JP3425609B2 - Seismic isolation method for structures and seismic isolation structures - Google Patents

Seismic isolation method for structures and seismic isolation structures

Info

Publication number
JP3425609B2
JP3425609B2 JP27311995A JP27311995A JP3425609B2 JP 3425609 B2 JP3425609 B2 JP 3425609B2 JP 27311995 A JP27311995 A JP 27311995A JP 27311995 A JP27311995 A JP 27311995A JP 3425609 B2 JP3425609 B2 JP 3425609B2
Authority
JP
Japan
Prior art keywords
seismic isolation
building
laminated rubber
auxiliary
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27311995A
Other languages
Japanese (ja)
Other versions
JPH09112063A (en
Inventor
雅史 山本
相沢  覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP27311995A priority Critical patent/JP3425609B2/en
Publication of JPH09112063A publication Critical patent/JPH09112063A/en
Application granted granted Critical
Publication of JP3425609B2 publication Critical patent/JP3425609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】この発明は、積層ゴムによる
免震システムを適用した建造物の免震技術の分野に属
し、さらに言えば、アスペクト比(建物の幅寸に対する
高さの比)が大きく積層ゴムによる免震システムの適用
が困難な偏平形状の建物に免震システムの適用を可能に
し、耐震安全性を向上させる免震方法と免震構造物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the field of seismic isolation technology for buildings to which a seismic isolation system using laminated rubber is applied, and more specifically, it has a large aspect ratio (ratio of height to width of building). The present invention relates to a seismic isolation method and a seismic isolation structure that make it possible to apply a seismic isolation system to a flat-shaped building where it is difficult to apply a seismic isolation system using laminated rubber and improve seismic safety.

【0002】[0002]

【従来の技術】免震システムは、地震時に地盤から建物
へ伝わる地震エネルギーを低減し、地震時の建物応答加
速度および建物層間変位を小さくする利点があり、近年
その採用が飛躍的に増加している。ところが、アスペク
ト比が大きい偏平形状の建物は、地震時に発生する転倒
モーメントにより免震システムに引き抜き力を発生する
ことがある。一方、大部分の免震システムに広く採用さ
れている積層ゴムは、引張力が作用した際に特性が大き
く変わり、信頼性、安全性を担保しがたいので、積層ゴ
ムによる免震システムの採用が見送られてきた。
2. Description of the Related Art A seismic isolation system has the advantages of reducing seismic energy transmitted from the ground to a building during an earthquake and reducing the building response acceleration and displacement between buildings during an earthquake, and its adoption has increased dramatically in recent years. There is. However, a flat building with a large aspect ratio may generate a pulling force in the seismic isolation system due to the falling moment generated during an earthquake. On the other hand, laminated rubber that is widely used in most seismic isolation systems has characteristics that change significantly when a tensile force is applied, making it difficult to ensure reliability and safety. Was sent off.

【0003】ところで、特開平1−203541号公報
に係る建物の免震支持方法および免震支持装置の発明
は、地震時に免震建物の基礎に発生する引き抜き力を、
同基礎に設置した転倒防止用の積層ゴムによって負担さ
せる構成とし、もって、アスペクト比が高い建物に、積
層ゴムによる免震システムの採用を可能にしている。ま
た、並立する複数の構造物の間をダンパー又は弾性体の
性能をもつ要素で連結して制振の目的を達する技術は、
例えば特公昭54−1391号、特公平4−49632
号、特開平5−340133号、特開平7−34543
号公報等に記載されて公知に属する。
By the way, the invention of the seismic isolation supporting method for a building and the seismic isolation supporting device disclosed in Japanese Patent Laid-Open No. 1-205341 discloses the extraction force generated in the foundation of the seismic isolated building during an earthquake.
It is designed to be loaded by the laminated rubber for fall prevention installed on the foundation, which makes it possible to adopt a seismic isolation system using laminated rubber in buildings with a high aspect ratio. In addition, the technology to achieve the purpose of damping by connecting a plurality of structures standing in parallel by a damper or an element having the performance of an elastic body,
For example, Japanese Patent Publication No. 54-1391, Japanese Patent Publication No. 4-49632
JP-A-5-340133, JP-A-7-34543
It is described in Japanese Patent Publication and belongs to the public knowledge.

