JP2631486B2 - Seismic isolation support method and seismic isolation support device for building - Google Patents

Seismic isolation support method and seismic isolation support device for building

Info

Publication number
JP2631486B2
JP2631486B2 JP63024721A JP2472188A JP2631486B2 JP 2631486 B2 JP2631486 B2 JP 2631486B2 JP 63024721 A JP63024721 A JP 63024721A JP 2472188 A JP2472188 A JP 2472188A JP 2631486 B2 JP2631486 B2 JP 2631486B2
Authority
JP
Japan
Prior art keywords
building
frame
laminated rubber
rubber body
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63024721A
Other languages
Japanese (ja)
Other versions
JPH01203541A (en
Inventor
浩 速水
相沢  覚
雅彦 東野
重雄 嶺脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP63024721A priority Critical patent/JP2631486B2/en
Publication of JPH01203541A publication Critical patent/JPH01203541A/en
Application granted granted Critical
Publication of JP2631486B2 publication Critical patent/JP2631486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、中層建物、それも建物の幅寸に対する高
さの比(アスペクト比)が大きい扁平形状又は塔状の建
物に実施される免震支持方法及び免震支持装置に関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation support for a middle-rise building and a flat or tower-like building having a large height-to-width ratio (aspect ratio). The present invention relates to a method and a seismic isolation support device.

従来の技術 最近の建物の免震支持方法及び免震装置の原理は、薄
い金属板とゴムシートとを交互に多数積み重ね接着して
成る積層ゴム体により建物を地盤上に支持せしめ、積層
ゴム体の水平方向に柔らかい変形性能により地震力が建
物に伝達するのを可及的に防止し振動周期を長周期化し
免震効果を得ているのが一般的である。勿論、減衰装置
(ダンパー)を組入れて建物の水平移動量を可及的に抑
制することも当然行なわれる(例えば特開昭60−168875
号公報に記載された建物の免震支持方法及び免震支持装
置を参照)。
2. Description of the Related Art A recent seismic isolation support method for a building and the principle of a seismic isolation device are based on a principle that a building is supported on the ground by a laminated rubber body formed by alternately stacking and bonding a large number of thin metal plates and rubber sheets. In general, seismic force is prevented from being transmitted to the building as much as possible by the soft deformation performance in the horizontal direction, and the vibration period is lengthened to obtain a seismic isolation effect. Of course, a damping device (damper) is incorporated to suppress the horizontal movement of the building as much as possible (for example, see Japanese Patent Application Laid-Open No. 60-168875).
(See Seismic Isolation Support Method and Seismic Isolation Support Device for Buildings)

積層ゴム体は、軸圧縮力に対してはほとんど変形しな
いという特長を有し、建物の大きな長期鉛直荷重を支持
することができ、しかも水平方向には柔らかく変形でき
ることが最大の特長となっている。
The laminated rubber body has the feature that it hardly deforms due to axial compressive force, and it can support large long-term vertical loads of buildings, and it is the biggest feature that it can be softly deformed in the horizontal direction .

したがって、第8図Aに例示したように基礎版aの上
に積層ゴム体b…を介して支持された一般の低層建物c
の如く、地震力を受けると第8図Bに示したように単に
剛体的に水平移動するだけで転倒モーメントによる影響
をほとんど受けない建物の免震支持方法及び免震支持装
置としては極めて優れたものとなっている。
Therefore, as illustrated in FIG. 8A, a general low-rise building c supported on a base plate a via a laminated rubber body b.
As shown in Fig. 8B, when a seismic force is applied to the building, it is extremely excellent as a seismic isolation support method and a seismic isolation support device for a building which is merely rigidly moved horizontally and is hardly affected by a falling moment. It has become something.

本発明が解決しようとする課題 ところで、積層ゴム体は、引張力に対してはゴム材固
有の伸びが現われ、圧縮力と同じ大きさの引張力に対し
ては数10倍の変形が簡単に発生する欠点がある。
Problems to be Solved by the Invention By the way, the laminated rubber body shows a unique elongation to the tensile force with respect to the tensile force, and easily deforms several tens times with respect to the tensile force having the same magnitude as the compressive force. There are drawbacks that occur.

一方、最近は敷地の制限のために細長く背が高い塔状
建物、あるいは集合住宅のように短辺方向の幅寸が一定
限度に押えられた扁平形状の建物が多く出現している。
このような塔状又は扁平形状の建物の如く建物の幅寸に
対して高さの比(アスペクト比)が大きい建物c′を第
9図Aのように基礎版aの上に積層ゴム体b…で支持せ
しめた場合には、地震力を受けると建物c′は第9図B
のように水平移動すると同時に大きな転倒モーメントに
よる回転運動が作用し、場合によっては負の軸力が発生
し、積層ゴム体bに引張力が作用するおそれがある。こ
のため、これまでは積層ゴム体bを使用する建物の免震
支持方法及び免震支持装置の対象から塔状又は扁平形状
建物が外されているので、この点が解決すべき課題とな
っている。
On the other hand, recently, many tower-shaped buildings that are slender and tall due to site restrictions, or flat-shaped buildings such as condominiums, in which the width in the short side direction is kept to a certain limit, have appeared.
A building c 'having a large height ratio (aspect ratio) to the width of the building, such as a tower-like or flat-shaped building, is laminated on a base plate a as shown in FIG. When supported by ..., the building c 'is subjected to seismic force and the building c'
As described above, at the same time as the horizontal movement, a rotational motion due to a large overturning moment acts, and in some cases, a negative axial force is generated, and a tensile force may act on the laminated rubber body b. For this reason, the tower-shaped or flat-shaped building has been excluded from the objects of the seismic isolation support method and the seismic isolation support device for the building using the laminated rubber body b, and this point is an issue to be solved. I have.

よって、本発明の目的は、積層ゴム体を使用して塔状
又は扁平形状の建物に有効的な免震支持方法及び免震支
持装置を提供することにある。
Therefore, an object of the present invention is to provide a seismic isolation support method and a seismic isolation support device that are effective for a tower or flat building using a laminated rubber body.

課題を解決するための手段 (第1、第2の発明) 上記従来技術の課題を解決するための手段として、こ
の発明に係る建物の免震支持方法は、第1図に基本概念
図を示し、第2図〜第7図に好適な実施例を示したとお
り、 薄い金属板とゴムシートとを交互に多数積み重ね接着
して成る積層ゴム体1を基礎8上に垂直上向きに設置し
て建物2を地盤5上に支持させると共に建物2の上床板
6と基礎8との間に建物の水平移動を抑制する減衰装置
を設置している建物の免震支持方法において、 地震入力を受けた建物2において負の軸力が発生する
部位に転倒防止用の積層ゴム体3を反力フレーム9又は
9′から垂直下向きに設置して前記建物2の負の軸力を
負担する構成とし、当該転倒防止用の積層ゴム体3が負
担した軸力は反力フレーム9又は9′を介して地盤5側
へ伝達して処理し、長期荷重用の積層ゴム体1に負の軸
力を作用させないことを特徴とする。
Means for Solving the Problems (First and Second Inventions) As means for solving the above-mentioned problems of the prior art, a seismic isolation support method for a building according to the present invention is shown in FIG. As shown in the preferred embodiment in FIGS. 2 to 7, a laminated rubber body 1 formed by alternately stacking and bonding a large number of thin metal plates and rubber sheets on a foundation 8 is installed vertically upward. In a seismic isolation support method for a building in which a damping device is installed between the upper floor plate 6 and the foundation 8 of the building 2 to support the building 2 on the ground 5 and suppress the horizontal movement of the building, 2, a laminated rubber body 3 for preventing falling is installed vertically downward from the reaction frame 9 or 9 ′ at a position where a negative axial force is generated to bear the negative axial force of the building 2. The axial force which the laminated rubber body 3 for prevention bears is the reaction force frame 9 or The processing is performed by transmitting to the ground 5 side via 9 'to prevent a negative axial force from acting on the laminated rubber body 1 for long-term load.

また、転倒防止用の積層ゴム体3が受け止めた負の軸
力は、反力フレーム9又は9′を固定するアースアンカ
ー4に反力をとって地盤5へ伝達し処理することを特徴
とする。
Further, the negative axial force received by the laminated rubber body 3 for preventing overturning is transmitted to the ground 5 by applying a reaction force to the earth anchor 4 for fixing the reaction force frame 9 or 9 ′ to the ground 5. .

作用 アスペクト比が大きい建物2が地震入力を受け、転倒
モーメントによる回転運動(第9図B参照)が作用して
負の軸力が発生したときは、その全部を転倒防止用の積
層ゴム体3で受け止めて負担し、アースアンカー4を通
じて地盤5に反力をとり処理される。
When a building 2 having a large aspect ratio receives an earthquake input and a rotational motion (see FIG. 9B) caused by a falling moment acts to generate a negative axial force, the entire building 2 is a laminated rubber body 3 for preventing falling. The ground 5 receives a reaction force through the earth anchor 4 and is treated.

転倒防止用の積層ゴム体3も圧縮力に対してほとんど
変形しないという特長を有するので、前記負の軸力は圧
縮力として確実に受け止め、長期鉛直荷重用の積層ゴム
体1には引張力を一切作用させない。
Since the laminated rubber body 3 for preventing falling also has a feature that it hardly deforms due to the compressive force, the negative axial force is reliably received as a compressive force, and the laminated rubber body 1 for a long-term vertical load has a tensile force. Do not act at all.

一方、建物2の水平移動は、各積層ゴム体1,3の柔軟
な変形により可能ならしめるのである。
On the other hand, the horizontal movement of the building 2 is made possible by the flexible deformation of the laminated rubber bodies 1 and 3.

(第3〜第5の発明) 同上の課題を解決するための手段として、この発明に
係る建物の免震支持装置は、やはり第1図に概念図を示
し、第2図〜第7図に好適な実施例を示したとおり、 薄い金属板とゴムシートとを交互に多数積み重ね接着
して成る積層ゴム体1を基礎8上に垂直上向きに設置し
て建物2を地盤5上に支持させると共に建物2の上床板
6と基礎8との間に建物2の水平移動を抑制する減衰装
置を設置している建物の免震支持装置において、 地震入力を受けた建物2において負の軸力が発生する
部位に、同建物2の上床板6の下面にU形状の伝達フレ
ーム7を固定して設け、基礎板8には前記伝達フレーム
7内に通して交叉させた倒立U形状の反力フレーム9を
固定して設け、両フレーム7、9の間に転倒防止用の積
層ゴム体3を反力フレーム9から垂直下向きに設置して
あり、前記反力フレーム9はアースアンカー4と緊結し
て固定されていることを特徴とする。
(Third to Fifth Inventions) As means for solving the above-mentioned problems, a seismic isolation support device for a building according to the present invention is also shown in a conceptual view in FIG. 1 and in FIG. 2 to FIG. As shown in the preferred embodiment, a laminated rubber body 1 formed by alternately stacking and bonding a large number of thin metal plates and rubber sheets is placed vertically upward on a foundation 8 to support the building 2 on the ground 5 and Negative axial force is generated in the building 2 that receives the earthquake input in the seismic isolation support device of the building that has installed the damping device that suppresses the horizontal movement of the building 2 between the upper floor plate 6 and the foundation 8 of the building 2 A U-shaped transmission frame 7 is fixedly provided on the lower surface of the upper floor plate 6 of the same building 2 at the part where the building 2 is to be mounted, and an inverted U-shaped reaction force frame 9 is provided on the base plate 8 through the transmission frame 7 and crossed. Is fixed, and a laminated rubber body is provided between the two frames 7 and 9 to prevent falling. The Yes installed from the reaction force frame 9 vertically downward, the reaction force frame 9, characterized in that it is fixed by Tightened and ground anchor 4.

薄い金属とゴムシートとを交互に多数積み重ね接着し
て成る積層ゴム体1を基礎8上に垂直上向きに設置して
建物2を地盤5上に支持させると共に建物2の上床板6
と基礎8との間に建物2の水平移動を抑制する減衰装置
を設置している建物の免震支持装置において、 地震入力を受けた建物2において負の軸力が発生する
部位に、基礎版8に固定した倒立U形状の反力フレーム
9′を建物2の上床板6に設けた開口部10に通して同上
床板と交叉する形に設置してあり、同反力フレーム9′
の上辺部9bと上床板6との間に転倒防止用の積層ゴム体
3を反力フレーム9′から垂直下向きに設置してあり、
前記反力フレーム9′はアースアンカー4と緊結して固
定されていることを特徴とする。
A laminated rubber body 1 formed by alternately stacking and bonding a large number of thin metal sheets and rubber sheets is installed vertically upward on a foundation 8 to support the building 2 on the ground 5 and at the same time the upper floor plate 6 of the building 2
In a base-isolation support device for a building in which a damping device that suppresses horizontal movement of the building 2 is installed between the building and the foundation 8, the base plate is installed at a site where a negative axial force is generated in the building 2 that has received the earthquake input. An inverted U-shaped reaction frame 9 'fixed to 8 is installed so as to pass through an opening 10 provided in the upper floor plate 6 of the building 2 and intersect with the same floor plate.
Between the upper side 9b and the upper floor plate 6 is provided a laminated rubber body 3 for preventing falling down from the reaction force frame 9 'vertically downward,
The reaction force frame 9 'is characterized in that it is tightly fixed to the earth anchor 4.

作用 地震入力を受けた建物2に転倒モーメントによる負の
軸力が発生した場合、この負の軸力は伝達フレーム7又
は上床板6を通じて転倒防止用の積層ゴム体3に圧縮力
として伝えられ受け止められる。そして、積層ゴム体3
で受け止めた負の軸力は反力フレーム9又は9′からア
ースアンカー4を通じて地盤5に伝達して処理され、長
期鉛直荷重を支持する積層ゴム体1には一切引張力を作
用させない。
When a negative axial force due to the overturning moment is generated in the building 2 which has received the earthquake input, the negative axial force is transmitted as a compressive force to the laminated rubber body 3 for preventing the overturn through the transmission frame 7 or the upper floor plate 6 and received. Can be And the laminated rubber body 3
The negative axial force received at step (1) is transmitted from the reaction force frame 9 or 9 'to the ground 5 through the earth anchor 4 and processed, so that no tensile force acts on the laminated rubber body 1 supporting a long-term vertical load.

一方、地震入力を受けた建物2の水平移動は、各積層
ゴム体1、3の柔軟な水平方向の変形性能により可能な
らしめる。また、U形状の伝達フレーム7とこれに通し
てチエン状に交叉させた反力フレーム9とのルーズな自
在性、又は反力フレーム9′とその両脚部9a,9aを通す
べく上床板6に設けた開口部10による遊びの範囲で建物
2の水平移動を可動ならしめる。
On the other hand, the horizontal movement of the building 2 receiving the earthquake input is made possible by the flexible horizontal deformation performance of the laminated rubber bodies 1 and 3. In addition, the loose flexibility of the U-shaped transmission frame 7 and the reaction force frame 9 crossed in a chain shape through the U-shaped transmission frame 7 or the upper floor plate 6 for passing the reaction force frame 9 'and its two legs 9a, 9a The horizontal movement of the building 2 is movable within the range of the play by the opening 10 provided.

なお、建物2に発生する負の軸力は、上床板6の上床
梁(大梁)11の位置において転倒防止用の積層ゴム体3
に伝達する構成にすると力学的に明解なものとなる。
It should be noted that the negative axial force generated in the building 2 is applied to the laminated rubber member 3 for preventing falling at the position of the upper floor beam (large beam) 11 of the upper floor plate 6.
When it is configured to transmit to, it becomes dynamically clear.

実施例 次に、図面に示した実施例を説明する。Next, an embodiment shown in the drawings will be described.

まず、第2図〜第4図に示した建物の免震支持方法及
び免震支持装置は、地盤5上に構築した基礎版8の基礎
梁12の上に薄い鉄板とゴムシートとを交互に多数積み重
ね接着して成る積層ゴム体1を垂直上向きに設置し、そ
の上にアスペクト比が大きい建物2を構築し、その上床
梁(大梁)11の部位が前記長期鉛直荷重用の積層ゴム体
1により支持されている。
First, the seismic isolation support method and the seismic isolation support device for a building shown in FIGS. 2 to 4 alternately place a thin iron plate and a rubber sheet on a foundation beam 12 of a foundation slab 8 constructed on the ground 5. A laminated rubber body 1 formed by stacking and bonding a large number of pieces is installed vertically upward, and a building 2 having a large aspect ratio is constructed thereon, and a portion of an upper floor beam (large beam) 11 has a laminated rubber body 1 for long-term vertical load. Supported by

このアスペクト比が大きい建物2において、地震入力
を受けたとき負の軸力が発生しそうな部位(第9図B参
照)に、まず建物2の上床板6の下面に鉄筋コンクリー
ト造又は鉄骨造でU形状をなす伝達フレーム7を取付け
固定し、基礎版8上には前記伝達フレーム7と略同形の
倒立U形状をなし前記伝達フレーム7とは直交する配置
に通してチエン状に交叉、連結せしめた反力フレーム9
が取付け固定されている。そして、両フレーム7と9と
の交叉点の部位に、やはり薄い鉄板とゴムシートとを交
互に多数積み重ねて成る転倒防止用の積層ゴム体3が垂
直下向きに設置されている。反力フレーム9の両脚の下
端部は、それぞれ基礎版8の上においてアースアンカー
4、4の頭部と緊結し固定されている。
In the building 2 having a large aspect ratio, a portion where a negative axial force is likely to be generated upon receiving an earthquake input (refer to FIG. 9B) is provided on the lower surface of the upper floor plate 6 of the building 2 by reinforced concrete or steel frame. A transmission frame 7 having a shape is attached and fixed, and an inverted U shape having substantially the same shape as the transmission frame 7 is formed on the base plate 8 so that the transmission frame 7 is crossed and connected in a chain shape through an orthogonal arrangement to the transmission frame 7. Reaction frame 9
Is attached and fixed. At the intersection of the two frames 7 and 9, a laminated rubber body 3 for preventing falling over, which is also formed by alternately stacking a large number of thin iron plates and rubber sheets, is installed vertically downward. The lower ends of both legs of the reaction force frame 9 are fixed to the heads of the ground anchors 4, 4 on the base plate 8, respectively.

なお、図示することは省略したが、建物2の上床板6
と基礎版8との間には、地震力を受けた際の建物2の水
平移動の大きさを抑制する減衰装置(ダンパー)が必須
不可欠の要素として設置される。
Although not shown, the upper floor plate 6 of the building 2 is not shown.
A damping device (damper) for suppressing the magnitude of horizontal movement of the building 2 when subjected to seismic force is installed as an indispensable element between the base plate 8 and the base plate 8.

したがって、平常時の建物2の重量は全て長期鉛直荷
重用の積層ゴム体1により支持される。
Therefore, the weight of the building 2 in normal times is all supported by the laminated rubber body 1 for long-term vertical load.

一方、地震入力を受けたアスペクト比が大きい建物2
は、前記2種の積層ゴム体1、3の変形を伴なって水平
方向へ移動するほか、転倒モーメントによる回転運動の
作用を受けて負の軸力が発生(第9図B参照)した場合
には、該負の軸力は建物2の上床板6に取付けた伝達フ
レーム7から転倒防止用の積層ゴム体3に対する圧縮力
として伝達し、全部この積層ゴム体3に負担せしめて長
期荷重用の積層ゴム体1に負の軸力(引張力)が絶対に
発生しないように処理される。転倒防止用の積層ゴム体
3が受け止めた負の軸力は、反力フレーム9からアース
アンカー4を通じて地盤5へと伝達して処理される。ち
なみに、アースアンカー4は、一般的に1本当り100ト
ン以上の引張り耐力を有するので、転倒防止用の積層ゴ
ム3が受け止める程度の負の軸力は十分な余裕をもって
負担し処理することができるのである。
On the other hand, building 2 with a large aspect ratio received earthquake input
Moves in the horizontal direction with the deformation of the two types of laminated rubber bodies 1 and 3, and when a negative axial force is generated by the action of the rotational motion due to the overturning moment (see FIG. 9B). The negative axial force is transmitted from the transmission frame 7 attached to the upper floor plate 6 of the building 2 as a compressive force to the laminated rubber body 3 for preventing overturning, and all of the negative axial force is applied to the laminated rubber body 3 for long-term load. Is processed so that a negative axial force (tensile force) is never generated in the laminated rubber body 1. The negative axial force received by the laminated rubber body 3 for preventing overturning is transmitted from the reaction force frame 9 to the ground 5 through the earth anchor 4 and processed. Incidentally, since the ground anchor 4 generally has a tensile strength of 100 tons or more per one, a negative axial force enough to be received by the laminated rubber 3 for preventing falling can be handled with sufficient margin. It is.

従って、地震入力を受けた際に負の軸力を発生するお
それがあるアスペクト比が大きい建物2についても、安
心して免震建物とすることができるのである。
Therefore, even a building 2 having a large aspect ratio, which may generate a negative axial force when receiving an earthquake input, can be a seismically isolated building with ease.

転倒防止用の積層ゴム体3は、建物2の重量を一切負
担しないので、水平方向の変形能力が長期荷重用の積層
ゴム体1に追従できるかぎり、小容量のものを使用して
コンパクト構造で実施することができるのである。
Since the laminated rubber body 3 for preventing falling does not bear the weight of the building 2 at all, as long as the deformation capability in the horizontal direction can follow the laminated rubber body 1 for long-term load, a small-capacity rubber body 3 is used and has a compact structure. It can be implemented.

第2の実施例 次に、第5図〜第7図に示した免震支持方法及び免震
支持装置も、地盤5上に構築した基礎版8の基礎梁12の
上に積層ゴム体1…を垂直上向きに設置し、その上にア
スペクト比が大きい建物2を構築し、その上床梁(大
梁)11の部位が前記長期鉛直荷重用の積層ゴム体1によ
り支持されている。
Second Embodiment Next, the seismic isolation support method and the seismic isolation support device shown in FIGS. 5 to 7 are also applied to the laminated rubber body 1 on the foundation beam 12 of the foundation plate 8 constructed on the ground 5. Is installed vertically upward, and a building 2 having a large aspect ratio is constructed thereon, and a portion of an upper floor beam (large beam) 11 is supported by the laminated rubber body 1 for long-term vertical load.

このアスペクト比が大きい建物2において、地震入力
を受けたとき負の軸力が発生しそうな部位(第9図B参
照)には、まず基礎版8上に鉄筋コンクリート造又は鉄
骨造で倒立U形状をなす反力フレーム9′が取付け固定
されている。一方、建物2の上床板6には、同建物2が
地震時に水平移動するのに支障ない大きさの開口部10、
10を設け、前記反力フレーム9′の両脚部9a,9aはそれ
ぞれ前記開口部10、10の略中央位置に通して立ち上ら
せ、もって同反力フレーム9′の上辺部9bが上床板6の
上床梁(大梁)11と交叉する形に設置されている。上床
板6の特に上床梁11上の位置と前記反力フレーム9′の
上辺部9bとの間に転倒防止用の積層ゴム体3が垂直下向
きに設置され、建物2に発生した負の軸力を圧縮力とし
て受け止める構成とされている。反力フレーム9′の両
脚下端部は、基礎版8上においてアースアンカー4の頭
部と緊結し固定されている。
In the building 2 having a large aspect ratio, a portion where a negative axial force is likely to be generated upon receiving an earthquake input (refer to FIG. 9B), first, an inverted U shape is formed on the base plate 8 by using a reinforced concrete structure or a steel frame structure. A reaction force frame 9 'is formed and fixed. On the other hand, the upper floor plate 6 of the building 2 has an opening 10 having a size that does not hinder the horizontal movement of the building 2 during an earthquake.
10 are provided, and both legs 9a, 9a of the reaction force frame 9 'are respectively raised through substantially the center positions of the openings 10, 10, so that the upper side 9b of the reaction force frame 9' is located on the upper floor plate. It is installed so as to intersect with the upper beam (large beam) 11 of 6. A laminated rubber body 3 for preventing falling is installed vertically downward between the position of the upper floor plate 6, particularly on the upper floor beam 11, and the upper side 9 b of the reaction frame 9 ′, and the negative axial force generated in the building 2 As a compressive force. The lower ends of both legs of the reaction force frame 9 ′ are tightly fixed to the head of the ground anchor 4 on the base plate 8.

なお、本実施例の場合にも図示することは省略した
が、建物2の上床板6と基礎版8との間には、地震力を
受けた際の建物2の水平移動の大きさを抑制する減衰装
置(ダンパー)が設置されている。
Although not shown in the present embodiment, the level of horizontal movement of the building 2 when subjected to seismic force is suppressed between the upper slab 6 of the building 2 and the base plate 8. Damping device is installed.

したがって、本実施例の場合にも平常時の建物2の重
量は全て長期鉛直荷重用の積層ゴム体3により支持され
る。
Therefore, also in the case of this embodiment, the weight of the building 2 under normal conditions is all supported by the laminated rubber body 3 for long-term vertical load.

一方、地震入力を受けたアスペクト比が大きい建物2
は、前記2種の積層ゴム1、3の変形を伴なって水平方
向へ移動するほか、転倒モーメントによる回転運動の作
用を受けて負の軸力が発生(第9図B参照)した場合に
は、該負の軸力は建物2の上床板6から転倒防止用の積
層ゴム体3に対する圧縮力として伝達し、全部この積層
ゴム体3に負担せしめて長期荷重用の積層ゴム体1に負
の軸力(引張力)が絶対に発生しないように処理され
る。転倒防止用の積層ゴム体3が受け止めた負の軸力
は、反力フレーム9′からアースアンカー4を通じて地
盤5へと伝達して処理される。
On the other hand, building 2 with a large aspect ratio received earthquake input
Is caused when the two types of laminated rubbers 1 and 3 move in the horizontal direction with deformation, and when a negative axial force is generated by the action of the rotational motion due to the overturning moment (see FIG. 9B). The negative axial force is transmitted from the upper floor plate 6 of the building 2 as a compressive force to the laminated rubber body 3 for preventing the falling, and all of the negative axial force is applied to the laminated rubber body 3 to be applied to the laminated rubber body 1 for long-term load. The axial force (tensile force) is never generated. The negative axial force received by the laminated rubber body 3 for preventing falling is transmitted from the reaction force frame 9 'to the ground 5 through the earth anchor 4 and processed.

本発明が奏する効果 以上に実施例と併せて詳述したとおりであって、この
発明に係る建物の免震支持方法及び免震支持装置によれ
ば、地震入力を受けた際に負の軸力を発生するおそれの
あるアスペクト比が大きい建物2も積層ゴム体1を用い
た免震構造の対象となり、信頼性と安全性の高い免震建
物とすることができる。
Advantageous Effects of the Present Invention As described in detail in connection with the embodiments above, according to the seismic isolation support method and the seismic isolation support device for a building according to the present invention, a negative axial force is applied when an earthquake input is received. The building 2 having a large aspect ratio that may cause the vibration is also a target of the seismic isolation structure using the laminated rubber body 1, and can be a highly reliable and safe seismic isolation building.

しかも、転倒防止用の積層ゴム体3は、建物2の重量
を一切負担しないので、水平方向の変形能力が長期荷重
用の積層ゴム体1に追従できるかぎり、小容量のものを
使用してコンパクト構造で経済的に実施することができ
るのである。
In addition, since the laminated rubber body 3 for preventing falling does not bear the weight of the building 2 at all, as long as its horizontal deformation ability can follow the laminated rubber body 1 for long-term load, use a small-capacity rubber body. It can be implemented economically with a structure.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明に係る建物の免震支持方法及び免震支
持装置の実施概念図、第2図〜第4図はこの発明の第1
実施例の主要部を示したもので第2図と第3図は第4図
のII−II、III−III矢視断面図、第4図は第2図のIV−
IV矢視平面図、第5図〜第7図はこの発明の第2実施例
の主要部を示したもので、第5図と第6図は第7図のV
−V、VI−VI矢視断面図、第7図は第6図の平面図、第
8図A、Bと第9図A、Bはそれぞれ従来の低層建物及
びアスペクト比が大きい建物の免震支持方法及び免震支
持装置における平常時と地震時の変動状態を示した概念
図である。 2……建物、1……長期荷重用の積層ゴム体 3……転倒防止用の積層ゴム体 4……アースアンカー、6……上床板 7……伝達フレーム、8……基礎版 9、9′……反力フレーム、10……開口部 11……上床梁
FIG. 1 is a conceptual diagram of an embodiment of a method and an apparatus for seismic isolation of a building according to the present invention, and FIG. 2 to FIG.
2 and 3 are sectional views taken along lines II-II and III-III in FIG. 4, and FIG. 4 is a sectional view taken along line IV-III in FIG.
FIGS. 5 to 7 are plan views as seen from the direction of arrows IV, and FIGS. 5 to 7 show the main parts of the second embodiment of the present invention. FIGS. 5 and 6 show V in FIG.
7 is a plan view of FIG. 6, and FIGS. 8A and 8B and FIGS. 9A and 9B are seismic isolation of a conventional low-rise building and a building having a large aspect ratio. It is the conceptual diagram which showed the fluctuation | variation state between the normal time and the time of an earthquake in the support method and the seismic isolation support apparatus. 2 ... building, 1 ... laminated rubber body for long-term load 3 ... laminated rubber body for fall prevention 4 ... earth anchor, 6 ... upper floor plate 7 ... transmission frame, 8 ... basic version 9, 9 ′… Reaction frame, 10… Opening 11… Top floor beam

フロントページの続き (72)発明者 嶺脇 重雄 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内 (56)参考文献 特開 昭60−261870(JP,A)Continued on the front page (72) Inventor Shigeo Minewaki 2-5-1-14 Minamisuna, Koto-ku, Tokyo Inside Takenaka Corporation Technical Research Institute (56) References JP-A-60-261870 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】薄い金属板とゴムシートとを交互に多数積
み重ね接着して成る積層ゴム体を基礎上に垂直上向きに
設置して建物を地盤上に支持させると共に建物の上床板
と基礎との間に建物の水平移動を抑制する減衰装置を設
置している建物の免震支持方法において、 地震入力を受けた建物において負の軸力が発生する部位
に転倒防止用の積層ゴム体を反力フレームから垂直下向
きに設置して前記建物の負の軸力を負担する構成とし、
転倒防止用の当該積層ゴム体が負担した軸力は前記反力
フレームを介して地盤側へ伝達して処理し長期荷重用の
積層ゴム体に負の軸力を作用させないことを特徴とする
建物の免震支持方法。
1. A laminated rubber body formed by alternately stacking and bonding a large number of thin metal plates and rubber sheets on a foundation so as to be vertically upwardly installed to support the building on the ground, and to connect the upper floor plate of the building to the foundation. In a seismic isolation support method for a building in which a damping device that suppresses horizontal movement of the building is installed, a laminated rubber body for preventing falls is applied to a site where a negative axial force is generated in a building that has received an earthquake input. Installed vertically downward from the frame to bear the negative axial force of the building,
A building characterized in that the axial force borne by the laminated rubber body for preventing falling is transmitted to the ground side through the reaction frame and processed to prevent a negative axial force from acting on the laminated rubber body for long-term load. Seismic isolation support method.
【請求項2】転倒防止用の積層ゴム体が受け止めた負の
軸力は、反力フレームを固定するアースアンカーに反力
をとって地盤へ伝達し処理することを特徴とする請求項
1に記載した建物の免震支持方法。
2. The method according to claim 1, wherein the negative axial force received by the laminated rubber body for preventing overturning is transmitted to the ground by applying a reaction force to an earth anchor for fixing the reaction force frame to the ground. The seismic isolation support method for the listed building.
【請求項3】薄い金属板とゴムシートとを交互に多数積
み重ね接着して成る積層ゴム体を基礎上に垂直上向きに
設置して建物を地盤上に支持させると共に建物の上床板
と基礎との間に建物の水平移動を抑制する減衰装置を設
置している建物の免震支持装置において、 地震入力を受けた建物において負の軸力が発生する部位
に、同建物の上床板の下面にU形状の伝達フレームを固
定して設け、基礎には前記伝達フレーム内に通して交叉
させた倒立U形状の反力フレームを固定して設け、両フ
レームの間に転倒防止用の積層ゴム体を反力フレームか
ら垂直下向きに設置してあり、前記反力フレームはアー
スアンカーと緊結して固定されていることを特徴とする
建物の免震支持装置。
3. A laminated rubber body formed by alternately stacking and bonding a large number of thin metal plates and rubber sheets vertically on a foundation to support the building on the ground, and to connect the upper floor plate of the building to the foundation. A seismic isolation support device for a building that has a damping device that suppresses the horizontal movement of the building in the area where a negative axial force is generated in the building that received the earthquake input, A transmission frame having a fixed shape is fixedly provided, and an inverted U-shaped reaction force frame which is passed through the transmission frame and intersected is fixedly provided on the base, and a laminated rubber body for preventing overturn is provided between the two frames. A seismic isolation support device for a building, which is installed vertically downward from a force frame, wherein the reaction force frame is tightly fixed to an earth anchor.
【請求項4】薄い金属とゴムシートとを交互に多数積み
重ね接着して成る積層ゴム体を基礎上に垂直上向きに設
置して建物を地盤上に支持させると共に建物の上床板と
基礎との間に建物の水平移動を抑制する減衰装置を設置
している建物の免震支持装置において、 地震入力を受けた建物において負の軸力が発生する部位
に、基礎に固定した倒立U形状の反力フレームを建物の
上床板に設けた開口部に通して同上床板と交叉する形に
設置してあり、同反力フレームの上辺部と上床板との間
に転倒防止用の積層ゴム体を反力フレームから垂直下向
きに設置してあり、前記反力フレームはアースアンカー
と緊結して固定されていることを特徴とする建物の免震
支持装置。
4. A laminated rubber body formed by alternately stacking and bonding a large number of thin metal sheets and rubber sheets on a foundation so as to be vertically upwardly supported to support the building on the ground, and between the upper floor plate of the building and the foundation. In a seismic isolation support device for a building that has a damping device that suppresses horizontal movement of the building, an inverted U-shaped reaction force fixed to the foundation at the site where a negative axial force occurs in the building that received the earthquake input The frame is installed so that it passes through the opening in the upper floor plate of the building and intersects with the upper floor plate, and the laminated rubber body for preventing falling falls between the upper edge of the reaction force frame and the upper floor plate. A seismic isolation support device for a building, which is installed vertically downward from a frame, wherein the reaction frame is fixed in tight contact with an earth anchor.
JP63024721A 1988-02-04 1988-02-04 Seismic isolation support method and seismic isolation support device for building Expired - Fee Related JP2631486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024721A JP2631486B2 (en) 1988-02-04 1988-02-04 Seismic isolation support method and seismic isolation support device for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024721A JP2631486B2 (en) 1988-02-04 1988-02-04 Seismic isolation support method and seismic isolation support device for building

Publications (2)

Publication Number Publication Date
JPH01203541A JPH01203541A (en) 1989-08-16
JP2631486B2 true JP2631486B2 (en) 1997-07-16

Family

ID=12146023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024721A Expired - Fee Related JP2631486B2 (en) 1988-02-04 1988-02-04 Seismic isolation support method and seismic isolation support device for building

Country Status (1)

Country Link
JP (1) JP2631486B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387476A (en) * 1989-08-31 1991-04-12 Taisei Corp Vibration removing device of construction
FR2709503B1 (en) * 1993-09-03 1995-11-24 Cbc Method and device for seismic protection of a construction.
JP2003090145A (en) * 2001-09-17 2003-03-28 Takenaka Komuten Co Ltd Support method and support structure to cope with pull- out force in base isolation structure
JPWO2010147093A1 (en) * 2009-06-16 2012-12-06 株式会社都市建築事務所 Rotating seismic isolation device for buildings and rotating seismic isolation building structure
JP2012180699A (en) * 2011-03-02 2012-09-20 Shimizu Corp Base-isolated structure
JP5757191B2 (en) * 2011-08-17 2015-07-29 清水建設株式会社 Structure for preventing overturning of a base-isolated building and a base-isolated building equipped with the structure
JP5682036B2 (en) * 2011-08-17 2015-03-11 清水建設株式会社 Structure for preventing overturning of a base-isolated building and a base-isolated building equipped with the structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU190312B (en) * 1984-06-07 1986-08-28 Budapesti Mueszaki Egyetem,Hu Apparatus for decreasing the seismic loads arising on tower-like constructions of high centre of gravity for preventing the turning-over of building wedge provided with flexible members between the foundation and the wall structure

Also Published As

Publication number Publication date
JPH01203541A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
US4409765A (en) Earth-quake proof building construction
US8104236B2 (en) Isolation platform
US4574540A (en) Structural support system for minimizing the effects of earthquakes on buildings and the like
JP2631486B2 (en) Seismic isolation support method and seismic isolation support device for building
JP3858432B2 (en) Vibration control method for linked structures
JP4087026B2 (en) Superplastic metal damper
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
JP2019082031A (en) Damper mechanism for base-isolation structure, arranging structure of damper mechanism for base-isolation structure, trigger mechanism for base-isolation structure, arranging structure of trigger mechanism for base-isolation structure, sliding bearing structure for base-isolation structure, and building
JP3367894B2 (en) Pier
JP4439694B2 (en) High-damping frame of high-rise building
JP3425609B2 (en) Seismic isolation method for structures and seismic isolation structures
JP3185678B2 (en) Seismic isolation device
JP3102548B2 (en) Seismic isolation structure of pile
JP4866492B2 (en) Base-isolated building with piles
JPS60261845A (en) Earthquake dampening and support apparatus
JPH03161628A (en) Vibration control damper
JP3367893B2 (en) Pier
JP3254322B2 (en) Seismic isolation device
JPH11269847A (en) Pier
JPH0535973U (en) Vibration control structure of the body
JPS62121279A (en) Earthquake damping structure
JPS60223577A (en) Earthquake dampening apparatus
JPH09151622A (en) Base isolation device for building
JP5743631B2 (en) Damping structure
JP3528627B2 (en) Elevator structure of middle floor seismic isolation building

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees