JPS60223577A - Earthquake dampening apparatus - Google Patents

Earthquake dampening apparatus

Info

Publication number
JPS60223577A
JPS60223577A JP7656784A JP7656784A JPS60223577A JP S60223577 A JPS60223577 A JP S60223577A JP 7656784 A JP7656784 A JP 7656784A JP 7656784 A JP7656784 A JP 7656784A JP S60223577 A JPS60223577 A JP S60223577A
Authority
JP
Japan
Prior art keywords
rod
seismic isolation
isolation device
vibration absorption
absorption system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7656784A
Other languages
Japanese (ja)
Inventor
彰 寺村
嶽 中村
関松 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Gumi Ltd
Original Assignee
Obayashi Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Gumi Ltd filed Critical Obayashi Gumi Ltd
Priority to JP7656784A priority Critical patent/JPS60223577A/en
Publication of JPS60223577A publication Critical patent/JPS60223577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は免震装置に関する。[Detailed description of the invention] The present invention relates to a seismic isolation device.

従来から、原子力発電所の建屋、Il梁の脚部等の重量
構造物の免震装置として各種の提案がなされ、その一部
は実用化されている。
Conventionally, various proposals have been made as seismic isolation devices for heavy structures such as nuclear power plant buildings and the legs of Il beams, and some of them have been put into practical use.

この種の免M装置としては、平板状の積層ゴムを用いた
ものが周知であるが、以下の欠点があった。
As this type of M-isolation device, one using flat laminated rubber is well known, but it has the following drawbacks.

すなわち、入力地震加速度が、例えば0.20以上のよ
うに大きくなると、構造物の横すべりが発生し易くなる
とともに、弾性体を主体として構成しているため、地震
エネルギーの吸収を示す履歴曲線によって囲まれた面積
も小さいという問題があった。
In other words, when the input seismic acceleration becomes large, for example 0.20 or more, sidesliding of the structure becomes more likely to occur, and since the structure is mainly composed of elastic bodies, the structure is surrounded by a hysteresis curve indicating the absorption of seismic energy. There was also the problem that the area covered was small.

そこで、上記問題を解消し、大きなエネルギー吸収が得
られるように、上記積層ゴムと地震力が加わった際に直
りに塑・性変形をする軟質金属、例えば鉛とを組合せた
免震装置も提案されている。
Therefore, in order to solve the above problem and obtain large energy absorption, we proposed a seismic isolation device that combines the above laminated rubber with a soft metal, such as lead, that undergoes plastic deformation when earthquake force is applied. has been done.

しかしながら、このような免震装置では、地震エネルギ
ーの吸収機能は増大されるものの、地震とは逆に構造物
に短周期の振動、例えば強風等が作用した際に、軟質金
属が比較的小さい外力に対しても塑性変形するために、
構造物が予期した以上に揺れるという問題がある。
However, although such seismic isolation devices increase the ability to absorb seismic energy, when short-period vibrations such as strong winds act on a structure, contrary to an earthquake, the soft metal absorbs a relatively small external force. Because it deforms plastically against
There is a problem that the structure shakes more than expected.

この1発明は、上述した問題の解決を意図してなされた
ものであって、その目的とするところは、比較的大きな
地震エネルギーの吸収能を備え、且つ構造物側から加わ
る外力に対しては適当な剛性を有する免震装置を提供す
るところにある。
This first invention was made with the intention of solving the above-mentioned problems, and its purpose is to provide a structure with a relatively large ability to absorb earthquake energy and withstand external forces applied from the structure side. The purpose of the present invention is to provide a seismic isolation device having appropriate rigidity.

上記目的を達成するため、この発明は免震装置において
、平板状の弾性シートと鋼板シートとを交互に積層し、
鉛直荷重を支持するとともに水平荷重に対して弾性変形
する第1の振動吸収系と、一端をそれぞれ振動源と免震
すべき構造体に係止した一対の棒状体の他端を相互に連
結した第2の振動吸収系とを併設したことを特徴とする
In order to achieve the above object, the present invention provides a seismic isolation device in which flat elastic sheets and steel sheet sheets are alternately laminated,
A first vibration absorption system that supports vertical loads and elastically deforms in response to horizontal loads is interconnected with a pair of rod-shaped bodies, one end of which is latched to the vibration source and the other end of the structure to be seismically isolated, respectively. It is characterized in that it is also equipped with a second vibration absorption system.

以下、この発明の好適な実施例について添付図面を参照
にして詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図から第5図は、この発明に係る免震装置の一実施
例を示づものである。
1 to 5 show an embodiment of a seismic isolation device according to the present invention.

同図に示す免震装置は、上部構造1と下部構造2との間
に介在され、ネオプレンゴム等からなる平板状の弾性シ
ート3と、これとほぼ同じ形状の鋼板シート4とを交互
に積層し、両端側に平板状の端板5.5を取付けた第1
の振動吸収系6と、上部構造1および下部構造2のそれ
ぞれに一端部(B、A>をビン7.7でもって係止した
一対の棒状体8,8の他端Cを、略90度の角度でもっ
て、これらを貫通するようにして連結する断面が角形の
鋼棒9とで構成する第2の振動吸収系10が併設されて
いる。
The seismic isolation device shown in the figure is interposed between an upper structure 1 and a lower structure 2, and is made by alternately laminating flat elastic sheets 3 made of neoprene rubber or the like and steel sheet sheets 4 having almost the same shape. The first plate has flat end plates 5.5 attached to both ends.
The other end C of a pair of rod-like bodies 8, 8, whose one end (B, A>) is locked to each of the upper structure 1 and lower structure 2 with a pin 7.7, is held at approximately 90 degrees. A second vibration absorption system 10 is also provided, which is composed of a steel rod 9 having a rectangular cross section and connected so as to pass through them at an angle of .

上記第1の振動吸収系6は、上部構造1の鉛直荷重を支
持するために、荷重に対応した適宜数量が配置されると
ともに、水平荷重(Q)に対しては、第2図に示すよう
に所定の弾性係数でもって弾性変形する。
In order to support the vertical load of the upper structure 1, the first vibration absorption system 6 is arranged in an appropriate number corresponding to the load, and for the horizontal load (Q), as shown in FIG. It deforms elastically with a predetermined elastic modulus.

一方、上記第2の振動吸収系10は、鉛直荷重に対して
は伺ら作用しないが、水平荷重(Q)に対しては第3図
に示す性状を示す。
On the other hand, the second vibration absorption system 10 has no effect on vertical loads, but exhibits the properties shown in FIG. 3 on horizontal loads (Q).

づなわら、上記棒状体8,8は、上記鋼棒9よりも剛性
が大きくなっていて、水平荷重(Q)に対しては殆ど変
形せず、鋼棒9のみが変形することになるが、この態様
を第4図に基づいて詳細に説明する。
In other words, the rod-shaped bodies 8, 8 have greater rigidity than the steel rod 9, and hardly deform under the horizontal load (Q), and only the steel rod 9 deforms. This aspect will be explained in detail based on FIG. 4.

同図は第2の振動系10を模式的に示すものであって、
水平荷重(Q)が同図(a )において矢印■方向にに
加えられると、同図(1) )に承りように上部構造1
側に係止された棒状体8の端部Bが、横方向にσだけ変
位しB′に移動し、棒状体8.8間の角度が90度から
θ度まで拡開する。
The figure schematically shows the second vibration system 10,
When a horizontal load (Q) is applied in the direction of arrow ■ in the same figure (a), the upper structure 1 is applied as shown in the figure (1)).
The end B of the bar 8, which is locked to the side, is displaced laterally by σ and moves to B', and the angle between the bars 8.8 widens from 90 degrees to θ degrees.

そして、この変位によって鋼棒9には所定の捩れが加わ
る。
Then, a predetermined twist is applied to the steel rod 9 due to this displacement.

この捩れに対して鋼棒9は、第3図のように、ある一定
の範囲内であれば捩れすなわち、水平荷重(Q)がなく
なれば、元の状態に復旧する弾性と、降伏点を越える捩
れが作用Jると、変形したままになる塑性変形を示す。
In response to this torsion, the steel rod 9 has the elasticity to return to its original state when the horizontal load (Q) is removed, and exceed its yield point, within a certain range as shown in Figure 3. When torsion is applied, it exhibits plastic deformation that remains deformed.

また、第4図(a )において水平荷重(Q)が矢印■
方向に加えられると、同図に(C)に示すように棒状体
8が変位し、この方向に対しても同様な変形性状を示す
Also, in Fig. 4(a), the horizontal load (Q) is indicated by the arrow ■
When the force is applied in this direction, the rod-shaped body 8 is displaced as shown in (C) in the figure, and exhibits similar deformation properties in this direction as well.

そして、上述した免震装置は、第1および第2の振動吸
収系6.10が併設されているため、水平向1f(Q)
に対して第5図に示す如き性状を示す。
Since the above-mentioned seismic isolation device is equipped with the first and second vibration absorption systems 6.10, the horizontal direction 1f (Q)
The properties shown in FIG. 5 are shown in FIG.

ここで、本発明者らは、上述した構成の免震装置のより
具体的な数値を設定して振動解析を試みた。
Here, the present inventors set more specific numerical values for the seismic isolation device having the above-mentioned configuration and attempted vibration analysis.

すなわち、上記第1の振動吸収系6および第2の振動吸
収系10を以下のように各々設定し、次のような結果を
得た。
That is, the first vibration absorption system 6 and the second vibration absorption system 10 were each set as follows, and the following results were obtained.

弾性シート3はゴム板を、鋼板シート4は薄鉄板を約1
50mmの円形とし、一対の端板5を含めて積層高が2
50 m、mとし、この弾性係数を56廟/ctnに定
めた。
The elastic sheet 3 is a rubber plate, and the steel plate sheet 4 is a thin iron plate.
It has a circular shape of 50 mm, and the stacking height including the pair of end plates 5 is 2.
50 m, m, and the elastic modulus was set at 56 m/ctn.

一方、上記第2の振動吸収系1oの主体である鋼棒9は
、直tllfi 16111mテ長サカ約1すoIll
I11ノ鉄筋棒を用い、捩り応力を3X103kg/c
dと仮定するとともに、その弾性係数は9.2kg/c
m、降伏点は100kgの水平荷重(Q)で1.3c+
nの変形をする点であることを測定f1認した。
On the other hand, the steel rod 9, which is the main body of the second vibration absorption system 1o, has a straight length of 16111 m and a length of about 1 oIll.
Using I11 reinforcing bar, torsion stress is 3X103kg/c
d, and its elastic modulus is 9.2 kg/c
m, yield point is 1.3c+ with horizontal load (Q) of 100kg
The measurement f1 was confirmed to be a point that undergoes a deformation of n.

また、上部構造1の鉛直荷重は5 tonに設定し、上
述した各設定条件は、4〜5階建コンクリート構造物の
約1/40の縮小モデルを想定したものであって、これ
らの条件から表1に示す結果を得た。
In addition, the vertical load of the superstructure 1 was set to 5 tons, and the above-mentioned setting conditions are based on the assumption of a scaled model of approximately 1/40 of a 4- to 5-story concrete structure. The results shown in Table 1 were obtained.

表 1 Keq・・・・・・・・・・・・・・・免震装置の弾性
係数T(sec)・・・・・・系全体の固有周期heq
・・・・・・・・・・・・・・・免震装置の減衰定数上
記結果から本発明の免震装置では、以下の効果が得られ
る。
Table 1 Keq・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・Table 1 Keq・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・』
...... Damping constant of seismic isolation device From the above results, the seismic isolation device of the present invention provides the following effects.

すなわち、現在想定されている巨大地震は、水平変位が
約30C−1最大周期0.1〜1.0秒であり、上記表
1のび=8CIllはほぼこの値に相当する。
That is, the currently assumed huge earthquake has a horizontal displacement of about 30C-1 and a maximum period of 0.1 to 1.0 seconds, and the elongation=8CIll in Table 1 above approximately corresponds to this value.

このような巨大地震に対しても系全体の固有周期が1.
6秒と長く、地震周期よりもかなり大きくなる。
Even for such a huge earthquake, the natural period of the entire system is 1.
It is as long as 6 seconds, which is much larger than the earthquake period.

従って、地震周期と共振して振幅が増大することが防止
できる。
Therefore, it is possible to prevent the amplitude from increasing due to resonance with the earthquake period.

また、各変位における減衰定数も比較的大きく、このこ
とは、第5図に示す履歴曲線によって囲まれた面積が比
較的大きいことを意味し、地震エネルギーを効果的に吸
収できることになる。
Furthermore, the damping constant at each displacement is relatively large, which means that the area surrounded by the hysteresis curve shown in FIG. 5 is relatively large, and seismic energy can be effectively absorbed.

さらに、建物側に加わる強風等の外力に対しては、上記
鋼棒9の弾性領域内でこれを受けるため、鉛等の軟質金
属を使用した免震装置よりも、構造物の揺れが少く比較
的大きな剛性を示(。
Furthermore, external forces such as strong winds applied to the building are received within the elastic range of the steel rods 9, so the structure shakes less than a seismic isolation device using soft metals such as lead. It shows great stiffness (.

第6図および第7図は、この発明の第2実施例を示すも
のであって、以下にその特徴点についてのみ説明する。
FIG. 6 and FIG. 7 show a second embodiment of the present invention, and only the characteristic points thereof will be explained below.

この実施例では、上記実施例の第2の振動吸収系10の
一対の鋼棒12,12を、水平荷重(Q)に対して所定
の弾性変形を経て塑性変形させるところにあり、各鋼棒
12,12の一端(A、B)は、上部構造1および下部
構造2にそれぞれブロック体11.11によって係止固
定されるとともに、他端Cは同じようなブロック体11
によって直交するようにして固定されている。
In this embodiment, the pair of steel rods 12, 12 of the second vibration absorption system 10 of the above embodiment are plastically deformed through a predetermined elastic deformation in response to a horizontal load (Q), and each steel rod One end (A, B) of 12, 12 is locked and fixed to the upper structure 1 and lower structure 2 by a block body 11.11, respectively, and the other end C is fixed to a similar block body 11.
They are fixed so that they are perpendicular to each other.

つまり、この実施例では、上記実施例の捩れ変形を生じ
させる鋼棒9を、曲げ変形を生じさせる鋼棒12,12
で置き変えて第2の振動吸収系10を形成しており、鋼
棒12.12は水平荷重(Q)に対して、第7図(a>
、(b)に模式的に示すように曲げ変形し、第1の振動
吸収系6の特性を加え合せることで、第1実施例と同じ
ように第5図に示す如き特性が得られる。
That is, in this embodiment, the steel rod 9 that causes torsional deformation in the above embodiment is replaced with the steel rods 12, 12 that cause bending deformation.
The steel rod 12.12 is replaced with
, (b), and by adding the characteristics of the first vibration absorption system 6, the characteristics shown in FIG. 5 can be obtained as in the first embodiment.

従って、この実施例においても、上記実施例と同じ作用
効果を奏することができる。
Therefore, in this embodiment as well, the same effects as in the above embodiment can be achieved.

第8図はこの発明の第3実施例を示づものであって、特
徴点は、上記第1の振動吸収系6の周期に、第1または
第2実施例で示した第2の振動吸収系10を8個取付け
た点にある。
FIG. 8 shows a third embodiment of the present invention, and the feature is that the second vibration absorption system shown in the first or second embodiment is added to the period of the first vibration absorption system 6. It is at the point where eight units of system 10 are installed.

このように構成すれば、任意の方向から加わる下部構造
2からの地震、あるいは上部構造1からの外力に対して
極めて効果的に対処できる。
With this configuration, it is possible to extremely effectively deal with earthquakes from the lower structure 2 or external forces from the upper structure 1 that are applied from any direction.

以上実施例で詳細に説明したように、この発明に係る免
震装置では、弾性体と棒状体とを組合せた変形性状が得
られるため、地震エネルギーを吸収する履歴曲線によっ
て囲まれた面積を比較的大きくづることができるととも
に、系の周期も地震周期から離間することができ、共振
による問題も回避される等の優れた効果が得られる。
As explained in detail in the examples above, in the seismic isolation device according to the present invention, a deformation property that combines an elastic body and a rod-like body is obtained, so the area surrounded by the hysteresis curve that absorbs earthquake energy is compared. In addition to being able to make the target larger, the period of the system can also be separated from the earthquake period, and problems caused by resonance can be avoided, among other excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例の側面図、第2図は第1
の振動吸収系の特性図、第3図は第2の振動吸収系の特
性図、第4図は第2の振動吸収系の変位の態様を示す図
、第5図はこの発明の免震装置の特性図である。 第6図は第2実施例の要部説明図、第7図は同実施例の
第2の振動吸収系の変形態様を示1図である。 第8図は第3実施例の概略説明図である。 1・・・・・・上部構造 2・・・・・・下部構造3・
・・・・・弾性シート 4・・・・・・鋼板シート5・
・・・・・端 板 6・・・・・・第1の振動吸収系7
・・・・・・ビ ン 8・・・・・・棒状体9・・・・
・・捩れ変形を生じさせる鋼棒10・・・第2の振動吸
収系 11・・・ブロック体12・・・・・・曲げ変形
を生じさVる鋼棒特許出願人 株式会社 大 林 引 代 理 人 弁理士 −色健輔 第1図 工 第5図 第8図
FIG. 1 is a side view of the first embodiment of the invention, and FIG. 2 is a side view of the first embodiment of the invention.
Fig. 3 is a characteristic diagram of the second vibration absorption system, Fig. 4 is a diagram showing the displacement mode of the second vibration absorption system, and Fig. 5 is a seismic isolation device of the present invention. FIG. FIG. 6 is an explanatory view of the main part of the second embodiment, and FIG. 7 is a diagram showing a modification of the second vibration absorption system of the same embodiment. FIG. 8 is a schematic explanatory diagram of the third embodiment. 1... Upper structure 2... Lower structure 3.
...Elastic sheet 4... Steel plate sheet 5.
...End plate 6...First vibration absorption system 7
...Bin 8 ... Rod-shaped body 9 ...
...Steel rod 10 that causes torsional deformation...Second vibration absorption system 11...Block body 12...Steel bar that causes bending deformation Patent applicant: Obayashi Co., Ltd. Patent Attorney - Kensuke IroDrawing 1 Drawing 5 Drawing 8

Claims (3)

【特許請求の範囲】[Claims] (1)平板状の弾性シー1−と鋼板シートとを交互に積
層し、鉛直荷重を支持するとともに水平荷重に対して弾
性変形する第1の振動吸収系と、〜端をそれぞれ振動源
と免震すべき構造体に係止した一対の棒状体の他端を相
互に連結した第2の振動吸収系とを併設したことを特徴
とする免震装置。
(1) A first vibration absorption system in which flat elastic sheets 1- and steel sheets are alternately laminated to support vertical loads and elastically deform in response to horizontal loads; A seismic isolation device characterized in that it is also equipped with a second vibration absorption system in which the other ends of a pair of rod-shaped bodies that are latched to a structure to be vibrated are interconnected.
(2)上記棒状体は水平荷重に対して変形しない剛体で
形成するとともに、その他端連結部分に水平荷重に対し
て所定の弾性変形を経て塑性変形をする捩り鋼棒を介在
さぜたことを特徴とする特許請求の範l!Il第1項記
載の免震装置。
(2) The rod-shaped body is made of a rigid body that does not deform under horizontal loads, and a torsion steel rod that undergoes a predetermined elastic deformation and plastic deformation under horizontal loads is interposed at the other end connecting part. Characteristic claims l! The seismic isolation device according to item Il.
(3)上記棒状体は水平荷重に対して所定の弾性変形を
経て塑性変形をする曲げ鋼棒Cあることを特徴とする特
許請求の範囲第1項記載の免震装置。
(3) The seismic isolation device according to claim 1, wherein the rod-shaped body is a bent steel rod C which deforms plastically through a predetermined elastic deformation in response to a horizontal load.
JP7656784A 1984-04-18 1984-04-18 Earthquake dampening apparatus Pending JPS60223577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7656784A JPS60223577A (en) 1984-04-18 1984-04-18 Earthquake dampening apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7656784A JPS60223577A (en) 1984-04-18 1984-04-18 Earthquake dampening apparatus

Publications (1)

Publication Number Publication Date
JPS60223577A true JPS60223577A (en) 1985-11-08

Family

ID=13608803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7656784A Pending JPS60223577A (en) 1984-04-18 1984-04-18 Earthquake dampening apparatus

Country Status (1)

Country Link
JP (1) JPS60223577A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233386A (en) * 1986-04-04 1987-10-13 株式会社 間組 Disc damper for earthquake damping system and attenuation apparatus using the same
JPS63180746A (en) * 1987-01-23 1988-07-25 Ohbayashigumi Ltd Structure for vibration-proof floor
JPS6448952A (en) * 1987-04-06 1989-02-23 Bridgestone Corp Earthquake damping structure
JPH02194233A (en) * 1989-01-20 1990-07-31 Ohbayashi Corp Anti-seismic device
JP2011516797A (en) * 2008-03-14 2011-05-26 ダンプテック アー/エス Support for structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217877A (en) * 1983-05-25 1984-12-08 多田 英之 Earthquake-proof apparatus having attenuating mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217877A (en) * 1983-05-25 1984-12-08 多田 英之 Earthquake-proof apparatus having attenuating mechanism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233386A (en) * 1986-04-04 1987-10-13 株式会社 間組 Disc damper for earthquake damping system and attenuation apparatus using the same
JPH0366474B2 (en) * 1986-04-04 1991-10-17 Hazama Gumi
JPS63180746A (en) * 1987-01-23 1988-07-25 Ohbayashigumi Ltd Structure for vibration-proof floor
JPS6448952A (en) * 1987-04-06 1989-02-23 Bridgestone Corp Earthquake damping structure
JP2570341B2 (en) * 1987-04-06 1997-01-08 株式会社ブリヂストン Seismic isolation structure
JPH02194233A (en) * 1989-01-20 1990-07-31 Ohbayashi Corp Anti-seismic device
JP2011516797A (en) * 2008-03-14 2011-05-26 ダンプテック アー/エス Support for structure

Similar Documents

Publication Publication Date Title
US3963099A (en) Hysteretic energy absorber
JPS60223577A (en) Earthquake dampening apparatus
CN210369407U (en) Building shock attenuation power consumption structure
Hwang et al. Seismic behavior of gable frame consisting of tapered members
US3831924A (en) Torisonal energy absorber
JP3791132B2 (en) Damping structure using a disc spring friction damper
JPH0262668B2 (en)
Hwang et al. Shaking table tests of pinned-base steel gable frame
Konishi et al. Earthquake response and earthquake resistant design of long span suspension bridges
JPH033723Y2 (en)
JPH0339575A (en) Vibration control viscoelastic wall
JPH02194233A (en) Anti-seismic device
JP3185678B2 (en) Seismic isolation device
JP4828053B2 (en) Structure damping device
JPH0259262B2 (en)
CN212428167U (en) Building structure reinforcing apparatus with high resistance to deformation
JPH0542202Y2 (en)
JPH0535973U (en) Vibration control structure of the body
JPS61151377A (en) Earthquake-proof apparatus
JPS62121279A (en) Earthquake damping structure
Parulekar et al. Seismic response control of complex piping systems using elasto-plastic dampers-experiments and analysis
CN117905183A (en) Four-degree-of-freedom nonlinear energy trap vibration reduction system with anisotropic rigidity and damping
JPS60258343A (en) Earthquake dampening apparatus having attenuation function
JPS62288270A (en) Damper
JP2597735B2 (en) Seismic isolation device