JPH0535973U - Vibration control structure of the body - Google Patents

Vibration control structure of the body

Info

Publication number
JPH0535973U
JPH0535973U JP8172891U JP8172891U JPH0535973U JP H0535973 U JPH0535973 U JP H0535973U JP 8172891 U JP8172891 U JP 8172891U JP 8172891 U JP8172891 U JP 8172891U JP H0535973 U JPH0535973 U JP H0535973U
Authority
JP
Japan
Prior art keywords
connecting plate
beams
frame
earthquake
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8172891U
Other languages
Japanese (ja)
Inventor
雄一郎 小川
康一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP8172891U priority Critical patent/JPH0535973U/en
Publication of JPH0535973U publication Critical patent/JPH0535973U/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】 【目的】 耐震性を向上させる。 【構成】 柱11に梁12を取り付け、これら梁12の
端部14をそれぞれ対向させる。これら対向する梁1
2、12の端部14、14間に間隙15を設け、これら
端部14、14間に連結板16を架け渡す。これら梁1
2、12は、上下にフランジ17を設けたH型鋼からな
る。これら上下フランジ17に連結板16がそれぞれ定
着され、これら連結板16により対向する梁12の端部
14をそれぞれ接続している。 【効果】 梁間に生じる変形により塑性変形させる連結
板により地震時のエネルギーを積極的に吸収するため、
梁の端部間の接合部構造のエネルギー吸収性能を高め、
躯体の耐震性を高めることができる。
(57) [Summary] [Purpose] To improve earthquake resistance. [Structure] Beams 12 are attached to columns 11, and end portions 14 of these beams 12 are opposed to each other. These opposing beams 1
A gap 15 is provided between the end portions 14 and 14 of the 2 and 12, and a connecting plate 16 is bridged between the end portions 14 and 14. These beams 1
Nos. 2 and 12 are made of H-shaped steel with flanges 17 provided on the upper and lower sides. The connecting plates 16 are fixed to the upper and lower flanges 17, and the connecting plates 16 connect the ends 14 of the beams 12 facing each other. [Effect] Since the energy during an earthquake is positively absorbed by the connecting plate that plastically deforms due to the deformation generated between the beams,
Improve the energy absorption performance of the joint structure between the ends of the beam,
The quake resistance of the body can be improved.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、建築構造物の躯体の制震構造に係り、特に、地震の発生時に好適に 対応し得る躯体の制震構造に関するものである。 The present invention relates to a vibration control structure for a frame of a building structure, and more particularly, to a vibration control structure for a frame that can be appropriately dealt with when an earthquake occurs.

【0002】[0002]

【従来の技術】[Prior Art]

従来、建築構造物の設計では、図8に示すように、応力(Q)と変位(δ)の 関係を表す応力ー変位の図が用いられる。この応力ー変位の図では、縦軸に応力 (Q)をとり、横軸に変位(δ)をとる。そして、架構全体1、フレーム2、耐 震壁3の応力をプロットすると、それぞれ降伏点までは、ヤング係数に比例して 大きくなり、それぞれ降伏点を越えると、応力が抑えられる。即ち、架構全体1 、フレーム2、耐震壁3が降伏点を越えると、復元不可能となり、永久歪みとし て残留する。 Conventionally, in the design of a building structure, as shown in FIG. 8, a stress-displacement diagram showing a relationship between stress (Q) and displacement (δ) is used. In this stress-displacement diagram, the vertical axis represents stress (Q) and the horizontal axis represents displacement (δ). Then, when the stresses of the entire frame 1, the frame 2 and the seismic wall 3 are plotted, the stress increases up to the yield point in proportion to the Young's modulus, and the stress is suppressed when the stress points are exceeded. In other words, if the entire frame 1, frame 2, and earthquake-resistant wall 3 exceed the yield point, it cannot be restored and remains as permanent strain.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、建築躯体の設計では、架構全体1、フレーム2、耐震壁3が降伏点 以下である図8の一点鎖線で示す応力(一次設計レベル)以内において、部材は 許容応力度設計されている。この一次設計レベル以内では、弾性設計で設計が行 われており、QYを越えない一次設計レベルの地震等による振動がフレーム2に 伝わった場合、振動は減衰されない。このため一次設計レベルの地震等による振 動がフレーム2に伝わった場合、架構全体1の地震時のエネルギー吸収性能が小 さいという問題があった。 By the way, in the design of the building frame, the members are designed with the allowable stress level within the stress (primary design level) shown by the chain line in FIG. 8 where the whole frame 1, the frame 2 and the seismic wall 3 are below the yield point. Within this primary design level, the elastic design is used, and if vibration due to an earthquake of primary design level that does not exceed QY is transmitted to the frame 2, the vibration is not damped. Therefore, when vibrations due to an earthquake at the primary design level are transmitted to the frame 2, there was a problem that the energy absorption performance of the entire frame 1 during an earthquake was small.

【0004】 本考案は前記課題を有効に解決するもので、地震時のエネルギー吸収能力を向 上させることにより耐震性を向上させた躯体の制震構造を提供することを目的と する。The present invention effectively solves the above problems, and an object of the present invention is to provide a skeleton vibration control structure with improved seismic resistance by improving energy absorption capacity during an earthquake.

【0005】[0005]

【課題を解決するための手段】 本考案の躯体の制震構造は、建築躯体の制震構造であって、互いに接続される 梁の端部が対向され、これら対向する梁の端部間に間隙が設けられ、該間隙の対 向する梁間に曲げ降伏することによりエネルギーを吸収する連結板が架け渡され 、該連結板は対向する梁の上下両端部にそれぞれ設けられ、該連結板は梁の降伏 耐力より小さな降伏耐力に形成されていることを特徴とするものである。Means for Solving the Problems A structure for damping a structure of a building according to the present invention is a structure for controlling a building structure, in which the ends of beams connected to each other are opposed to each other, and the ends of the beams are opposed to each other. A gap is provided, and a connecting plate that absorbs energy by bending and yielding is provided between the beams facing each other. The connecting plates are provided at both upper and lower end portions of the opposite beam, respectively. It is characterized in that it is formed with a yield strength smaller than the yield strength of.

【0006】[0006]

【作用】[Action]

本考案の躯体の制震構造によれば、対向する梁の端部間に間隙が設けられると ともに、対向する梁の端部間に連結板が設けられ、この連結板が早期に降伏する ことにより、塑性エネルギーとして地震エネルギーを吸収することができる。 また、連結板が間隙の対向する梁間に架け渡されているために、連結板の降伏 耐力の調整が容易で連結板の塑性変形を早期に生じさせることができる。 According to the structure for damping the frame of the present invention, the gap is provided between the ends of the opposing beams, and the connecting plate is provided between the ends of the opposing beams, and the connecting plate yields early. Thus, seismic energy can be absorbed as plastic energy. Further, since the connecting plate is bridged between the beams facing each other in the gap, the yield strength of the connecting plate can be easily adjusted, and the plastic deformation of the connecting plate can be caused at an early stage.

【0007】[0007]

【実施例】【Example】

以下、本考案の躯体の制震構造の一実施例を図1ないし図7を参照して説明す る。この躯体の制震構造10では、図1に示すように、互いに接続される梁12 が柱11にそれぞれ取り付けられている。これら梁12の端部14は、それぞれ 対向され、これら対向する梁12、12の端部14、14間に、間隙15が設け られている。 Hereinafter, an embodiment of the vibration control structure of the skeleton of the present invention will be described with reference to FIGS. 1 to 7. In this vibration control structure 10 of a frame, beams 12 connected to each other are attached to columns 11 as shown in FIG. The ends 14 of the beams 12 are opposed to each other, and a gap 15 is provided between the ends 14 and 14 of the beams 12 and 12 facing each other.

【0008】 これら端部14、14間に、長方形状の連結板16が架け渡されている。この 連結板16では、例えば、梁12の断面よりも小さな断面にすることにより、連 結板16の降伏耐力が梁12の降伏耐力よりも小さくされている。これら梁12 、12は、例えば上下にフランジ17を設けたH型鋼から形成されている。これ ら上下フランジ17の外側面に、連結板16が例えば複数本のボルト18により それぞれ定着されている。このような躯体の制震構造10は、図2の建物の平面 図に示すように、建築躯体19の水平方向の四隅の周囲の梁12にそれぞれ設け られている場合もある。A rectangular connecting plate 16 is bridged between these end portions 14, 14. In this connecting plate 16, for example, the yield strength of the connecting plate 16 is made smaller than the yield strength of the beam 12 by making the cross section smaller than the cross section of the beam 12. These beams 12 1 and 12 2 are made of, for example, H-shaped steel provided with flanges 17 on the upper and lower sides. The connecting plate 16 is fixed to the outer surfaces of the upper and lower flanges 17 by, for example, a plurality of bolts 18. As shown in the plan view of the building in FIG. 2, such a frame-structure damping structure 10 may be provided on each of the beams 12 around the four horizontal corners of the building body 19.

【0009】 この躯体の制震構造10に用いられる連結板16の応力一変形の特性を、図3 により説明する。この応力ー変位の図では、縦軸に応力(Q)がとられ、横軸に 変位(δ)がとられ、架構全体20、フレーム21、連結板16の応力がプロッ トされている。そして、連結板16の降伏を早期に生じさせ、この連結板16の 鋼材の履歴減衰を積極的に取り入れ、地震時のフレーム21への地震入力を低減 させるものである。The characteristic of the stress-deformation of the connecting plate 16 used in the body vibration-damping structure 10 will be described with reference to FIG. In this stress-displacement diagram, the vertical axis represents stress (Q) and the horizontal axis represents displacement (δ), and the stresses of the entire frame 20, frame 21, and connecting plate 16 are plotted. Then, the yielding of the connecting plate 16 is caused at an early stage, the hysteresis hysteresis of the steel material of the connecting plate 16 is positively introduced, and the earthquake input to the frame 21 at the time of an earthquake is reduced.

【0010】 ここで、通常の架構全体1では、以下で示すように、2%程度の減衰性能を有 している。 E(通常)=(1/2)・QY・δY・(2/100) 連結板16では、以下で示すように、曲げ変形による塑性エネルギーによりエ ネルギー吸収が生じる。 E(連結板)=(1/α)・QY・δY ここで、αは連結板16とフレーム21との耐力比であり、α=20の場合、 振動エネルギーの吸収は以下で示すようになる。 E(連結板)/E(通常)=5 このように、連結板16は、塑性変形により通常の5倍のエネルギーを吸収す る。Here, the normal frame 1 as a whole has a damping performance of about 2% as shown below. E (normal) = (1/2) .QY.delta.Y. (2/100) In the connecting plate 16, as shown below, energy absorption occurs due to plastic energy due to bending deformation. E (connecting plate) = (1 / α) · QY · δY where α is a proof stress ratio between the connecting plate 16 and the frame 21, and when α = 20, absorption of vibration energy is as shown below. .. E (connecting plate) / E (normal) = 5 As described above, the connecting plate 16 absorbs 5 times the normal energy by plastic deformation.

【0011】 すなわち、地震等が発生した場合、通常の架構全体1にあっては、弾性設計さ れているため、例えば、図8の一点鎖線で示す位置まで原点を対称として、第一 象限と第3象限との間をほぼ直線上を繰り返し往復する。これに対し、連結板1 6を有した架構全体20にあっては、図3の一点鎖線で示す位置と、応力(Q) を表す縦軸上の一点とを頂点とし、原点を対称点とした平行四辺形上を往復する ものである。このように、通常の架構全体1にあっては、直線上を繰り返し往復 するため、エネルギーは吸収されないが、連結板16を有した架構全体20では 、平行四辺形上を往復し、積極的にエネルギーを吸収していくものである。That is, when an earthquake or the like occurs, the normal frame 1 as a whole has an elastic design, and therefore, for example, the origin is symmetric up to the position shown by the alternate long and short dash line in FIG. It makes a round trip to and from the third quadrant. On the other hand, in the entire frame 20 having the connecting plate 16, the position indicated by the alternate long and short dash line in FIG. 3 and a point on the vertical axis indicating the stress (Q) are vertices, and the origin is the symmetry point. It reciprocates on a parallelogram. As described above, in the normal frame 1 as a whole, the energy is not absorbed because it repeatedly reciprocates on a straight line, but in the frame 20 having the connecting plate 16, it reciprocates on a parallelogram and positively moves. It absorbs energy.

【0012】 前記連結板16の剛性、降伏耐力は、連結板16の長さ、材質、板厚を変える ことにより、大きくされたり、小さくされる等の調整可能である。さらに、通常 の耐震要素を加えることにより、架構全体の剛性や降伏耐力を調整できる。この ように、耐震要素を加味しながら、連結板16、フレーム21、架構全体20の 剛性、降伏耐力が調整され、建築構造物が設計される。The rigidity and yield strength of the connecting plate 16 can be adjusted to be larger or smaller by changing the length, material and plate thickness of the connecting plate 16. Furthermore, by adding normal seismic elements, the rigidity and yield strength of the entire frame can be adjusted. As described above, the rigidity and yield strength of the connecting plate 16, the frame 21, and the entire frame 20 are adjusted while considering the seismic element, and the building structure is designed.

【0013】 このような躯体の制震構造の作用について、図4を参照して説明する。地盤が 地震等により振動した場合、建築構造物が変形し、各階に層間変形が生じる。こ こで、連結板16は、梁12よりも降伏耐力が小さいために、早く降伏し、梁1 2よりも大きく変形し、地震時のエネルギーを塑性エネルギーとして吸収する。 この塑性変形された連結板16が、間隙15内に侵入される。The operation of the vibration control structure of the skeleton will be described with reference to FIG. When the ground vibrates due to an earthquake or the like, the building structure is deformed, causing interlayer deformation on each floor. Here, since the connecting plate 16 has a lower yield strength than the beam 12, it yields earlier and is deformed more than the beam 12 and absorbs energy at the time of earthquake as plastic energy. The plastically deformed connecting plate 16 enters the gap 15.

【0014】 このような躯体の制震構造10においては、連結板16が対向する梁12の端 部14間に設けられ、これら梁12の端部14間に間隙15が設けられているた め、梁12の振動が直接連結板16に伝達され、この連結板16が早期に降伏す ることにより、接続された梁12間に生じる振動を連結板16により地震時のエ ネルギーを塑性エネルギーとして吸収される。この塑性変形された連結板16が 間隙15内に侵入されるため、連結板16の塑性変形が容易にされて、エネルギ ーを積極的に吸収していく。さらに、梁12の上下両端部にそれぞれ連結板16 が取り付けられているため、一枚の連結板16に比べ二倍のエネルギーを吸収す る。このため、架構全体20の耐震性を高めるとともに、安全性を高めることが できる。In such a frame-structure damping structure 10, since the connecting plate 16 is provided between the ends 14 of the beams 12 facing each other, and the gap 15 is provided between the ends 14 of the beams 12. The vibration of the beam 12 is directly transmitted to the connecting plate 16, and the connecting plate 16 yields at an early stage, so that the vibration generated between the connected beams 12 is converted by the connecting plate 16 into energy at the time of earthquake as plastic energy. Be absorbed. Since this plastically deformed connecting plate 16 enters the gap 15, the plastic deformation of the connecting plate 16 is facilitated and the energy is positively absorbed. Further, since the connecting plates 16 are attached to the upper and lower end portions of the beam 12, respectively, the beam absorbs twice as much energy as one connecting plate 16. Therefore, it is possible to enhance the earthquake resistance of the entire frame 20 and enhance the safety.

【0015】 この連結板16は梁12よりも降伏耐力が低くなっているため、梁12に大き な変形が繰り返し加わった場合に、連結板16が早期に降伏し、梁12、12の 間において地震時のエネルギーを積極的に吸収することができる。このように、 連結板16が早期に降伏するため、躯体の層間変位を防止することができ、架構 全体20に残留歪みが生じるのを防止し、梁12の安全性を高めることができる 。この変形、降伏した連結板16を取り換えることにより、容易に以後の地震に 対応できる。このため、建築構造物の層間変位を低減させることができ、永久歪 みが残るのを防止し、建築構造物の健全性を維持することができる。Since the connecting plate 16 has a lower yield strength than the beam 12, when the beam 12 is repeatedly subjected to a large amount of deformation, the connecting plate 16 yields early and the connecting plate 16 is deformed between the beams 12 and 12. It is possible to positively absorb energy during an earthquake. Thus, since the connecting plate 16 yields early, it is possible to prevent interlayer displacement of the skeleton, prevent residual strain from occurring in the entire frame 20, and improve the safety of the beam 12. By replacing the deformed and yielded connecting plate 16, it is possible to easily cope with the subsequent earthquake. Therefore, interlayer displacement of the building structure can be reduced, permanent strain can be prevented from remaining, and the soundness of the building structure can be maintained.

【0016】 なお、前記連結板16に、降伏耐力の低い極軟鋼を用いてもよい。 また、前記連結板16に、図5に示すように、長方形状のものを用いたが、図 6および図7に示すように、両端部よりも幅が狭く形成されたくぼみ部30・3 1を設けてもよい。これらくぼみ部30・31では、図6に示すように、連結板 32の中央部付近に頂点を有する概略二等辺三角形を切り取ったものでもよく、 図7に示すように、連結板33の中心軸に対称な円弧を切り取ったものでもよい 。これらくぼみ部30・31により、連結板32・33の断面を梁12の断面よ りもさらに降伏耐力を小さくすることができる。It should be noted that the connecting plate 16 may be made of extremely soft steel having a low yield strength. Further, although the connecting plate 16 has a rectangular shape as shown in FIG. 5, as shown in FIGS. 6 and 7, the recessed portion 30.31 having a width narrower than both end portions is formed. May be provided. In these recesses 30 and 31, as shown in FIG. 6, a substantially isosceles triangle having an apex near the central portion of the connecting plate 32 may be cut out, and as shown in FIG. It may be a symmetrical arc cut out. With these recesses 30 and 31, the cross-sections of the connecting plates 32 and 33 can be made smaller in yield strength than the cross-section of the beam 12.

【0017】[0017]

【考案の効果】[Effect of the device]

以上の説明から明らかなように、本考案の躯体の制震構造によれば、連結板が 対向する梁の端部間に設けられ、これら梁の端部間に間隙が設けられているため 、建物の層間変形が直接連結板に伝達され、接続された梁間に生じる繰り返しの 変形を連結板により吸収される。この連結板が間隙内に侵入されるため、連結板 の曲げ降伏により生じた塑性変形がエネルギーを積極的に吸収していく。さらに 、梁の上下両端部にそれぞれ連結板が取り付けられているため、一枚に連結板に 比べ二倍のエネルギーを吸収する。この連結板は梁よりも降伏耐力が小さくされ ているため、梁に大きな変形が加わった場合に、連結板が降伏し、エネルギーを 積極的に吸収することができる。このように、連結板が降伏するため、躯体の耐 震性を高めるとともに、安全性を高めることができる。架構全体に残留歪みが生 じるのを防止し、梁の安全性を高めることができる。 この変形、降伏した連結板を取り換えるだけで、容易に以後の地震に対応でき るため、建築構造物に永久歪みを残留されるのが防止され、建築構造物の健全性 を維持することができるという効果を奏することができる。 As is clear from the above description, according to the structure for damping the structure of the present invention, the connecting plate is provided between the ends of the beams facing each other, and the gap is provided between the ends of the beams. The inter-story deformation of the building is directly transmitted to the connecting plate, and the repeated deformation that occurs between the connected beams is absorbed by the connecting plate. Since this connecting plate penetrates into the gap, the plastic deformation caused by the bending yield of the connecting plate actively absorbs the energy. Furthermore, since the connecting plates are attached to the upper and lower ends of the beam, each plate absorbs twice as much energy as the connecting plate. Since the yield strength of this connecting plate is smaller than that of the beam, when the beam is subjected to a large deformation, the connecting plate yields and can positively absorb energy. In this way, since the connecting plate yields, it is possible to enhance the earthquake resistance of the body and enhance the safety. It is possible to prevent residual strain from occurring in the entire frame and improve the safety of the beam. By simply replacing the deformed and yielded connecting plates, it is possible to easily cope with subsequent earthquakes, so that permanent strain in the building structure is prevented from remaining and the soundness of the building structure can be maintained. It is possible to achieve the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の躯体の制震構造の一実施例の縦断面図
である。
FIG. 1 is a vertical cross-sectional view of an embodiment of a structure for damping a structure of the present invention.

【図2】図1の架構全体の横断面図である。2 is a cross-sectional view of the entire frame of FIG.

【図3】図1の架構全体、躯体、連結板の応力ー変位の
図である。
FIG. 3 is a diagram of stress-displacement of the entire frame of FIG. 1, a skeleton, and a connecting plate.

【図4】図1の地震時の断面図である。FIG. 4 is a cross-sectional view at the time of the earthquake of FIG.

【図5】図1の連結板の正面図である。5 is a front view of the connecting plate of FIG. 1. FIG.

【図6】図5の変形例の正面図である。FIG. 6 is a front view of the modified example of FIG.

【図7】図5の他の変形例の正面図である。FIG. 7 is a front view of another modified example of FIG.

【図8】従来の応力ー変位の図である。FIG. 8 is a conventional stress-displacement diagram.

【符号の説明】[Explanation of symbols]

10 躯体の制震構造 12 梁 14 端部 15 間隙 16 連結板 10 Structural control structure 12 Beams 14 Ends 15 Gap 16 Connecting plate

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 建築躯体の制震構造であって、互いに接
続される梁の端部が対向され、これら対向する梁の端部
間に間隙が設けられ、該間隙の対向する梁間に曲げ降伏
することでエネルギーを吸収する連結板が架け渡され、
該連結板は対向する梁の上下両端部にそれぞれ設けら
れ、該連結板は梁の降伏耐力より小さな降伏耐力に形成
されていることを特徴とする躯体の制震構造。
1. A vibration control structure for a building frame, wherein ends of beams connected to each other face each other, a gap is provided between the ends of the beams facing each other, and a bending yield occurs between the beams facing each other. By doing so, the connecting plate that absorbs energy is spanned,
The connecting plate is provided at both upper and lower ends of the opposing beams, and the connecting plate is formed to have a yield strength smaller than the yield strength of the beam.
JP8172891U 1991-10-08 1991-10-08 Vibration control structure of the body Pending JPH0535973U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8172891U JPH0535973U (en) 1991-10-08 1991-10-08 Vibration control structure of the body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8172891U JPH0535973U (en) 1991-10-08 1991-10-08 Vibration control structure of the body

Publications (1)

Publication Number Publication Date
JPH0535973U true JPH0535973U (en) 1993-05-18

Family

ID=13754479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8172891U Pending JPH0535973U (en) 1991-10-08 1991-10-08 Vibration control structure of the body

Country Status (1)

Country Link
JP (1) JPH0535973U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249618A (en) * 2012-05-31 2013-12-12 Kajima Corp External facing material and structure
CN105569204A (en) * 2016-02-01 2016-05-11 中国地震局工程力学研究所 Replaceable beam-column joint earthquake damage control device
CN109911767A (en) * 2019-03-26 2019-06-21 中国五冶集团有限公司 Track connecting joint structure
EP3520973A1 (en) 2018-02-05 2019-08-07 SMC Corporation Vacuum pad
EP3610994A1 (en) 2018-08-08 2020-02-19 SMC Corporation Suction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203543A (en) * 1988-02-05 1989-08-16 Kajima Corp Elasto-plastic damper
JPH02285175A (en) * 1989-04-26 1990-11-22 Shimizu Corp Response control building structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203543A (en) * 1988-02-05 1989-08-16 Kajima Corp Elasto-plastic damper
JPH02285175A (en) * 1989-04-26 1990-11-22 Shimizu Corp Response control building structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249618A (en) * 2012-05-31 2013-12-12 Kajima Corp External facing material and structure
CN105569204A (en) * 2016-02-01 2016-05-11 中国地震局工程力学研究所 Replaceable beam-column joint earthquake damage control device
CN105569204B (en) * 2016-02-01 2018-05-18 中国地震局工程力学研究所 A kind of replaceable bean column node seismic Damage control device
EP3520973A1 (en) 2018-02-05 2019-08-07 SMC Corporation Vacuum pad
EP3610994A1 (en) 2018-08-08 2020-02-19 SMC Corporation Suction device
CN109911767A (en) * 2019-03-26 2019-06-21 中国五冶集团有限公司 Track connecting joint structure

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
US5349794A (en) Wall for damping vibration
JPH09221852A (en) Vibration control device for building
JP3858432B2 (en) Vibration control method for linked structures
JPH0535973U (en) Vibration control structure of the body
JP5590994B2 (en) Seismic construction method and structure using elastoplastic brace
JP2000045560A (en) Vibration damping device and octagonal panel type damper
JP2004285599A (en) Vibration control structure of structure
JPH11152929A (en) Earthquake resistant reinforcing method for building of steel frame construction
JP2002227127A (en) Bridge and aseismatic strength reinforcing method for bridge pier
JP3744267B2 (en) Building vibration control device
JPH01102182A (en) Earthquakeproof wall
JPH04269228A (en) Connection structure of column and beam
JP6074773B2 (en) Reinforcement structure for wooden structures
JP2601439Y2 (en) Brace equipment
JP2715710B2 (en) Eccentric brace structure with vibration suppression function
JPH0733685B2 (en) Brace type flexible mixed structure with seismic energy absorption function
JP2766954B2 (en) How to design building structures
JP3837666B2 (en) Damping dampers and structures for damping structures
JP2000045563A (en) Vibration-damping wall panel
JPH0542202Y2 (en)
JPH05209469A (en) Vibration-proof structure of main body
JP2669112B2 (en) Damper for vibration isolation
JP2000204790A (en) Vibration damping building
JP3213894B2 (en) Structural members and damping structures

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970805