【0004】[0004]

【本発明が解決しようとする課題】 上記特開平1−203541号公報に係る建物の免
震支持方法および免震支持装置の場合は、建物の基礎に
転倒防止用の積層ゴムを設置するため、建物の基礎梁が
大きなものとなり、基礎工事にかかる費用、工期の負担
が大きい。のみならず、免震基礎部の構成が複雑な収ま
りとなる。そして、転倒防止用の積層ゴムが予定通りに
機能しても、建物上部の振動は自由であるため建物にロ
ッキング動が発生し、建物上部が大きく揺れる。 上述した特公昭54−1391号、特公平4−49
632号、特開平5−340133号、特開平7−34
543号公報等に記載されて公知の発明は、言うなれば
制振技術の分野に属し、本発明が目的とする免震システ
ムの適用の可能性には直接関与しない技術である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the case of the seismic isolation support method for a building and the seismic isolation support device according to the above-mentioned JP-A-1-203541, a laminated rubber for preventing fall is installed on the foundation of the building. The foundation beam of the building becomes large, and the cost of foundation work and the burden of the construction period are large. Not only that, the structure of the seismic isolation foundation will be complicated. Even if the laminated rubber for fall prevention functions as planned, since the vibration of the upper part of the building is free, rocking motion occurs in the building and the upper part of the building shakes greatly. Japanese Patent Publication No. 54-1391, Japanese Patent Publication No. 4-49
632, JP-A-5-340133, JP-A-7-34.
The publicly known inventions described in Japanese Patent No. 543 and the like belong to the field of vibration damping technology, so to speak, and are technologies that are not directly involved in the possibility of application of the seismic isolation system that is the object of the present invention.

【0005】従って、本発明の目的は、アスペクト比が
高い偏平建物に、積層ゴムによる免震システムを適用す
る際に障害となる、地震時に発生する転倒モーメントに
起因する引き抜き力を低減し、積層ゴムによる免震シス
テムの適用を広く可能ならしめることであり、さらには
建物上部のロッキング動を抑制して免震効果を高める免
震方法及び免震構造物を提供することである。
Therefore, an object of the present invention is to reduce the pull-out force caused by the overturning moment generated at the time of an earthquake, which is an obstacle when a seismic isolation system using laminated rubber is applied to a flat building with a high aspect ratio, The purpose of the present invention is to widely apply the seismic isolation system using rubber, and further to provide a seismic isolation method and a seismic isolation structure that suppress the rocking motion of the upper part of the building to enhance the seismic isolation effect.

【0006】[0006]

【課題を解決するための手段】上の課題を解決するた
めの手段として、請求項1に記載した発明に係る構造物
の免震方法は、アスペクト比が大きい扁平形状建物に
層ゴムによる免震システムを適用した免震構造物に隣接
して並立する補助構造物を設け、免震構造物の上部と補
助構造物とを水平力のみ拘束して伝達する構造要素で連
結すること、 前記補助構造物は、前記免震構造物との連
結位置における水平剛性を前記免震システムを構成する
積層ゴムの水平剛性と一致するものとし、同積層ゴム以
上に変形可能とし、その重量は免震構造物に比して小さ
くすること、地震時に免震層に発生する水平力と同程度
の大きさで同じ向きの水平力を補助構造物から免震構造
物へ付与させることを特徴とする。
As a means for solving the problems above mentioned SUMMARY OF THE INVENTION The isolation method of a structure according to the invention described in claim 1, the product in a flat shape building a large aspect ratio <br / > An auxiliary structure that stands side by side adjacent to the seismic isolation structure to which the seismic isolation system using layered rubber is applied is installed to supplement the upper part of the seismic isolation structure.
Connected with a structural element that transmits only the horizontal force with the auxiliary structure.
The auxiliary structure is connected to the seismic isolation structure.
Horizontal rigidity at the connecting position constitutes the seismic isolation system
The horizontal rigidity of the laminated rubber should be the same as that of the laminated rubber.
It can be deformed upward, and its weight is smaller than that of a base-isolated structure.
Kusuru possible, seismic isolation a horizontal force in the same direction at the horizontal force of the same order of magnitude as that generated in the seismic isolation layer during earthquakes ancillary structure structure
It is characterized by being attached to an object .

【0007】 請求項2に記載した発明に係る免震構造物
は、アスペクト比が大きい扁平形状建物に積層ゴムによ
る免震システムを適用した免震構造物であって、該免震
構造物に隣接する位置に補助構造物が設けられ、免震構
造物の上部と補助構造物とが水平力のみ拘束して伝達す
る構造要素で連結されていること、 前記補助構造物は、
前記免震構造物との連結位置における水平剛性が前記免
震システムを構成する積層ゴムの水平剛性と一致するも
のとされ、且つ同積層ゴム以上に変形可能とされ、その
重量は免震構造物に比して小さくされていること、地震
時に免震層に発生する水平力と同程度の大きさで同じ向
きの水平力補助構造物から免震構造物へ付与させる
とを特徴とする。
[0007] Claim 2Described inSeismic isolation structure according to the invention
IsFor flat buildings with a large aspect ratioWith laminated rubber
A seismic isolation structure to which the seismic isolation system
In a position adjacent to the structureSeismic isolation structure provided with auxiliary structures
The upper part of the structure and the auxiliary structure restrain and transmit only horizontal force
Connected by structural elements that The auxiliary structure is
The horizontal rigidity at the connecting position with the seismic isolation structure is
It matches the horizontal rigidity of laminated rubber that composes the seismic system.
It is said that it can be deformed more than the laminated rubber.
The weight is smaller than the seismic isolation structure,earthquake
Sometimes the same magnitude as the horizontal force generated in the seismic isolation layer
Horizontal forceToAuxiliary structureFromSeismic isolation structureGive toThis
And are characterized.

【0008】請求項3に記載した発明は、請求項2に記
載した免震構造物において、補助構造物は、免震構造物
の外側又は内側に隣接して並立され、免震用としての
み、又は免震用のほか外部階段、タワーパーキング、エ
レベータシャフトその他の用途に利用されることを特徴
とする
According to a third aspect of the present invention, in the seismic isolation structure according to the second aspect , the auxiliary structure is juxtaposed adjacent to the outside or the inside of the seismic isolation structure, and only for seismic isolation. or other external staircase MenShinyo, Tawapakingu, characterized in that it is used in the elevator shaft other APPLICATIONS.

【0009】[0009]

【発明の実施の形態】本発明は、積層ゴムによる免震シ
ステムを適用した、アスペクト比が高い偏平建物に好適
に実施される。積層ゴムには、鉛棒を内部に組み入れた
鉛プラグ入り積層ゴム、又はゴム自体に減衰性能を与え
た高減衰積層ゴムも包含する。積層ゴムによる免震シス
テムを適用する免震建物の外側に隣接して、または内部
に含む配置で隣接する補助構造物が構築される。この補
助構造物は、免震建物の上部(特には頂部)と水平力の
み拘束し伝達するように連結され、連結位置における補
助構造物の水平剛性(補助構造物を免震建物との連結部
で静的に単位量変位させるときに必要な力。)を、免震
システムを構成する積層ゴムの水平剛性と一致するよう
に設計する。これにより、以下に述べるように、地震時
に補助構造物の変形にともなう水平反力が、免震建物の
転倒モーメントを打ち消すことになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is preferably applied to a flat building having a high aspect ratio to which a seismic isolation system using laminated rubber is applied. The laminated rubber also includes a laminated rubber containing a lead plug and a lead plug incorporated therein, or a highly damped laminated rubber in which the rubber itself has damping performance. An auxiliary structure adjacent to the outside of the seismic isolated building to which the seismic isolation system using laminated rubber is applied or adjacent to the inside is constructed. This auxiliary structure is connected to the upper part of the base-isolated building (particularly the top part) so as to restrain and transmit only the horizontal force, and the horizontal rigidity of the auxiliary structure at the connecting position (the connecting part of the auxiliary structure to the base-isolated building). The force required for statically displacing a unit amount in.) Is designed to match the horizontal rigidity of the laminated rubber that constitutes the seismic isolation system. As a result, as described below, the horizontal reaction force associated with the deformation of the auxiliary structure during an earthquake cancels the falling moment of the base-isolated building.

【0010】補助構造物の条件しては、構造物全体とし
ての水平剛性が、積層ゴムの水平剛性との関連で規定さ
れる他、積層ゴムの変形能力以上に変形可能であること
も必要である。また、補助構造物の重量は免震建物に比
べてはるかに小さく設計する。そうでないと、補助構造
物から免震建物に地震荷重が伝達する場合がある。補助
構造物は、建物用途に用いる必要はないが、建物用途に
用いる場合は、外部階段やタワーパーキング、エレベー
タシャフトがその候補として挙げられる。
The condition of the auxiliary structure is that the horizontal rigidity of the entire structure is regulated in relation to the horizontal rigidity of the laminated rubber, and it is also necessary that the auxiliary structure can be deformed beyond the deformability of the laminated rubber. is there. The weight of the auxiliary structure will be much smaller than that of the base-isolated building. Otherwise, seismic loads may be transmitted from the auxiliary structure to the seismic isolated building. The auxiliary structure does not have to be used for building purposes, but when used for building purposes, external stairs, tower parking, and elevator shafts are candidates.

【0011】本発明は、図1Aに示したように、高さH
の建物に地震力Fが作用すると、転倒モーメントF・H
/2が発生する場合に、同建物の頂部に、図1Bに示し
たように、免震層(免震システムを構成する積層ゴム、
ダンパーその他の要素を包含した構成部分、以下同
じ。)に発生する水平力F/2と同程度の大きさで同じ
向きの水平力を付加すると、力の平衡により、免震層に
対する転倒モーメントがほとんど発生しない(打ち消さ
れる)ことを基本原理としている。
The present invention, as shown in FIG. 1A, has a height H
If seismic force F acts on the building of
/ 2 occurs, the seismic isolation layer (laminated rubber that constitutes the seismic isolation system, as shown in FIG. 1B, is added to the top of the building.
Components including dampers and other elements, and so on. When a horizontal force of the same magnitude as the horizontal force F / 2 generated in) is applied in the same direction, the basic principle is that due to the force balance, almost no overturning moment against the base isolation layer is generated (cancelled). .

【0012】前記の作用効果を検証するため、高さHが
60m、15階建ての建物を想定して解析を行った。こ
の建物の総重量は9600トンで、基礎を固定して免震
構造にしない場合の建物周期が1.5秒である。前記条
件の建物について、下記のケース1〜3のモデルを設定
した。いずれも建物の水平方向の動きのみを考え、ロッ
キング動や上下動は無視をして解析を行った。 〈ケース1〉基礎を固定した通常建物の解析である。 〈ケース2〉基礎に2.5秒、20%(上部構造を剛体
としたときの値)の免震層を設定した通常免震建物の解
析である。 〈ケース3〉本発明による免震構造物の解析である。免
震層の剛性は上記(ケース2)の半分。減衰は(ケース
2)と同じとする。補助構造物は総重量を600トン
(従って、免震建物の重量約6%)とし、全体として
の水平剛性を免震層の水平剛性と等しくする。
In order to verify the above-mentioned effects, an analysis was carried out assuming a 15-story building with a height H of 60 m. The total weight of this building is 9600 tons, and the building cycle is 1.5 seconds when the foundation is not fixed and the base isolation structure is not used. For the building under the above conditions, the models of Cases 1 to 3 below were set. In both cases, we considered only the horizontal movement of the building, ignoring the rocking movement and vertical movement, and performed the analysis. <Case 1> This is an analysis of a normal building with a fixed foundation. <Case 2> This is an analysis of a normal base-isolated building with a base isolation layer of 2.5 seconds, 20% (value when the superstructure is a rigid body). <Case 3> It is an analysis of a seismic isolation structure according to the present invention. The rigidity of the seismic isolation layer is half that of (Case 2) above. The attenuation is the same as in (Case 2). The auxiliary structure has a total weight of 600 tons (thus, about 6% of the weight of the seismic isolated building), and the horizontal rigidity as a whole is equal to the horizontal rigidity of the seismic isolation layer.

【0013】解析の結果を〔表1〕と図2、図3に示
す。〔表1〕は解析結果一覧のテーブルである。
The results of the analysis are shown in [Table 1] and FIGS. 2 and 3. [Table 1] is a table of an analysis result list.

【0014】[0014]

【表1】 図2は最上階の加速度である。図2によれば、ケース1
(通常建物)に比べて、ケース2(通常免震)及びケー
ス3(本発明)は免震効果により建物の加速度が格別小
さくなっていることが明らかである。但し、共に免震構
造になっているケース2とケース3とでは、免震効果に
殆ど差を認められない。
[Table 1] FIG. 2 shows the acceleration on the top floor. According to FIG. 2, case 1
It is clear that in case 2 (normal seismic isolation) and case 3 (present invention), the acceleration of the building is significantly smaller than the (normal building) due to the seismic isolation effect. However, there is almost no difference in the seismic isolation effect between Case 2 and Case 3, both of which have seismic isolation structures.

【0015】一方、転倒モーメントに関しては、図3に
例示したように、ケース2(通常免震)では最大530
30トン・mであり、自重との関係から計算すると、短
辺方向のスパンが11m以下になると、積層ゴムに引き
抜き力が発生する。これに対して、ケース3(本発明)
の最大転倒モーメントは21760トン・mで、約4割
に低減されている。従って、建物の短辺方向のスパンは
4.5mまで引き抜き力が発生しない。もっとも、以上
の解析結果と数値は、既述したように、建物のロッキン
グ動や上下動を無視した結果なので、実際に要求される
スパン長はもっと大きくなる。なお、ケース3(本発
明)は建物頂部へ付与した水平力によってロッキング動
に対する剛性を大きくする作用効果があるので、ロッキ
ング動を考慮した、より実際に近い解析だと、ケース3
の利点は一層大きいものとなる。
On the other hand, regarding the overturning moment, as shown in FIG. 3, the maximum is 530 in case 2 (normal seismic isolation).
It is 30 ton · m, and calculated from the relationship with its own weight, when the span in the short side direction becomes 11 m or less, pulling force is generated in the laminated rubber. On the other hand, Case 3 (present invention)
Has a maximum overturning moment of 21760 ton-m, which is reduced to about 40%. Therefore, the pulling force is not generated up to 4.5 m in the span of the short side of the building. However, since the above analysis results and numerical values are the results of ignoring the rocking motion and vertical motion of the building, as described above, the span length actually required becomes even longer. Since Case 3 (present invention) has the effect of increasing the rigidity against rocking motion by the horizontal force applied to the top of the building, if the analysis is closer to actual, considering Rocking motion, Case 3
The advantage of is greater.

【0016】上記の解析は地震外力に対する検討を行っ
ているにすぎないが、風荷重に対しても全く同様な作用
効果が奏されることは当業者に明らかであろう。また、
建物に付与する水平力は、頂部に付与するのが最も効果
的であるが、実施の条件如何によっては、建物頂部以外
のできるだけ上部に水平力を付与することによって同様
な作用効果を得られることも、当業者には明快であろ
う。
Although the above analysis merely examines the external force of the earthquake, it will be apparent to those skilled in the art that the same operational effect is exerted on the wind load. Also,
The horizontal force applied to the building is most effective when applied to the top, but depending on the implementation conditions, the same effect can be obtained by applying the horizontal force to the top of the building other than the top. Will be obvious to one of ordinary skill in the art.

【0017】以上に述べたように、本発明を実施する
と、アスペクト比が高い建物であっても、免震層の積層
ゴムに引き抜き力を発生させないから、積層ゴムによる
免震システムを適用することに何ら支障がない。その場
合に、補助構造物に図8のようにダンパーを設置して、
免震建物の免震層の減衰性能に近づけると、転倒モーメ
ントの低減効果が更に大きくなり、補助構造物の応答量
も低減する。また、免震建物を高層化する場合は、補助
構造物もそれに伴って高層化する。このため、補助構造
物の中間部の応答量が大きくなるが、免震構造物と補助
構造物とを図9のように中間部でダンパーにより接合す
ることによって応答量を抑制することも実施される。
As described above, according to the present invention, even in a building having a high aspect ratio, the pull-out force is not generated in the laminated rubber of the seismic isolation layer. Therefore, the seismic isolation system using the laminated rubber should be applied. There is no problem. In that case, install a damper on the auxiliary structure as shown in Fig. 8,
When the damping performance of the seismic isolation layer of the seismic isolated building is approached, the effect of reducing the overturning moment is further increased, and the response amount of the auxiliary structure is also reduced. When the seismic isolated building is to be increased in height, auxiliary structures will also be increased in height. Therefore, the response amount of the intermediate portion of the auxiliary structure becomes large, but the response amount is also suppressed by joining the seismic isolation structure and the auxiliary structure with the damper at the intermediate portion as shown in FIG. It

【0018】ところで、前記実施形態の類似技術とし
て、特公昭54−1391号公報に記載された発明「数
個の独立した建造物を互いに接続することにより構造物
におよぶ地震力を軽減せしめる構造法」、及び特許第1
783047号(特公平4−49632号に係る発明
「構造物間の連結部」がそれぞれ参照される。しかし、
前者は、建造物の間をバネ又はダンパーの性能を有する
材料で接続した構成であり、後者は構造物同士を水平方
向にスライド可能なエキスパンションジョイントによっ
て連結した連結部を更に、構造物とエキスパンションジ
ョイントとの間をダンパーで水平方向に連結した構成で
あり、本発明が免震建物と補助構造物とを水平力を拘束
するように構造的に完全に結合する構成とは、原理と構
成を全く異にするものである。
By the way, as a technique similar to the above-mentioned embodiment, the invention disclosed in Japanese Patent Publication No. 54-1391, "Structure method for reducing seismic force exerted on a structure by connecting several independent structures to each other" , And Patent No. 1
No. 783047 (refer to the invention “connecting portions between structures” according to Japanese Patent Publication No. 4-49632).
The former is a structure in which the structures are connected by a material having the function of a spring or a damper. And a structure in which a damper is horizontally connected to each other, and the present invention is a structure in which the seismic isolated building and the auxiliary structure are structurally completely coupled so as to restrain the horizontal force. It is different.

【0019】[0019]

【実施例】次に、図4以下に示した本発明の実施例を説
明する。図4A,Bに示した実施例は、アスペクト比が
高い偏平建物1の両外側位置に隣接する二つの補助構造
物3,3を構築し、各補助構造物3と建物1の頂部との
間を、水平力のみ拘束して伝達する構造要素4で連結し
た構成である。建物1は、積層ゴム2を主体とする免震
システムで基礎上に支持された免震建物である。補助構
造物3は、軽量で、水平剛性の調節、及び積層ゴム2の
変形性能以上の変形性能を得ることが容易な鉄骨造トラ
ス構造として構築されている。補助構造物3と免震建物
1を連結する構造要素4は、具体的にはつなぎ梁であ
る。水平力のみ拘束するとは、上下方向の力は伝えない
意味である。
EXAMPLES Next, examples of the present invention shown in FIG. 4 and subsequent figures will be described. In the embodiment shown in FIGS. 4A and 4B, two auxiliary structures 3 and 3 adjacent to both outside positions of the flat building 1 having a high aspect ratio are constructed, and each auxiliary structure 3 and the top of the building 1 are connected to each other. Is connected by a structural element 4 that restrains and transmits only the horizontal force. The building 1 is a seismic isolated building supported on a foundation by a seismic isolation system mainly composed of laminated rubber 2. The auxiliary structure 3 is constructed as a steel-framed truss structure which is lightweight, is easy to adjust horizontal rigidity, and can easily obtain a deformation performance equal to or higher than the deformation performance of the laminated rubber 2. The structural element 4 that connects the auxiliary structure 3 and the base-isolated building 1 is specifically a connecting beam. Restraining only the horizontal force means that the vertical force is not transmitted.

【0020】図5A,Bの実施例は、積層ゴム2による
免震システムが適用された偏平建物1の外側の四隅位置
に隣接する配置で四つの補助構造物3…が構築され、各
補助構造物3と免震建物1の頂部との間が、たすき掛け
配置とした構造要素4,4で連結された構成である。図
6の実施例は、積層ゴム2による免震システムが適用さ
れた免震建物1の一側に隣接して、同建物よりもはるか
に背が高い補助構造物3が構築され、該補助構造物3と
建物1の頂部との間が、構造要素4で連結された構成で
ある。
In the embodiment shown in FIGS. 5A and 5B, four auxiliary structures 3 are constructed so as to be adjacent to the four corner positions outside the flat building 1 to which the seismic isolation system using the laminated rubber 2 is applied, and each auxiliary structure is constructed. The structure is such that the object 3 and the top of the base-isolated building 1 are connected by the structural elements 4 and 4 arranged in a crossing arrangement. In the embodiment of FIG. 6, an auxiliary structure 3 much taller than the building is constructed adjacent to one side of the seismic isolated building 1 to which the seismic isolation system using the laminated rubber 2 is applied. A structure element 4 connects between the object 3 and the top of the building 1.

【0021】図7の実施例は、例えばエレベータシャフ
トの如く免震建物1の内部(中心部)に包含される形に
隣接する配置で補助構造物3が構築され、該補助構造物
3と免震建物1の頂部との間が、構造要素4で連結され
た構成である。図8の実施例は、免震建物1の両側位置
に隣接する二つの補助構造物3,3が構築されると共
に、該補助構造物3の各層間に、当該補助構造物3の減
衰性能を積層ゴム2による免震システムの減衰性能に近
づけるようにダンパー5を配置している。そして、補助
構造物3と免震建物1の頂部との間を、構造要素4で連
結した構成である。
In the embodiment shown in FIG. 7, the auxiliary structure 3 is constructed in such a manner that it is adjacent to a shape such as an elevator shaft, which is included in the inside of the base-isolated building 1 (center part). The structure is connected to the top of the quake building 1 by a structural element 4. In the embodiment of FIG. 8, two auxiliary structures 3 and 3 adjacent to both sides of the base-isolated building 1 are constructed, and the damping performance of the auxiliary structure 3 is increased between the layers of the auxiliary structure 3. The damper 5 is arranged so as to approach the damping performance of the seismic isolation system using the laminated rubber 2. The auxiliary structure 3 and the top of the base-isolated building 1 are connected by a structural element 4.

【0022】図9の実施例は、高層の免震建物1の両側
位置に隣接して同じく背の高い補助構造物3を構築し、
免震建物1の頂部との間を、構造要素4で連結すると共
に補助構造物3の中間部の応答量を抑制するため、同補
助構造物3の中間部を建物1とダンパー6で接合した構
成である。
In the embodiment shown in FIG. 9, a tall auxiliary structure 3 is constructed adjacent to both sides of the high-rise base-isolated building 1,
In order to connect the top of the base-isolated building 1 with the structural element 4 and suppress the response amount of the intermediate portion of the auxiliary structure 3, the intermediate portion of the auxiliary structure 3 is joined to the building 1 by the damper 6. It is a composition.

【0023】[0023]

【本発明が奏する効果】本発明に係る構造物の免震方法
及び免震構造物によれば、アスペクト比が高い建物に、
積層ゴムによる免震システムの適用を広く可能にし、同
建物の耐震安全性を向上させる。また、建物上部のロッ
キング動を抑制する観点からも免震効果が高められるの
である。
According to the seismic isolation method for a structure and the seismic isolated structure according to the present invention, a building with a high aspect ratio,
The seismic isolation system using laminated rubber will be widely applicable to improve the seismic safety of the building. In addition, the seismic isolation effect can be enhanced from the viewpoint of suppressing the rocking motion of the upper part of the building.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aは通常の免震建物に発生する転倒モーメント
の説明図、Bは建物頂部に水平力を付与して転倒モーメ
ントを抑制する説明図である。
FIG. 1A is an explanatory diagram of a tipping moment that occurs in a normal base-isolated building, and B is an explanatory diagram that applies a horizontal force to the top of the building to suppress the tipping moment.

【図2】通常建物、通常免震建物、及び本発明の免震構
造物の最上階加速度の計算グラフである。
FIG. 2 is a calculation graph of top floor acceleration of a normal building, a normal base-isolated building, and the base-isolated structure of the present invention.

【図3】通常免震建物と本発明の免震建物の転倒モーメ
ントの計算グラフである。
FIG. 3 is a calculation graph of tipping moments of a normal base-isolated building and the base-isolated building of the present invention.

【図4】A、Bは本発明の第1実施例を示した免震構造
物の平面図と立面図である。
4A and 4B are a plan view and an elevation view of the seismic isolation structure showing the first embodiment of the present invention.

【図5】A、Bは本発明の第2実施例を示した免震構造
物の平面図と立面図である。
5A and 5B are a plan view and an elevation view of a seismic isolation structure showing a second embodiment of the present invention.

【図6】本発明の第3実施例を示した免震構造物の立面
図である。
FIG. 6 is an elevation view of a seismic isolation structure showing a third embodiment of the present invention.

【図7】本発明の第4実施例を示した免震構造物の立面
図である。
FIG. 7 is an elevation view of a seismic isolation structure showing a fourth embodiment of the present invention.

【図8】本発明の第5実施例を示した免震構造物の立面
図である。
FIG. 8 is an elevation view of a seismic isolation structure showing a fifth embodiment of the present invention.

【図9】本発明の第6実施例を示した免震構造物の立面
図である。
FIG. 9 is an elevation view of a seismic isolation structure showing a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 免震構造物(免震建物) 2 積層ゴム 3 補助構造物 4 構造要素(つなぎ梁) 1 Seismic isolation structure (seismic isolation building) 2 laminated rubber 3 Auxiliary structure 4 Structural elements (connecting beams)

フロントページの続き (56)参考文献 特開 平2−24460(JP,A) 特開 平2−232478(JP,A) 特開 平7−207988(JP,A) 実開 平2−1367(JP,U) (58)調査した分野(Int.Cl.7,DB名) E04H 9/02 E04B 1/34 - 1/36 Continuation of the front page (56) Reference JP-A-2-24460 (JP, A) JP-A-2-232478 (JP, A) JP-A-7-207988 (JP, A) Actual Kaihei 2-167 (JP , U) (58) Fields surveyed (Int.Cl. 7 , DB name) E04H 9/02 E04B 1/34-1/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アスペクト比が大きい扁平形状建物に積層
ゴムによる免震システムを適用した免震構造物に隣接し
て並立する補助構造物を設け、免震構造物の上部と補助
構造物とを水平力のみ拘束して伝達する構造要素で連結
すること、 前記補助構造物は、前記免震構造物との連結位置におけ
る水平剛性を前記免震システムを構成する積層ゴムの水
平剛性と一致するものとし、同積層ゴム以上に変形可能
とし、その重量は免震構造物に比して小さくすること、 地震時に免震層に発生する水平力と同程度の大きさで同
じ向きの水平力を補助構造物から免震構造物へ付与させ
ことを特徴とする構造物の免震方法。
1. A flat structure with a large aspect ratio is provided with an auxiliary structure that is juxtaposed adjacent to a seismic isolation structure to which a seismic isolation system using laminated rubber is applied, and is provided above and above the seismic isolation structure.
Connected to the structure by a structural element that transmits only by constraining the horizontal force
The auxiliary structure at the connecting position with the seismic isolation structure.
The horizontal rigidity of the laminated rubber that constitutes the seismic isolation system
Same as flat rigidity and can be deformed more than the same laminated rubber
The weight should be smaller than that of the base-isolated structure, and horizontal force in the same direction as the horizontal force generated in the base-isolation layer during an earthquake should be applied from the auxiliary structure to the base-isolated structure. Let
Seismic isolation method of the structure, characterized in that that.
【請求項2】アスペクト比が大きい扁平形状建物に積層
ゴムによる免震システムを適用した免震構造物であっ
て、 該免震構造物に隣接する位置に補助構造物が設けられ、
免震構造物の上部と補助構造物とが水平力のみ拘束して
伝達する構造要素で連結されていること、 前記補助構造物は、前記免震構造物との連結位置におけ
る水平剛性が前記免震システムを構成する積層ゴムの水
平剛性と一致するものとされ、且つ同積層ゴム以上に変
形可能とされ、その重量は免震構造物に比して小さくさ
れていること、 地震時に免震層に発生する水平力と同程度の大きさで同
じ向きの水平力補助構造物から免震構造物へ付与させ
ことを特徴とする免震構造物。
2. A seismic isolation structure in which a seismic isolation system using laminated rubber is applied to a flat building having a large aspect ratio, and an auxiliary structure is provided at a position adjacent to the seismic isolation structure ,
The upper part of the seismic isolation structure and the auxiliary structure restrain the horizontal force only.
The auxiliary structure is connected to the seismic isolation structure by connecting with the transmitting structural element.
The horizontal rigidity that makes up the seismic isolation system
Same as flat rigidity, and more than the same laminated rubber
It can be shaped and its weight is smaller than that of a base-isolated structure.
What is, by applying a horizontal force in the same direction at the horizontal force of the same order of magnitude as that generated in the seismic isolation layer during earthquakes ancillary structure to seismic isolation structure
Seismic isolation structure, characterized in that that.
【請求項3】 補助構造物は、免震構造物の外側又は内側
に隣接して並立され、免震用としてのみ、又は免震用の
ほか外部階段、タワーパーキング、エレベータシャフト
その他の用途に利用されることを特徴とする、請求項2
に記載した免震構造物。
3. The auxiliary structure is the outside or inside of the seismic isolation structure.
Adjacent toAnd they are lined up,For seismic isolation only or for seismic isolation
Other external stairs, tower parking, elevator shaft
OtherForCharacterized by being used on the way, Claim 2
Described inSeismic isolation structure.
JP27311995A 1995-10-20 1995-10-20 Seismic isolation method for structures and seismic isolation structures Expired - Fee Related JP3425609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27311995A JP3425609B2 (en) 1995-10-20 1995-10-20 Seismic isolation method for structures and seismic isolation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27311995A JP3425609B2 (en) 1995-10-20 1995-10-20 Seismic isolation method for structures and seismic isolation structures

Publications (2)

Publication Number Publication Date
JPH09112063A JPH09112063A (en) 1997-04-28
JP3425609B2 true JP3425609B2 (en) 2003-07-14

Family

ID=17523401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27311995A Expired - Fee Related JP3425609B2 (en) 1995-10-20 1995-10-20 Seismic isolation method for structures and seismic isolation structures

Country Status (1)

Country Link
JP (1) JP3425609B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572535B2 (en) * 2003-12-22 2010-11-04 株式会社大林組 Building seismic control structure
JP2009203631A (en) * 2008-02-26 2009-09-10 Takenaka Komuten Co Ltd Quake-resistant building
JP5339406B2 (en) * 2008-05-22 2013-11-13 学校法人君が淵学園 Seismic structure
JP5164231B1 (en) * 2011-12-27 2013-03-21 株式会社みらい Extension method and structure of existing building
JP5411375B1 (en) * 2013-04-30 2014-02-12 黒沢建設株式会社 Buildings using seismic control columns

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021367U (en) * 1988-06-14 1990-01-08
JP2512785B2 (en) * 1988-07-14 1996-07-03 株式会社大林組 Vibration control device for high-rise buildings
JP2576221B2 (en) * 1989-03-03 1997-01-29 鹿島建設株式会社 Structure connection structure
JPH07207988A (en) * 1994-01-12 1995-08-08 Fujita Corp Damping device of building

Also Published As

Publication number Publication date
JPH09112063A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP5567094B2 (en) Long-period building
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JP3425609B2 (en) Seismic isolation method for structures and seismic isolation structures
JP3677712B2 (en) Seismic isolation and control building
Kikuchi et al. Design of seismic isolated tall building with high aspect-ratio
JP2014101749A (en) Period-prolonged architectural structure
JP3677703B2 (en) Damping building
JPH01263333A (en) Variable bending rigidity device for structure
JPH10280725A (en) Damping skeleton construction
JPH0660538B2 (en) Dynamic vibration control method and apparatus using weight of building body
JP5290786B2 (en) Damping structure
JPH01203541A (en) Earthquake proof structure supporting method of building and its supporting device
JPH04277274A (en) Construction with mixed construction members
JP5727690B2 (en) Long-period building
JPH0718270B2 (en) Dynamic vibration control method and device using weight of roof of building
US20010032420A1 (en) Gravity balance frame
JPH0784817B2 (en) Dynamic damping method and device for building
JP2012233374A (en) Seismic reinforcement structure
JP2514839B2 (en) Seismic structure of high-rise buildings
JP2013049954A (en) Structure with vibration control reinforcement frame
JP2004176348A (en) Base isolation structure of high rise building
JP3055073B2 (en) Building
JP3777533B2 (en) Seismic reinforcement building
JPH09100648A (en) Building structure
JP2001140344A (en) Eaqrthquake-resistant dwelling house

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees