JPH01203541A - Earthquake proof structure supporting method of building and its supporting device - Google Patents
Earthquake proof structure supporting method of building and its supporting deviceInfo
- Publication number
- JPH01203541A JPH01203541A JP2472188A JP2472188A JPH01203541A JP H01203541 A JPH01203541 A JP H01203541A JP 2472188 A JP2472188 A JP 2472188A JP 2472188 A JP2472188 A JP 2472188A JP H01203541 A JPH01203541 A JP H01203541A
- Authority
- JP
- Japan
- Prior art keywords
- building
- laminated rubber
- rubber body
- seismic isolation
- isolation support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000002265 prevention Effects 0.000 claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 238000002955 isolation Methods 0.000 claims description 37
- 230000007774 longterm Effects 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 12
- 150000002739 metals Chemical class 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 10
- 238000010276 construction Methods 0.000 abstract 2
- 238000009434 installation Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 230000033001 locomotion Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、中層建物、それも建物の幅寸に対する高さ
の比(アスペクト比)が大きい扁平形状又は塔状の建物
に実施される免震支持方法及び免震支持装置に関するも
のである。Detailed Description of the Invention: Industrial Field of Application This invention relates to seismic isolation support implemented in medium-rise buildings, particularly flat-shaped or tower-shaped buildings with a large height-to-width ratio (aspect ratio). The present invention relates to a method and a seismic isolation support device.
従来の技術
最近の建物の免震支持方法及び免震装置の原理は、薄い
金属板とゴムシートとを交互に多数積み重ねて成る積層
ゴム体により建物を地盤上に支持せしめ、積層ゴム体の
水平方向に柔らかい変形性能により地震力が建物に伝達
するのを可及的に防止し振動周期を長周期化し免震効果
を得ているのが一般的である。勿論、減衰装置(ダンパ
ー)を組入れて建物の水平移動量を可及的に抑制するこ
とも当然性なわれる(例えば特開昭GO−168875
号公報に記載された建物の免震支持方法及び免震支持装
置を参照)。Conventional technology The principle of recent seismic isolation support methods and devices for buildings is to support the building on the ground with a laminated rubber body made by stacking a large number of thin metal plates and rubber sheets alternately, and to maintain the horizontal position of the laminated rubber body. It is common to use soft deformation performance to prevent earthquake forces from being transmitted to the building as much as possible, and to lengthen the vibration period to obtain a seismic isolation effect. Of course, it is also natural to incorporate a damper to suppress the amount of horizontal movement of the building as much as possible (for example, Japanese Patent Application Laid-Open No. 168875
(Refer to the seismic isolation support method and seismic isolation support device for buildings described in the publication).
積層ゴム体は、軸圧縮力に対してはほとんど変形しない
という特長を有し、建物の大きな長期鉛直荷重を支持す
ることができ、しかも水平方向には柔らかく変形できる
ことが最大の特長となっている。The laminated rubber body has the characteristic that it hardly deforms under axial compressive force, and can support the large long-term vertical loads of buildings, and its greatest feature is that it can be deformed softly in the horizontal direction. .
したがって、第8図Aに例示したように基礎版aの上に
積層ゴム体b・・・を介して支持された一般の低層建物
Cの如く、地震力を受けると第8図Bに示したように単
に剛体的に水平移動するだけで転倒モーメントによる影
響をほとんど受けない建物の免震支持方法及び免震支持
装置としては極めて優れたものとなっている。Therefore, as shown in Fig. 8A, when a general low-rise building C is supported on a foundation plate a through a laminated rubber body b..., when subjected to an earthquake force, the structure shown in Fig. 8B As such, it is an extremely excellent seismic isolation support method and device for buildings that simply move rigidly horizontally and are hardly affected by overturning moments.
本発明が解決しようとする課題
ところで、積層ゴム体は、引張力に対してはゴム材固有
の伸びが現われ、圧縮力と同じ大きさの引張力に対して
は数10倍の変形が簡単に発生する欠点がある。Problems to be Solved by the Present Invention By the way, a laminated rubber body exhibits a characteristic elongation of the rubber material in response to a tensile force, and easily deforms several tens of times in response to a tensile force of the same magnitude as a compressive force. There are drawbacks that occur.
一方、最近は敷地の制限のために細長く背が高い塔状建
物、あるいは集合住宅のように短辺方向の幅寸が一定限
度に押えられた扁平形状の建物が多く出現している。こ
のような塔状又は扁平形状の建物の如く建物の幅寸に対
して高さの比(アスペクト比)が大きい建物C′を第9
図Aのように基礎版aの上に積層ゴム体b・・・で支持
せしめた場合には、地震力を受けると建物C′は第9図
Bのように水平移動すると同時に大きな転倒モーメント
による回転運動が作用し、場合によっては負の軸力が発
生し、積層ゴム体すに引張力が作用するおそれがある。On the other hand, recently, due to site restrictions, many tall, slender, tower-shaped buildings, or flat-shaped buildings whose short side width is limited to a certain limit, such as apartment complexes, have appeared. A building C' with a large height to width ratio (aspect ratio), such as a tower-shaped or flat-shaped building, is designated as the ninth building.
