate is also known. Although this material has variable rigidity and is durable, the slits appear as scratches on the wall's appearance, and its strength is uncertain.

特公昭54−35006号公報に記載された耐震壁
は、鉄筋コンクリート造又はPSコンクリート
造のグリツドで囲まれた開口部に強度の弱いモ
ルタル等を充填して成るプレキヤスト壁板を柱
梁架構にコネクタで取付けた構成であり、ダン
ピングコアの破壊によるグリツドのラーメン的
な性状で大きな変形能力を得る構成とされてい
る。
The earthquake-resistant wall described in Japanese Patent Publication No. 54-35006 consists of a precast wall board made by filling an opening surrounded by a reinforced concrete or PS concrete grid with weak mortar, etc., and connecting it to a column-beam frame. This is a structure in which the damping core is destroyed and the grid has a rigid frame-like property that provides a large deformation capacity.

特公昭54−28226号公報に記載された構築物
は、柱梁架構の面内に高粘度物質の抵抗を利用
した振動減衰装置を組入れて地震力に対する振
動応答量(力、変位など)を低減させ耐震性を
高める構成とされている。
The structure described in Japanese Patent Publication No. 54-28226 incorporates a vibration damping device that utilizes the resistance of a high-viscosity material within the plane of the column-beam frame to reduce the amount of vibration response (force, displacement, etc.) to earthquake force. The structure is said to improve earthquake resistance.

本発明が解決しようとする問題点 〔〕 上記に述べた耐震壁は、プレキヤスト壁
板でしか実施できず、現場打ちコンクリートで
実施することができない。従つて、プレキヤス
ト壁板の運搬、吊込み、コネクターによる柱梁
架構への取付けに手数と費用がかかる。また、
該耐震壁の力学特性は、壁板のダンピングコア
が破壊された時点で耐力が一旦低下し、グリツ
ドがラーメン的性状で働き出した時点の耐力の
ままで変形が増大する性状のものであり、この
耐力に至る過程における壁板の破壊損傷は外観
上致命的なまでに明白で、地震後には、修復工
事に相当な費用と手数を要するという問題点が
ある。
Problems to be Solved by the Invention [] The above-mentioned earthquake-resistant walls can only be implemented with precast wall boards, and cannot be implemented with cast-in-place concrete. Therefore, it takes time and money to transport the precast wall board, hang it, and attach it to the column-beam frame using connectors. Also,
The mechanical characteristics of the shear wall are such that when the damping core of the wall plate is destroyed, the proof stress temporarily decreases, and the deformation increases while the proof stress remains as it was when the grid started acting like a rigid frame. The destruction and damage to the wall panels in the process of reaching this strength is fatally obvious in appearance, and there is a problem in that repair work after an earthquake requires considerable cost and effort.

〔〕 上記に述べた振動減衰装置は、建物の耐
震性を高め架構面内へ組入れて使用するための
機構ないし装置というべきものであつて、壁で
はない。したがつて、外観を壁らしく見せるた
めには、該装置を柱梁架構の面内に設置したあ
と、同公報の第3図と第4図に記載されている
ように架構面内に化粧壁部材を建込んで目隠し
としなければならないという問題点がある。
[] The above-mentioned vibration damping device is a mechanism or device for increasing the seismic resistance of a building and is incorporated into the frame, and is not a wall. Therefore, in order to make the exterior look like a wall, after installing the device in the plane of the column-beam frame, install a decorative wall in the plane of the frame as shown in Figures 3 and 4 of the same publication. There is a problem in that parts must be erected to cover the area.

問題点を解決するための手段 上記従来技術の問題点を解決するための手段と
して、この発明に係る鉄筋コンクリート造耐震壁
は、図面の第1図〜第3図に好適な実施例を示し
たとおり、 鉄筋コンクリート造の柱3,3′と梁4,4′で
囲まれた架構面内に鉄筋コンクリート造の壁板1
を設けて成る鉄筋コンクリート造耐震壁におい
て、 (イ) 壁板1の中間部水平方向に水平横鉄筋として
両端を柱3,3′へ強固に定着した太径鉄筋2
が設置し、壁板1において前記太径鉄筋2に沿
う上下2箇所の位置の水平方向に壁板の水平方
向すべりを誘発するせん断容易箇所7,7を設
置したこと。
Means for Solving the Problems As a means for solving the problems of the prior art described above, a reinforced concrete shear wall according to the present invention is provided, as preferred embodiments are shown in FIGS. 1 to 3 of the drawings. , Reinforced concrete wall plate 1 is placed within the frame surface surrounded by reinforced concrete columns 3, 3' and beams 4, 4'.
(a) Large diameter reinforcing bars 2 with both ends firmly anchored to columns 3 and 3' as horizontal transverse reinforcing bars in the horizontal direction in the middle of wall plate 1.
is installed, and easy shear points 7, 7 are installed in the wall board 1 at two upper and lower positions along the large diameter reinforcing bars 2 in the horizontal direction to induce horizontal sliding of the wall board.

(ロ) 同じ壁板1の壁横筋6はその両端が柱3,
3′の近傍位置に達する長さのものとして配置
し、該壁横筋6の先端部と柱3又は3′との間
の位置に柱3又は3′に沿つて垂直方向に壁板
と柱との引張り分離を誘発する分離容易箇所
7′を設置したこと。
(b) The horizontal wall reinforcement 6 of the same wall plate 1 has both ends connected to the columns 3,
3', and a wall plate and a column are installed vertically along the column 3 or 3' at a position between the tip of the wall transverse reinforcement 6 and the column 3 or 3'. An easy-to-separate point 7' is installed to induce tensile separation.

(ハ) 壁板1の壁縦筋5はその両端を上下の梁4,
4′へ強固に定着して配設されていること、 をそれぞれ特徴とする。
(c) The vertical wall reinforcement 5 of the wall plate 1 connects both ends to the upper and lower beams 4,
Each is characterized by being firmly fixed to 4'.

なお、上記せん断及び引張り分離容易箇所7
は、具体的にはテフロン(商標)板の如き分離板
の敷設又は壁板の打継ぎ又は断面欠損又はスリツ
トを形成することにより実施される。
In addition, the above-mentioned shearing and tensile separation easy location 7
Specifically, this is carried out by laying a separating plate such as a Teflon (trademark) plate or by forming a joint in the wall plate or a cross-sectional defect or slit.

作 用 第1図に作用原理図を略示したように、水平力
Qが作用すると壁板中央のせん断容易箇所7(す
べり面)のところで水平なすべり破壊を生じ、壁
板1は上下2枚の壁11と12の形に分離される。
と同時に、壁板1と柱3,3′とは垂直な引張り
分離容易箇所7′のところが引張力によりイ,
イ′のように分離(分断)される。但し、壁板1
の上下と梁4,4′とは壁縦筋5により一体化さ
れているので、壁板1の前記すべり分割又は柱と
の分離は壁の外観上の形跡としては仕上げクロス
で隠してほとんど目立たない程度である。
Operation As shown in the diagram of the principle of operation in Fig. 1, when horizontal force Q acts, horizontal sliding failure occurs at the easy-shearing point 7 (sliding surface) in the center of the wall plate, and the wall plate 1 has two upper and lower layers. The wall is separated into 1 1 and 1 2 shapes.
At the same time, the vertical tensile separation point 7' of the wall plate 1 and columns 3, 3' is separated by tensile force.
It is separated (divided) as shown in A'. However, wall board 1
Since the top and bottom of the wall board 1 and the beams 4 and 4' are integrated by the wall vertical reinforcement 5, the sliding division of the wall plate 1 or the separation from the column is hardly noticeable as a visible sign of the wall as it is hidden by the finishing cloth. There is no such thing.

かくして、上下2枚に分離された形の壁11
2とのすべり面におけるすべりと、壁板1とイ,
イ′のところで分離した柱3,3′の1/2長さ部分
(短柱)の曲げせん断変形とによつて壁板1のせ
ん断変形の大部分を吸収可能であり、大きな変形
能力を発揮する。
In this way, the sliding on the sliding surface between the walls 1 1 and 1 2 , which are separated into two upper and lower parts, and the sliding between the wall plates 1 and 1,
Most of the shear deformation of the wall plate 1 can be absorbed by the bending and shear deformation of the 1/2 length portion (short pillar) of the columns 3 and 3' separated at point A', demonstrating a large deformation capacity. do.

即ち、上述のように分離された上側の壁11
いわば垂れ壁に相当し、下側の壁12は腰壁に相
当するので、この耐震壁は垂れ壁付柱と腰壁付柱
とが合成された構成とみなすことができ、腰壁付
柱及び垂れ壁付柱でも壁が取付かない短柱部分で
十分な変形性能を確保すれば、建物としての致命
的な地震被害の発生を防ぐことができる訳であ
る。
In other words, the upper wall 1 1 separated as described above corresponds to a hanging wall, and the lower wall 1 2 corresponds to a waist wall, so this seismic wall can be divided into a pillar with a hanging wall and a pillar with a waist wall. It can be regarded as a composite structure, and if sufficient deformation performance is ensured in the short column parts where walls are not attached, even for columns with waist walls and columns with hanging walls, the occurrence of catastrophic earthquake damage to the building can be prevented. This means that it is possible.

一方、耐震壁には大きなせん断耐力Qが要求さ
れ、太径鉄筋2がせん断耐力Qに増強に寄与す
る。
On the other hand, a large shear strength Q is required for a seismic wall, and the large-diameter reinforcing bars 2 contribute to increasing the shear strength Q.

即ち、この耐震壁に負荷された水平せん断力Q
は、柱3のせん断耐力QCと、上半分の壁11のせ
ん断耐力W1として伝達処理され、W1は太径鉄筋
2の引張力T、及び反対側柱3′のせん断耐力QC
として伝達し処理される。そして、前記太径鉄筋
2の引張力T及び柱3′のせん断耐力QCは、下半
分の壁11のせん断耐力W2によつて下階の梁4′
及び柱に伝達し処理される。
In other words, the horizontal shear force Q applied to this shear wall
is transmitted as the shear strength Q C of the column 3 and the shear strength W 1 of the upper half wall 1 1 , where W 1 is the tensile force T of the large diameter reinforcing bar 2 and the shear strength Q C of the opposite column 3' .
be transmitted and processed as such. The tensile force T of the large-diameter reinforcing bars 2 and the shear strength Q C of the column 3' are determined by the shear strength W 2 of the lower half wall 1 1 of the beam 4' on the lower floor.
and transmitted to the pillar for processing.

従つて、上下に分離された壁11,12のせん断
耐力W1,W2がT+QCより十分に大きく、しかも
柱3,3′は十分なせん断補強によつてそのせん
断耐力QCを大とされているかぎり、当該耐震壁
の耐力Qは太径鉄筋2の降伏応力強度Tに支配さ
れ、Q=2QC+QS+Tの式で推定される。但し、
QSは壁11,12の分離面(すべり面)の摩擦力で
ある。
Therefore, the shear strength W 1 , W 2 of the vertically separated walls 1 1 , 1 2 is sufficiently larger than T + Q C , and the columns 3, 3' have sufficient shear reinforcement to increase their shear strength Q C. As long as it is assumed to be large, the yield strength Q of the shear wall is governed by the yield stress strength T of the large-diameter reinforcing bars 2, and is estimated by the formula Q=2Q C +Q S +T. however,
Q S is the frictional force on the separation surface (sliding surface) of walls 1 1 and 1 2 .

つまり、この発明のRC造耐震壁の耐力は、上
式より、太径鉄筋2の降伏応力度(強度)として
容易に計算できるのであり、徐々に最大耐力に到
達し、その後も耐力低下の要因は一切なく、その
まま安定な耐力による変形の増大に移行する。
In other words, the strength of the RC shear wall of this invention can be easily calculated from the above equation as the yield stress (strength) of the large-diameter reinforcing bars 2, and the strength gradually reaches the maximum strength, and even after that, the strength decreases. There is no such phenomenon, and the deformation continues to increase due to stable proof stress.

また、太径鉄筋2の降伏応力度を、耐震壁が目
標とする耐力に必要な量だけ配筋することによ
り、第2図に示した3種の荷重変形曲線Q1,Q2
Q3のように耐力調整の目的は十分に達成するこ
とができる。
In addition, by arranging the yield stress of the large-diameter reinforcing bars 2 by the amount necessary for the target strength of the shear wall, the three types of load deformation curves Q 1 , Q 2 ,
As in Q 3 , the purpose of load-bearing adjustment can be fully achieved.

一方、柱のせん断耐力QCは大きいほど良いの
で、中低層建物であつてもせん断破壊型に近づく
ようなことはないのである。
On the other hand, the higher the shear strength QC of the columns, the better, so even low- and medium-rise buildings will not approach shear failure type.

実施例 次に、この発明の実施例を説明する。Example Next, embodiments of the invention will be described.

第3図は、この発明に係るRC造耐震壁の鉄筋
組み構造を示したもので、柱3,3′の鉄筋は4
本の主筋3a…にD13の鉄筋を使用し、これにφ
6のフープ筋3b…を十分密に巻いてせん断補強
を施した構成とされている。
Figure 3 shows the reinforcing steel structure of the RC shear wall according to the present invention, in which the reinforcing bars of columns 3 and 3' are 4
Use D13 reinforcing bar for the main bar 3a of the book, and add φ
6 hoop reinforcements 3b are wound sufficiently densely to provide shear reinforcement.

梁4,4′の鉄筋も、4本の主筋4a…にD13
の鉄筋を使用し、これにスターラツプを必要量巻
いている。
The reinforcing bars of beams 4 and 4' are also D13 to the four main bars 4a...
The required amount of stirrup is wrapped around this reinforcing bar.

壁板1の壁縦筋5と壁横筋6にはφ4の鉄筋を
使用し、間隔100mmのダブル配筋として構成され
ている。特に壁縦筋5…は全て梁鉄筋の中に挿し
入れて強固に定着し、壁板1と梁4,4′との一
体化が行なわれている。他方、壁横筋6…はその
両端が左右の柱3,3′までは届かずその近傍位
置に達する長さのものとして配設されている。そ
して、この壁横筋6の先端と柱3又は3′との間
の位置に、柱に沿い壁板と柱の引張り分離を誘発
させる容易箇所7′を形成するものとしてテフロ
ン(商標)の如き分離板が垂直に設置されてい
る。したがつて、地震力が入力すると、分離容易
箇所7′の位置で壁板1と柱3,3′とは第1図の
イ,イ′のようにすつぱりと分離するのである。
The vertical wall reinforcements 5 and the horizontal wall reinforcements 6 of the wall board 1 are made of φ4 reinforcing bars, and are configured as double reinforcements with an interval of 100 mm. In particular, all of the wall longitudinal reinforcements 5 are inserted into the beam reinforcing bars and firmly fixed, thereby integrating the wall board 1 and the beams 4, 4'. On the other hand, the wall transverse reinforcements 6 are arranged so that both ends thereof do not reach the left and right pillars 3, 3', but reach a position near them. Then, at a position between the tip of the horizontal wall reinforcement 6 and the column 3 or 3', a separation material such as Teflon (trademark) is used to form an easy point 7' that induces tensile separation of the wall plate and the column along the column. The board is placed vertically. Therefore, when an earthquake force is input, the wall plate 1 and the pillars 3, 3' are completely separated from each other at the easy-to-separate point 7' as shown in Fig. 1A and A'.

次に、壁板1の中間部水平方向に水平横鉄筋と
して太径鉄筋2が2本平行に設置されている。2
本の太径鉄筋2にはD19の鉄筋を使用し、その両
端は左右の柱3,3′の鉄筋の中に十分深く挿し
入れて強固に定着されている。この太径鉄筋2の
引張り降伏応力度は3900Kg/cm2位とし、よつて上
述したQ=2QC+QS+Tの式から当該RC造耐震
壁の耐力は約30トン、そして、変形能力は約30/1
000と明快に推定、計算することができるのであ
る。
Next, two large-diameter reinforcing bars 2 are installed in parallel in the middle part of the wall plate 1 as horizontal horizontal reinforcing bars. 2
D19 reinforcing bars are used for the main large-diameter reinforcing bars 2, and both ends of the bars are inserted deeply into the reinforcing bars of the left and right columns 3 and 3' and firmly fixed. The tensile yield stress of this large diameter reinforcing bar 2 is 3900Kg/cm 2 , so from the above equation Q = 2Q C + Q S + T, the strength of the RC shear wall is approximately 30 tons, and the deformation capacity is approximately 30/1
000, which can be clearly estimated and calculated.

図中7は前記太径鉄筋2に沿つてその上下2箇
所の位置に壁板1の水平方向すべりを誘発するせ
ん断容易箇所であり、これは厚さ2mm程度のテフ
ロン(商標)の如き分離板を2枚重ね合せたもの
を前記太径鉄筋2の上下に沿つてこれと略平行に
およそ90mmの間隔をあけて設置されている。した
がつて、この耐震壁に地震力が入力した場合、前
記せん断容易箇所7の位置で壁板1の中央部水平
方向にすべり破壊を生じ、第1図のように上下2
枚の壁に分離され、太径鉄筋2が働くことにな
る。
In the figure, reference numeral 7 indicates easy shear points that induce horizontal sliding of the wall plate 1 at two positions above and below the large-diameter reinforcing bars 2, and these are separated by separating plates such as Teflon (trademark) with a thickness of about 2 mm. Two sheets stacked one on top of the other are installed along the upper and lower sides of the large-diameter reinforcing bars 2, approximately parallel thereto, with an interval of approximately 90 mm. Therefore, when an earthquake force is input to this seismic wall, sliding failure occurs in the horizontal direction at the center of the wall board 1 at the location of the easy shearing point 7, and the upper and lower 2
It is separated into two walls, and large-diameter reinforcing bars 2 are used.

このRC造耐震壁は、上記構成の鉄筋を組み立
てた後、コンクリートを現場打ちして完成されて
いる。
This RC shear wall is completed by assembling reinforcing bars with the above structure and then pouring concrete on-site.

本発明が奏する効果 以上に実施例と併せて詳述したとおりであつ
て、この発明に係る鉄筋コンクリート造耐震壁
は、初期より耐力機構が明快で、耐力低下を生じ
ないまま変形の増大に対し安定したせん断耐力が
得られると共に、その裏返し効果として壁板の破
壊はすべり又は分離の傷だけで外観上致命的な形
跡を生じなく、例えば化粧クロスで目隠しされた
状態のままで目立たないので、地震後にも修復す
る等の必要は格別なく、修復費用及び手数の節減
に寄与する。
Effects of the present invention As described above in detail in conjunction with the examples, the reinforced concrete shear wall according to the present invention has a clear load-bearing mechanism from the beginning and is stable against increased deformation without causing a decrease in load-bearing strength. In addition, as a flip side effect, the destruction of wall panels does not cause any fatal external signs other than scratches due to slipping or separation; for example, it is not noticeable even if it is covered with decorative cloth, so it is possible to prevent damage caused by earthquakes. There is no particular need for repair afterward, which contributes to a reduction in repair costs and labor.

また、この耐震壁はコンクリートの現場打ち施
行が容易に可能である。
In addition, this shear wall can be easily constructed using concrete cast on-site.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係るRC造耐震壁の作用原
理説明図、第2図は荷重変形線図、第3図はこの
発明に係るRC造耐震壁の鉄筋組立図である。 1……壁板、11,12……壁、3,3′……柱、
2……太径鉄筋、4,4′……梁、5……壁縦筋、
6……壁横筋、7……せん断、引張り分離容易箇
所。
FIG. 1 is an explanatory diagram of the working principle of the RC shear wall according to the present invention, FIG. 2 is a load deformation diagram, and FIG. 3 is an assembly diagram of the reinforcing bars of the RC shear wall according to the present invention. 1... Wall plate, 1 1 , 1 2 ... Wall, 3, 3'... Column,
2... Large diameter reinforcing bars, 4, 4'... Beams, 5... Wall vertical reinforcements,
6... Wall transverse reinforcement, 7... Locations where shearing and tension separation is easy.

Claims (1)

【特許請求の範囲】 1 鉄筋コンクリート造の柱3,3′と梁4,
4′で囲まれた架構面内に鉄筋コンクリート造の
壁板1を設けて成る鉄筋コンクリート造耐震壁に
おいて、 (イ) 壁板1の中間部水平方向に水平横鉄筋として
両端を柱3,3′へ強固に定着した太径鉄筋2
が設置され、壁板1において前記太径鉄筋2に
沿う上下2箇所の位置の水平方向に壁板の水平
方向すべりを誘発させるせん断容易箇所7,7
を設置してあり、 (ロ) 同じ壁板1の壁横筋6はその両端が柱3,
3′の近傍位置に達する長さのものとして配設
し、該壁横筋6の先端部と柱3又は3′との間
の位置に柱3又は3′に沿つて垂直方向に壁板
と柱との引張り分離を誘発させる分離容易箇所
7′を設置してあり、 (ハ) 壁板1の壁縦筋5はその両端を上下の梁4,
4′へ強固に定着して配設されていること、 を特徴とする鉄筋コンクリート造耐震壁。 2 特許請求の範囲第1項に記載したせん断及び
引張り分離容易箇所7,7′は、分離板の敷設又
は壁板の打継ぎ又は断面欠損又はスリツトを形成
することにより設けられていることを特徴とする
鉄筋コンクリート造耐震壁。
[Claims] 1. Reinforced concrete columns 3, 3' and beams 4,
In a reinforced concrete shear wall consisting of a reinforced concrete wall plate 1 provided within the frame surface surrounded by 4', (a) horizontal horizontal reinforcing bars in the middle of the wall plate 1 at both ends to columns 3 and 3'; Strongly anchored large diameter reinforcing bars 2
are installed in the wall board 1 along the large-diameter reinforcing bars 2 at two positions above and below, where shearing is easy to induce horizontal sliding of the wall board 7, 7.
(b) The horizontal wall reinforcement 6 of the same wall plate 1 has both ends connected to the pillar 3,
3', and a wall plate and a column are installed vertically along the column 3 or 3' between the tip of the wall transverse reinforcement 6 and the column 3 or 3'. (c) The vertical wall reinforcements 5 of the wall board 1 have both ends attached to the upper and lower beams 4,
A reinforced concrete shear wall characterized by being firmly anchored to 4'. 2. The shearing and tensile separation points 7, 7' described in claim 1 are characterized in that they are provided by laying a separating plate, joining a wall plate, or forming a cross-sectional defect or slit. Reinforced concrete shear walls.
JP24177083A 1983-12-21 1983-12-21 Reinforced concrete earthquake-proof wall Granted JPS60133171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24177083A JPS60133171A (en) 1983-12-21 1983-12-21 Reinforced concrete earthquake-proof wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24177083A JPS60133171A (en) 1983-12-21 1983-12-21 Reinforced concrete earthquake-proof wall

Publications (2)

Publication Number Publication Date
JPS60133171A JPS60133171A (en) 1985-07-16
JPS6411796B2 true JPS6411796B2 (en) 1989-02-27

Family

ID=17079262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24177083A Granted JPS60133171A (en) 1983-12-21 1983-12-21 Reinforced concrete earthquake-proof wall

Country Status (1)

Country Link
JP (1) JPS60133171A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278371A (en) * 1985-09-27 1987-04-10 株式会社竹中工務店 Earthquake-proof wall made of reinforced concrete
JPH02140371A (en) * 1988-11-22 1990-05-30 Taisei Corp Iron reinforcement concrete earthquakeproof wall
JP6204027B2 (en) * 2013-03-05 2017-09-27 大成建設株式会社 Reinforced structure
JP6513754B2 (en) * 2017-08-29 2019-05-15 大成建設株式会社 Reinforcement structure of reinforced concrete wall column

Also Published As

Publication number Publication date
JPS60133171A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
Griffis Composite frame construction
JPS6411796B2 (en)
Menichini et al. Out-of-plane capacity of cladding panel-to-structure connections in one-story R/C precast structures
KR20060086265A (en) Structure of open wall in a steel house
JP2006188898A (en) Aseismatic reinforcing method for existing structure, structure based on the aseismatic reinforcing method, and structure equipped with the structure
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP2686372B2 (en) Unit house
JPH0261271A (en) Composition type wall mechanism and its constructing method
JP2964328B2 (en) Seismic reinforcement structure
JPH11159011A (en) Brace
Guangyu et al. Design and research on composite steel and concrete frame-core wall structure
JPS58156648A (en) Brace structure
Adebar et al. Displacement-based design of concrete tilt-up frames accounting for flexible diaphragms
JPH08270255A (en) Seismic isolation structuring method of existing building
JP2010053645A (en) Aseismatic frame structure and construction method of the same
JPH02128035A (en) Method for earthquake-resistant reinforcement for opening of reinforced concrete structure
JP2821546B2 (en) Truss composite beam structure
Paulay Special issues in seismic design
Karantoni et al. Comparative study of the seismic response of stone and brick masonry buildings
JP3023709B2 (en) Frame structure
Cortes et al. Steel slit panel configurations
De Domenico et al. Seismic retrofit of the student hall of residence of Messina through buckling restrained braces
JP2024074693A (en) Earthquake-resistant reinforcement structure and earthquake-resistant reinforcement method using same
JPS6229588B2 (en)
JP2022043840A (en) Vibration control panel and building