When the building C' is supported by a laminated rubber body b...on top of the foundation plate a as shown in Figure A, when subjected to an earthquake force, the building C' moves horizontally as shown in Figure 9B, and at the same time is subject to a large overturning moment. Rotational motion acts, and in some cases, negative axial force is generated, which may cause tensile force to act on the laminated rubber body.
このため、これまでは積層ゴム体すを使用する建物の免
震支持方法及び免震支持装置の対象から塔状又は扁平形
状建物が外されているので、この点が解決すべき課題と
なっている。For this reason, until now, tower-shaped or flat-shaped buildings have been excluded from the scope of seismic isolation support methods and seismic isolation support devices for buildings using laminated rubber bodies, and this point has become an issue that needs to be resolved. There is.
よって、本発明の目的は、積層ゴム体を使用して塔状又
は扁平形状の建物に有効的な免震支持方法及び免震支持
装置を提供することにある。Therefore, an object of the present invention is to provide a seismic isolation support method and a seismic isolation support device that are effective for tower-shaped or flat-shaped buildings using laminated rubber bodies.
課題を解決するための手段
(第1.第2の発明)
上記従来技術の課題を解決するための手段として、この
発明に係る建物の免震支持方法は、第1図に基本概念図
を示し、第2図〜第7図に好適な実施例を示したとおり
、
薄い金属板とゴムシートとを交互に多数積み重ねて成る
積層ゴム体l・・・により建物2を地盤5上に支持せし
めている建物の免震支持方法において。Means for Solving the Problems (No. 1. Second Invention) As a means for solving the problems of the above-mentioned prior art, there is provided a seismic isolation support method for a building according to the present invention, the basic conceptual diagram of which is shown in Fig. 1. , as preferred embodiments are shown in FIGS. 2 to 7, the building 2 is supported on the ground 5 by a laminated rubber body l formed by stacking a large number of thin metal plates and rubber sheets alternately. In the seismic isolation support method of buildings.
地震入力を受けた建物2において負の軸力が発生しそう
な部位に、転倒防止用の積層ゴム体3を下向きに設置し
て前記負の軸力を負担せしめ、もって建物2を支える長
期荷重用の積層ゴム体lに負の軸力が一切作用しないよ
うにしたことを特徴とする。A laminated rubber body 3 for fall prevention is installed facing downward in a part of the building 2 that receives an earthquake input where a negative axial force is likely to be generated to bear the negative axial force, thereby supporting the building 2 under long-term loads. It is characterized in that no negative axial force acts on the laminated rubber body l.
また、上記建物の免震支持方法において、転倒防止用の
積層ゴム体3が負担した負の軸力は、アースアンカー4
に反力をとって処理する構成とした。In addition, in the above-mentioned seismic isolation support method for buildings, the negative axial force borne by the laminated rubber body 3 for fall prevention is
The structure is such that the reaction force is taken and processed.
作 用
アスペクト比が大きい建物2が地震入力を受け、転倒モ
ーメントによる回転運動(第9図B参照)が作用して負
の軸力が発生したときは、その全部を転倒防止用の積層
ゴム体3で受け止めて負担し、アースアンカー4を通じ
て地515に反力をとり処理される。When building 2, which has a large operational aspect ratio, receives an earthquake input and a negative axial force is generated due to the rotational movement due to the overturning moment (see Figure 9B), the building 2, which has a large aspect ratio, is subjected to a negative axial force. 3 receives and bears the burden, and the reaction force is taken to the ground 515 through the earth anchor 4 and disposed of.
転倒防止用の積層ゴム体3も圧縮力に対してほとんど変
形しないという特長を有するので、前記負の軸力は圧縮
力として確実に受け止め、長期鉛直荷重用の積層ゴム体
1には引張力を一切作用させない。The laminated rubber body 3 for fall prevention also has the feature of hardly deforming due to compressive force, so the negative axial force is reliably received as a compressive force, and the laminated rubber body 1 for long-term vertical loads does not receive tensile force. Don't let it work at all.
一方、建物2の水平移動は、各積層ゴム体1゜3の柔軟
な変形により可能ならしめるのである。On the other hand, the horizontal movement of the building 2 is made possible by the flexible deformation of each laminated rubber body 1.3.
(第3〜第5の発明)
同上の課題を解決するための手段として、この発明に係
る建物の免震支持装置は、やはり第1図に概念図を示し
、第2図〜第7図に好適な実施例を示したとおり、
薄い金属板とゴムシートとを交互に多数積み重ねて成る
積層ゴム体l・・・により建物2を地51iS上に支持
せしめて成る建物の免震支持装置において、
地震入力を受けた建物2において負の軸力が発生しそう
な部位には、建物2の上床板6の下面にU形状の伝達フ
レーム7を固定し、基礎版8には前記伝達フレーム7内
に通してチェノの如く交叉せしめた倒立U形状の反力フ
レーム9を固定し。(Third to Fifth Inventions) As a means for solving the same problem as above, a seismic isolation support device for a building according to the present invention is shown in a conceptual diagram in FIG. 1, and in FIGS. 2 to 7. As shown in the preferred embodiment, in a seismic isolation support device for a building in which the building 2 is supported on the ground 51iS by a laminated rubber body l... made by stacking a large number of thin metal plates and rubber sheets alternately, A U-shaped transmission frame 7 is fixed to the lower surface of the upper floor plate 6 of the building 2 at a location where negative axial force is likely to occur in the building 2 that receives an earthquake input, and a U-shaped transmission frame 7 is fixed to the base plate 8 within the transmission frame 7. An inverted U-shaped reaction frame 9, which is crossed like a chino, is fixed therethrough.
両フレーム7と9の間に転倒防止用の積層ゴム体3を垂
直下向きに、つまり建物2に発生した負の軸力を受け止
める態様で設置し、前記反力フレーム9はアースアンカ
ー4と緊結し固定した構成としている。A laminated rubber body 3 for fall prevention is installed vertically downward between both frames 7 and 9, that is, in a manner to absorb the negative axial force generated in the building 2, and the reaction frame 9 is tightly connected to the earth anchor 4. It has a fixed configuration.
あるいは地震入力を受けた建物2において負の軸力が発
生しそうな部位には、基礎版8に固定した倒立U形状の
反力フレーム9′の両脚部9a。Alternatively, both legs 9a of an inverted U-shaped reaction force frame 9' fixed to the foundation plate 8 are installed in the parts of the building 2 that are subject to earthquake input where negative axial force is likely to occur.
9aを建物2の上床板6に設けた開口部10に通して設
置し、同圧カフレーム9′の上辺部9bと上床板6との
間に転倒防止用の積層ゴム体3を垂直下向きに設置し、
前記反力フレーム9′はアースアンカー4と緊結し固定
した構成とする。9a is installed through the opening 10 provided in the upper floor plate 6 of the building 2, and the laminated rubber body 3 for fall prevention is placed vertically downward between the upper side 9b of the same pressure frame 9' and the upper floor plate 6. installed,
The reaction frame 9' is tightly connected and fixed to the earth anchor 4.
また、前記の免震支持装置において、倒立U形状の反力
フレーム9′は上床板6の上床梁11の上に跨がる形に
交叉させて設置し、上床板6における上床梁11上の位
置と反力フレーム9′との間に積層ゴム体3を垂直下向
きに設置した構成とする。In addition, in the above seismic isolation support device, the inverted U-shaped reaction force frame 9' is installed so as to cross over the upper floor beam 11 of the upper floor board 6, and The laminated rubber body 3 is installed vertically downward between the position and the reaction force frame 9'.
作 用
地震入力を受けた建物2に転倒モーメントによる負の軸
力が発生した場合、この負の軸力は伝達フレーム7又は
上床板6を通じて転倒防止用の積層ゴム体3に圧縮力と
して伝えられ受け止められる。そして、積層ゴム体3で
受け止めた負の軸カバ反力フレーム9又は9′からアー
スアンカー4を通じて地fi5に伝達して処理され、長
期鉛直荷重を支持する積層ゴム体lには一切引張力を作
用させない。When a negative axial force due to an overturning moment occurs in the building 2 that has received an earthquake input, this negative axial force is transmitted as a compressive force to the laminated rubber body 3 for overturning prevention through the transmission frame 7 or the upper floor board 6. I can accept it. Then, the negative shaft cover reaction force received by the laminated rubber body 3 is transmitted from the frame 9 or 9' to the ground fi 5 through the earth anchor 4 and processed, and no tensile force is applied to the laminated rubber body l that supports the long-term vertical load. Don't let it work.
一方、地震入力を受けた建物2の水平移動は、各積層ゴ
ム体1,3の柔軟な水平方向の変形性能により可能なら
しめる。また、U形状の伝達フレーム7とこれに通して
チェン状に交叉させた反力フレーム9とのルーズな自在
性、又は反力フレーム9′とその両脚部9a、9aを通
すべく上床板6に設けた開口部lOによる遊びの範囲で
建物2の水平移動を可能ならしめる。On the other hand, horizontal movement of the building 2 in response to earthquake input is made possible by the flexible horizontal deformation performance of each of the laminated rubber bodies 1 and 3. In addition, the loose flexibility of the U-shaped transmission frame 7 and the reaction force frame 9 crossed in a chain shape, or the upper floor plate 6 to allow the reaction force frame 9' and its legs 9a, 9a to pass through. The horizontal movement of the building 2 is made possible within the range of play provided by the opening lO.
なお、建物2に発生する負の軸力は、上床板6の上床梁
(大梁)11の位置において転倒防止用の積層ゴム体3
に伝達する構成にすると力学的に明解なものとなる。Note that the negative axial force generated in the building 2 is applied to the laminated rubber body 3 for preventing falling at the position of the upper floor beam (girder) 11 of the upper floor board 6.
If you create a configuration that transmits this, it becomes mechanically clear.
実施例 次に、図面に示した実施例を説明する。Example Next, the embodiment shown in the drawings will be explained.
まず、第2図〜第4図に示した建物の免震支持方法及び
免震支持装置は、地515上に構築した基礎版8の基礎
梁12の上に薄い鉄板とゴムシートとを交互に多数積み
重ねて成る積層ゴム体lを垂直上向きに設置し、その上
に7スペクト比が大きい建物2を構築し、その上床梁(
大梁)11の部位が前記長期鉛直荷重用の積層ゴム体1
により支持されている。First, the seismic isolation support method and the seismic isolation support device for buildings shown in Figs. A large number of laminated rubber bodies 1 are stacked vertically upward, and a building 2 with a large aspect ratio of 7 is constructed on top of it, with floor beams (
The part of girder) 11 is the laminated rubber body 1 for long-term vertical load.
Supported by
このアスペクト比が大きい建物2において、地震入力を
受けたとき負の軸力が発生しそうな部位(第9図B参照
)に、まず建物2の上床板6の下面に鉄筋コンクリート
造又は鉄骨造でU形状をなす伝達フレーム7を取付は固
定し、基礎版8上には前記伝達フレーム7と略同形の倒
立U形状をなし前記伝達フレーム7とは直交する配置に
通してチェン状に交叉、連結せしめた反力フレーム9が
取付は固定されている。そして、両フレーム7と9との
交叉点の部位に、やはり薄い鉄板とゴムシートとを交互
に多数積み重ねて成る転倒防止用の積層ゴム体3が垂直
下向きに設置されている。In the building 2, which has a large aspect ratio, first install reinforced concrete or steel structure U on the underside of the upper floor plate 6 of the building 2 in areas where negative axial force is likely to occur when receiving earthquake input (see Figure 9B). A transmission frame 7 having a shape is mounted and fixed, and on a base plate 8 is an inverted U shape that is approximately the same shape as the transmission frame 7, and is crossed and connected in a chain shape through an arrangement perpendicular to the transmission frame 7. The reaction force frame 9 is fixedly mounted. At the intersection of the frames 7 and 9, a stacked rubber body 3 for preventing falling, which is also made of a large number of thin iron plates and rubber sheets stacked alternately, is installed vertically downward.
反力フレーム9の両脚の下端部は、それぞれ基礎版8の
上においてアースアンカー4.4の頭部と緊結し固定さ
れている。The lower ends of both legs of the reaction frame 9 are each tightly connected and fixed to the head of the earth anchor 4.4 on the base plate 8.
なお、図示することは省略したが、建物2の上床板6と
基礎版8との間には、地震力を受けた際の建物2の水平
移動の大きさを抑制する減衰装置(グンパー)が必須不
可欠の要素として設置される。Although not shown in the diagram, there is a damping device (gumper) between the upper floor plate 6 and the foundation plate 8 of the building 2 that suppresses the horizontal movement of the building 2 when it receives an earthquake force. It is installed as an essential element.
したがって、平常時の建物2の重量は全て長期鉛直荷重
用の積層ゴム体3により支持される。Therefore, the entire weight of the building 2 during normal times is supported by the laminated rubber body 3 for long-term vertical loads.
一方、地震入力を受けたアスペクト比が大きい建物2は
、前記2種の積層ゴム体l、3の変形を伴なって水平方
向へ移動するほか、転倒モーメントによる回転運動の作
用を受けて負の軸力が発生(第9図B参照)した場合に
は、鎖員の軸力は建物2の上床板6に泡付けた伝達フレ
ーム7から転倒防止用の積層ゴム体3に対する圧縮力と
して伝達し、全部この積層ゴム体3に負担せしめて長期
荷重用の積層ゴム体lに負の軸力(引張力)が絶対に発
生しないように処理される。転倒防止用の積層ゴム体3
が受け止めた負の軸力は、反力フレーム9からアースア
ンカー4を通じて地盤5へと伝達して処理される。ちな
みに、アースアンカー4は、一般的に1本当り100ト
ン以上の引張り耐力を有するので、転倒防止用の積層ゴ
ム3が受け止める程度の負の軸力は十分な余裕をもって
負担し処理することができるのである。On the other hand, when the building 2 receives an earthquake input and has a large aspect ratio, it not only moves horizontally with the deformation of the two types of laminated rubber bodies 1 and 3, but also moves negatively due to the rotational movement caused by the overturning moment. When axial force is generated (see Figure 9B), the axial force of the chain member is transmitted from the transmission frame 7 foamed to the upper floor board 6 of the building 2 as a compressive force to the laminated rubber body 3 for fall prevention. , all of the load is placed on the laminated rubber body 3, so that negative axial force (tensile force) is never generated in the laminated rubber body l for long-term loads. Laminated rubber body 3 for fall prevention
The negative axial force received is transmitted from the reaction frame 9 to the ground 5 through the earth anchor 4 and processed. By the way, each earth anchor 4 generally has a tensile strength of 100 tons or more, so the negative axial force that can be received by the laminated rubber 3 for fall prevention can be borne and handled with sufficient margin. It is.
従って、地震入力を受けた際に負の軸力を発生するおそ
れがあるアスペクト比が大きい建物2についても、安心
して免震建物とすることができるのである。Therefore, even a building 2 with a large aspect ratio that is likely to generate negative axial force when receiving an earthquake input can be safely constructed as a seismically isolated building.
転倒防止用の積層ゴム体3は、建物2の重量を一切負担
しないので、水平方向の変形能力が長期荷重用の積層ゴ
ム体lに追従できるかぎり、小容量のものを使用してコ
ンパクト構造で実施することができるのである。The laminated rubber body 3 for fall prevention does not bear any weight of the building 2, so as long as its horizontal deformation ability can follow the laminated rubber body 1 for long-term loads, a compact structure can be achieved by using a small capacity one. It can be implemented.
第2の実施例
次に、第5図〜第7図に示した免震支持方法及び免震支
持装置も、地盤5上に構築した基礎版8の基礎梁12の
上に積層ゴム体l・・・を垂直上向きに設置し、その上
に7スペクト比が大きい建物2を構築し、その上床梁(
大梁)11の部位が前記長期鉛直荷重用の積層ゴム体1
により支持されている。Second Embodiment Next, the seismic isolation support method and the seismic isolation support device shown in FIGS. ... is installed vertically upward, building 2 with a large 7 aspect ratio is constructed on top of it, and the floor beam (
The part of girder) 11 is the laminated rubber body 1 for long-term vertical load.
Supported by
このアスペクト比が大きい建物2において、地震入力を
受けたとき負の軸力が発生しそうな部位(第9図B参照
)には、まず基礎版8上に鉄筋コンクリート造又は鉄骨
造で倒立U形状をなす反力フレーム9′が取付は固定さ
れている。一方、建物2の上床板6には、同建物2が地
震時に水平移動するのに支障ない大きさの開口部1O1
lOを設け、前記反力フレーム9′の両脚部9a、9a
はそれぞれ前記開口部1O110の略中央位置に通して
立ち上らせ、もって同圧カフレーム9′の上辺部9bが
上床板6の上床梁(大梁)11と交叉する形に設置され
ている。上床板6の特に上床梁11上の位置と前記反力
フレーム9′の上辺部9bとの間に転倒防止用の積層ゴ
ム体3が垂直下向きに設置され、建物2に発生した負の
軸力を圧縮力として受け止める構成とされている0反力
フレーム9′の両脚下端部は、基礎版8上においてアー
スアンカー4の頭部と緊結し固定されている。In the building 2, which has a large aspect ratio, in areas where negative axial force is likely to occur when receiving earthquake input (see Fig. 9B), an inverted U-shape is first constructed of reinforced concrete or steel structure on the foundation plate 8. The reaction force frame 9' is fixedly mounted. On the other hand, an opening 1O1 is provided in the upper floor plate 6 of the building 2, which is large enough to allow the building 2 to move horizontally during an earthquake.
lO is provided, and both legs 9a, 9a of the reaction force frame 9'
are raised up through substantially the center of the opening 1O110, respectively, so that the upper side 9b of the isostatic force frame 9' intersects with the upper floor beam (girder) 11 of the upper floor board 6. A laminated rubber body 3 for preventing falling is installed vertically downward between the upper floor beam 11 of the upper floor board 6 and the upper side 9b of the reaction frame 9', and prevents the negative axial force generated in the building 2 from falling. The lower ends of both legs of the zero reaction force frame 9', which is configured to receive the compressive force, are tightly connected and fixed to the head of the earth anchor 4 on the base plate 8.
なお、本実施例の場合にも図示することは省略したが、
建物2の上床板6と基礎版8との間には、地震力を受け
た際の建物2の水平移動の大きさを抑制する減衰装置(
ダンパー)が設置されている。Note that although illustration is omitted in the case of this embodiment as well,
Between the upper floor plate 6 and the foundation plate 8 of the building 2, there is a damping device (
damper) is installed.
したがって、本実施例の場合にも平常時の建物2の重量
は全て長期鉛直荷重用の積層ゴム体3により支持される
。Therefore, in the case of this embodiment as well, the entire weight of the building 2 during normal operation is supported by the laminated rubber body 3 for long-term vertical loads.
一方、地震入力を受けたアスペクト比が大きい建物2は
、前記2種の積層ゴム体l、3の変形を伴なって水平方
向へ移動するほか、転倒モーメントによる回転運動の作
用を受けて負の軸力が発生(第9図B参照)した場合に
は、鎖員の軸力は建物2の上床板6から転倒防止用の積
層ゴム体3に対する圧縮力として伝達し、全部この積層
ゴム体3に負担せしめて長期荷重用の積層ゴム体lに負
の軸力(引張力)が絶対に発生しないように処理される
。転倒防止用の積層ゴム体3が受け止めた負の軸力は1
反カフレーム9′からアースアンカー4を通じて地盤5
へと伝達して処理される。On the other hand, when the building 2 receives an earthquake input and has a large aspect ratio, it not only moves horizontally with the deformation of the two types of laminated rubber bodies 1 and 3, but also moves negatively due to the rotational movement caused by the overturning moment. When an axial force is generated (see Fig. 9B), the axial force of the chain member is transmitted as a compressive force from the upper floor plate 6 of the building 2 to the laminated rubber body 3 for fall prevention, and all of the force is transmitted to the laminated rubber body 3 for preventing falling. This process is carried out so that no negative axial force (tensile force) is generated in the laminated rubber body l for long-term loads. The negative axial force received by the laminated rubber body 3 for fall prevention is 1
From the opposite frame 9' to the ground 5 through the earth anchor 4
The information is transmitted to and processed.
本発明が奏する効果
以上に実施例と併せて詳述したとおりであって、この発
明に係る建物の免震支持方法及び免震支持装置によれば
、地震入力を受けた際に負の軸力を発生するおそれのあ
るアスペクト比が大きい建物2も積層ゴム体lを用いた
免震構造の対象となり、信頼性と安全性の高い免震建物
とすることができる。As described in detail in conjunction with the embodiments, the effects of the present invention are as follows.According to the seismic isolation support method and seismic isolation support device for a building according to the present invention, when receiving an earthquake input, negative axial force is The building 2, which has a large aspect ratio that is likely to cause damage, is also a target of a seismic isolation structure using the laminated rubber body 1, and can be made into a highly reliable and safe seismic isolation building.
しかも、転倒防止用の積層ゴム体3は、建物2の重量を
一切負担しないので、水平方向の変形能力が長期荷重用
の積層ゴム体1に追従できるかぎり、小容量のものを使
用してコンパクト構造で経済的に実施することができる
のである。Moreover, since the laminated rubber body 3 for fall prevention does not bear any weight of the building 2, it can be made compact by using a small capacity one as long as its horizontal deformation ability can follow the laminated rubber body 1 for long-term loads. It can be implemented economically due to its structure.
第1図はこの発明に係る建物の免震支持方法及び免震支
持装置の実施概念図、第2図〜第4図はこの発明の第1
実施例の主要部を示したもので第2図と第3図は第4図
の■−■、m−m矢視断面図、第4図は第2図のrV−
rV矢視平面図、第5図〜第7図はこの発明の第2実施
例の主要部を示したもので、第5図と第6図は第7図の
V−V。
Vl−VI矢視断面図、第7図は第6図の平面図、第8
図A、Bと第9図A、Bはそれぞれ従来の低層建物及び
アスペクト比が大きい建物の免震支持方法及び免震支持
装置における平常時と地震時の変動状態を示した概念図
である。
2・・・建物 l・・・長期荷重用の積層ゴム体3
・・・転倒防止用の積層ゴム体
4・・・アースアンカー 6・・・上床板7・・・
伝達フレーム・ 8・・・基礎版9.9′・・・反
力フレーム 10・・・開口部11・・・上床梁
第2図
第3図
第4図
、」
第5図
第6図Fig. 1 is an implementation conceptual diagram of the seismic isolation support method and seismic isolation support device for buildings according to the present invention, and Fig. 2 to 4 are the first embodiment of the present invention.
The main parts of the embodiment are shown, and FIGS. 2 and 3 are sectional views taken along the arrows ■-■ and mm in FIG. 4, and FIG.
The rV arrow-view plan view and FIGS. 5 to 7 show the main parts of the second embodiment of the present invention, and FIGS. 5 and 6 are taken along V-V in FIG. 7. Vl-VI arrow sectional view, Fig. 7 is a plan view of Fig. 6, Fig. 8
Figures A and B and Figures 9A and 9B are conceptual diagrams showing the fluctuation states of conventional seismic isolation support methods and seismic isolation support devices for low-rise buildings and buildings with large aspect ratios in normal times and during earthquakes, respectively. 2... Building l... Laminated rubber body 3 for long-term loads
... Laminated rubber body for fall prevention 4 ... Earth anchor 6 ... Upper floor board 7 ...
Transmission frame 8...Foundation plate 9.9'...Reaction frame 10...Opening 11...Upper floor beam Figure 2, Figure 3, Figure 4, Figure 5, Figure 6
Claims (1)
て成る積層ゴム体により建物を地盤上に支持せしめてい
る建物の免震支持方法において、地震入力を受けた建物
において負の軸力が発生しそうな部位に転倒防止用の積
層ゴム体を下向きに設置して前記負の軸力を負担せしめ
、長期荷重用の積層ゴム体に負の軸力が作用しないよう
にしたことを特徴とする建物の免震支持方法。 【2】転倒防止用の積層ゴム体が受け止めた負の軸力は
、アースアンカーに反力をとって処理することを特徴と
する特許請求の範囲第1項に記載した建物の免震支持方
法。 【3】薄い金属板とゴムシートとを交互に多数積み重ね
て成る積層ゴム体により建物を地盤上に支持せしめてい
る建物の免震支持装置において、地震入力を受けた建物
において負の軸力が発生しそうな部位には、建物の上床
板の下面に■形状の伝達フレームを固定し、基礎版には
前記伝達フレーム内に通して交叉せしめた倒立■形状の
反力フレームを固定し、両フレームの間に転倒防止用の
積層ゴム体を垂直下向きにに設置してあり、前記反力フ
レームはアースアンカーと緊結し固定されていることを
特徴とする建物の免震支持装置。 【4】薄い金属とゴムシートとを交互に多数積み重ねて
成る積層ゴム体により建物を地盤上に支持せしめている
建物の免震支持装置において、地震入力を受けた建物に
おいて負の軸力が発生しそうな部位には、基礎版に固定
した倒立■形状の反力フレームの両脚部を建物の上床板
に設けた開口部に通して同反力フレームを床上板と交叉
する形に設置してあり、同反力フレームの上辺部と上床
板との間に転倒防止用の積層ゴム体を垂直下向きに設置
してあり、前記反力フレームはアースアンカーと緊結し
固定されていることを特徴とする建物の免震支持装置。 【5】倒立■形状の反力フレームは上床板の上床梁の上
に跨る形に設置し、上床板の上床梁上の位置と反力フレ
ームとの間に積層ゴム体を垂直下向きに設置しているこ
とを特徴とする特許請求の範囲第4項に記載した建物の
免震支持装置。[Scope of Claims] [1] In a seismic isolation support method for a building in which the building is supported on the ground by a laminated rubber body made by stacking a large number of thin metal plates and rubber sheets alternately, the building is subject to earthquake input. In order to prevent negative axial force from acting on the laminated rubber body for long-term loads, a laminated rubber body for fall prevention is installed facing downward in the area where negative axial force is likely to be generated to bear the negative axial force. A seismic isolation support method for a building characterized by: [2] The seismic isolation support method for a building according to claim 1, characterized in that the negative axial force received by the laminated rubber body for fall prevention is dealt with by taking a reaction force to an earth anchor. . [3] In a seismic isolation support device for a building that supports a building on the ground using a laminated rubber body made by stacking a large number of thin metal plates and rubber sheets alternately, negative axial force is applied to the building when it receives earthquake input. In areas where this is likely to occur, a ■-shaped transmission frame is fixed to the underside of the upper floorboard of the building, and an inverted ■-shaped reaction frame that passes through the transmission frame and intersects is fixed to the foundation plate. 1. A seismic isolation support device for a building, characterized in that a laminated rubber body for fall prevention is installed vertically downward between them, and the reaction frame is tightly connected and fixed to an earth anchor. [4] Negative axial force is generated in buildings that receive earthquake input in seismic isolation support devices for buildings that support buildings on the ground using laminated rubber bodies made by stacking many thin metals and rubber sheets alternately. In areas that are likely to be damaged, both legs of an inverted-shaped reaction frame fixed to the foundation slab are passed through openings in the upper floor of the building, and the reaction frame is installed in a manner that intersects with the upper floor of the building. , a laminated rubber body for fall prevention is installed vertically downward between the upper side of the reaction frame and the upper floor board, and the reaction frame is tightly connected and fixed to an earth anchor. Seismic isolation support device for buildings. [5] The inverted ■-shaped reaction frame is installed to straddle the upper floor beam of the upper floor plate, and a laminated rubber body is installed vertically downward between the position above the upper floor beam of the upper floor plate and the reaction frame. A seismic isolation support device for a building as set forth in claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63024721A JP2631486B2 (en) | 1988-02-04 | 1988-02-04 | Seismic isolation support method and seismic isolation support device for building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63024721A JP2631486B2 (en) | 1988-02-04 | 1988-02-04 | Seismic isolation support method and seismic isolation support device for building |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01203541A true JPH01203541A (en) | 1989-08-16 |
JP2631486B2 JP2631486B2 (en) | 1997-07-16 |
Family
ID=12146023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63024721A Expired - Fee Related JP2631486B2 (en) | 1988-02-04 | 1988-02-04 | Seismic isolation support method and seismic isolation support device for building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2631486B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387476A (en) * | 1989-08-31 | 1991-04-12 | Taisei Corp | Vibration removing device of construction |
EP0641906A1 (en) * | 1993-09-03 | 1995-03-08 | Compagnie Generale De Batiment Et De Construction Cbc | Anti-seismic protection method and device for buildings |
JP2003090145A (en) * | 2001-09-17 | 2003-03-28 | Takenaka Komuten Co Ltd | Support method and support structure to cope with pull- out force in base isolation structure |
JP2012180699A (en) * | 2011-03-02 | 2012-09-20 | Shimizu Corp | Base-isolated structure |
JPWO2010147093A1 (en) * | 2009-06-16 | 2012-12-06 | 株式会社都市建築事務所 | Rotating seismic isolation device for buildings and rotating seismic isolation building structure |
JP2013040502A (en) * | 2011-08-17 | 2013-02-28 | Shimizu Corp | Fall-prevention structure for seismic-isolated building, and seismic-isolated building with the structure |
JP2013040501A (en) * | 2011-08-17 | 2013-02-28 | Shimizu Corp | Fall-prevention structure for seismic-isolated building, and seismic-isolated building with the structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60261870A (en) * | 1984-06-07 | 1985-12-25 | ブダペステイ ミユスザキ エギエテム | Apparatus for reducing earthquake load of high gravity high building and preventing falling of building equipped with elastic element between foundation and upper structure |
-
1988
- 1988-02-04 JP JP63024721A patent/JP2631486B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60261870A (en) * | 1984-06-07 | 1985-12-25 | ブダペステイ ミユスザキ エギエテム | Apparatus for reducing earthquake load of high gravity high building and preventing falling of building equipped with elastic element between foundation and upper structure |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0387476A (en) * | 1989-08-31 | 1991-04-12 | Taisei Corp | Vibration removing device of construction |
EP0641906A1 (en) * | 1993-09-03 | 1995-03-08 | Compagnie Generale De Batiment Et De Construction Cbc | Anti-seismic protection method and device for buildings |
FR2709503A1 (en) * | 1993-09-03 | 1995-03-10 | Cbc | Method and device for earthquake protection of a building |
TR28048A (en) * | 1993-09-03 | 1995-12-11 | Batiment Et De Construction Cb | Methods and equipment for the protection of a building against earthquakes. |
JP2003090145A (en) * | 2001-09-17 | 2003-03-28 | Takenaka Komuten Co Ltd | Support method and support structure to cope with pull- out force in base isolation structure |
JPWO2010147093A1 (en) * | 2009-06-16 | 2012-12-06 | 株式会社都市建築事務所 | Rotating seismic isolation device for buildings and rotating seismic isolation building structure |
JP2012180699A (en) * | 2011-03-02 | 2012-09-20 | Shimizu Corp | Base-isolated structure |
JP2013040502A (en) * | 2011-08-17 | 2013-02-28 | Shimizu Corp | Fall-prevention structure for seismic-isolated building, and seismic-isolated building with the structure |
JP2013040501A (en) * | 2011-08-17 | 2013-02-28 | Shimizu Corp | Fall-prevention structure for seismic-isolated building, and seismic-isolated building with the structure |
Also Published As
Publication number | Publication date |
---|---|
JP2631486B2 (en) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR980010092A (en) | Integral horizontal and vertical plain bearings | |
US4574540A (en) | Structural support system for minimizing the effects of earthquakes on buildings and the like | |
JPH01203541A (en) | Earthquake proof structure supporting method of building and its supporting device | |
JPH09256667A (en) | Foundation structure of middle and low storied steel ridge-frame building | |
JP3803949B2 (en) | Seismic isolation method and seismic isolation structure for buildings with large aspect ratio | |
JP3854321B2 (en) | Base isolation | |
JP2019082031A (en) | Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building | |
JPH033723Y2 (en) | ||
JP3425609B2 (en) | Seismic isolation method for structures and seismic isolation structures | |
JPH04111810A (en) | Underwater earthquake-isolating method and structure | |
JP3367894B2 (en) | Pier | |
JP2001295494A (en) | Terraced building | |
JP2824492B2 (en) | Vibration control method for buildings | |
JPH02104834A (en) | Response control device | |
JP3028081B2 (en) | Dynamic rigid structure | |
JP2868128B2 (en) | Artificial ground for seismic isolation of low load structures | |
JP2004278002A (en) | Unit building with base-isolating device | |
JPH11269847A (en) | Pier | |
Kawamata et al. | Base isolation system suitable for masonry houses | |
JPH04327663A (en) | Earthquake-proof support structure of low load structure | |
JPH05239955A (en) | Building provided with vibration control device | |
JPH0346124Y2 (en) | ||
JPH08260755A (en) | Base isolation foundation for building | |
JP3367893B2 (en) | Pier | |
JP3616292B2 (en) | Multistory building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |