JPS62288270A - Damper - Google Patents

Damper

Info

Publication number
JPS62288270A
JPS62288270A JP13040586A JP13040586A JPS62288270A JP S62288270 A JPS62288270 A JP S62288270A JP 13040586 A JP13040586 A JP 13040586A JP 13040586 A JP13040586 A JP 13040586A JP S62288270 A JPS62288270 A JP S62288270A
Authority
JP
Japan
Prior art keywords
rod
damper
support plate
plate
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13040586A
Other languages
Japanese (ja)
Other versions
JPH0412793B2 (en
Inventor
須賀川 勝
康一 中村
洋 森岡
和夫 田村
和彦 前林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP13040586A priority Critical patent/JPS62288270A/en
Publication of JPS62288270A publication Critical patent/JPS62288270A/en
Publication of JPH0412793B2 publication Critical patent/JPH0412793B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、原子力発電所建屋、防災施設、社会的に重要
度の高い建物等の建物の免震に有効なダンパーに関する
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention is an effective seismic isolation system for buildings such as nuclear power plant buildings, disaster prevention facilities, and buildings of high social importance. Regarding dampers.

(従来の技術) 従来より、建物の免震構造として、上部建物と下部構造
との間に、ゴム板と鋼板とを重ねた積層ゴムと、振動を
吸収するダンパーとを組込んで、建物全体系の固有の周
期を長くし、上部建物への地震動入力の低減を図ってい
るものが知られている。上記ゴム板とダンパーとにより
撮動エネルギーを吸収するため、ダンパーが大きな減衰
能力をもてば大きな免震効果を発揮できる。
(Prior technology) Traditionally, as a base isolation structure for buildings, laminated rubber made by stacking rubber plates and steel plates and dampers to absorb vibrations are incorporated between the upper building and the lower structure, and the whole building is seismically isolated. It is known that the system's natural period is lengthened to reduce the seismic motion input to the upper building. Since the rubber plate and the damper absorb the imaging energy, if the damper has a large damping capacity, a large seismic isolation effect can be achieved.

このダンパーには、多種のものが提案されているが、鋼
材の履歴減衰を用いるのが最も経済的であり大きな減衰
力が期待できる。
Although many types of dampers have been proposed, it is most economical to use hysteresis damping of steel, and a large damping force can be expected.

そこで、従来よりダンパーとして、断面の広い(例えば
径が77m)I棒を基礎に立設して、上端を建物の下部
に取付けた筒体の内に上下動可能に挿入した片持ち梁ダ
ンパーが提案されている。
Therefore, a cantilever damper has traditionally been used as a damper, in which an I-rod with a wide cross section (for example, diameter 77 m) is erected on a base, and the upper end is inserted into a cylindrical body that is movable up and down at the bottom of the building. Proposed.

この鋼材ダンパーは地震時に塑性変形することによって
撮動エネルギーを吸収する。
This steel damper absorbs imaging energy by plastically deforming during an earthquake.

(発明が解決しようとする問題点〉 従来例の鋼材ダンパーによると、鋼棒の径が長いため初
期の曲げ剛性が大きくなり、履歴減衰が効果的に発揮す
るまで地震入力が大きくなる問題がおり、建物全体系の
初期剛性への影響が大きかった。
(Problems to be solved by the invention) According to conventional steel dampers, the initial bending stiffness is large due to the long diameter of the steel rod, and there is a problem that the seismic input becomes large until hysteresis damping becomes effective. , the influence on the initial stiffness of the entire building system was large.

本発明の目的は上記の問題を解決すると共に振動エネル
ギーの吸収能力を高めることにある。
An object of the present invention is to solve the above problems and to improve the ability to absorb vibrational energy.

(問題点を解決するための手段) 本発明は、下部構造B上に取り付ける取付は板1と、こ
の取付は板上に立設した複数の棒体3と、各棒体上に取
付け、上記取付は板と対向位置関係にある支持板4と、
この支持板上に立設したガイド部5と、上部建物B1下
部に取り付け、ガイド部を移動可能に保持する保持部6
とからなるものである。
(Means for Solving the Problems) The present invention provides mounting on the lower structure B using a plate 1, a plurality of rods 3 erected on the plate, and mounting on each rod. For installation, a support plate 4 is placed in a position opposite to the plate,
A guide part 5 is installed upright on this support plate, and a holding part 6 is attached to the lower part of the upper building B1 and holds the guide part movably.
It consists of.

(作用) 全体の断面積が大きくても、各棒体3の断面積を小さく
できるから同一断面の一部材の物に比較して曲げ剛性が
小さくなる。各棒体3が塑性変形することにより撮動エ
ネルギーを吸収する。
(Function) Even if the overall cross-sectional area is large, the cross-sectional area of each rod 3 can be made small, so the bending rigidity is lower than that of a single member with the same cross-section. Each rod 3 absorbs the imaging energy by plastically deforming.

(実施例) 第1図及び第2図において、取付は板1はアンカー2及
びボルト2aによって基礎B上に固定設置しである。取
付は板1上には複数の棒体3゜・・が立設しており、各
棒体はその径が短い丸鋼または異形棒鋼からなる。各棒
体3上には円板状の支持板4が載置し、棒体の上端に溶
接により支持板の下面を固着しである。そして第1図及
び第3図に示すように支持板4上の中心部にガイド部と
なる棒状のガイド体5が立設してあり、このガイド体の
上端の外周部にフランジ部51が形成しである。ガイド
体5は、建物B1の下部に取付けた保持部である保持枠
6内に移動可能に収納しである。このガイド体は、棒体
3の変形による上下方向の移動に対応できる。保持枠6
の承部に取付けた固定板7をアンカー8及びボルト8a
により上部建物B1の下部に固着しておる。
(Example) In FIGS. 1 and 2, the plate 1 is fixedly installed on the foundation B using anchors 2 and bolts 2a. For installation, a plurality of rods 3° are erected on the plate 1, and each rod is made of a round steel or deformed steel bar with a short diameter. A disk-shaped support plate 4 is placed on each rod 3, and the lower surface of the support plate is fixed to the upper end of the rod by welding. As shown in FIGS. 1 and 3, a rod-shaped guide body 5 serving as a guide portion is erected at the center of the support plate 4, and a flange portion 51 is formed on the outer periphery of the upper end of this guide body. It is. The guide body 5 is movably housed in a holding frame 6, which is a holding section attached to the lower part of the building B1. This guide body can accommodate vertical movement due to deformation of the rod body 3. Holding frame 6
Fixing plate 7 attached to the socket of anchor 8 and bolt 8a
It is firmly attached to the lower part of the upper building B1.

したがって、地震時において、振動方向が第4図左右方
向である場合、各棒体3の上下端が塑性変形して振動エ
ネルギーを効果的に吸収する。
Therefore, in the event of an earthquake, when the direction of vibration is the left-right direction in FIG. 4, the upper and lower ends of each rod 3 are plastically deformed to effectively absorb the vibration energy.

ここで本発明のダンパーの減衰特性に関する実験結果を
下記に示す。
Here, experimental results regarding the damping characteristics of the damper of the present invention are shown below.

まず、第5図及び第6図は静的加力及び動的加力におけ
る実験的に得られる復元力特性を示す。
First, FIGS. 5 and 6 show experimentally obtained restoring force characteristics under static loading and dynamic loading.

これらのグラフから明らかなように、復元力特性は通常
の鉄骨部材に見られる良好な紡錘形の復元特性を示して
いる。
As is clear from these graphs, the restoring force characteristics show the good spindle-shaped restoring characteristics seen in ordinary steel members.

つぎに、第7図はダンパーの水平変位と鉛直変位の関係
を示し、このグラフから明らかなようにいずれの変位も
滑かな上下方向の動きが確保されており、ダンパーは水
平変位により生ずる鉛直変位を吸収している。
Next, Figure 7 shows the relationship between the horizontal displacement and vertical displacement of the damper.As is clear from this graph, smooth vertical movement is ensured for all displacements, and the damper is absorbed.

また第8図は、変位レベルによる等価粘性減衰定数を示
すが、15cm程度の変形で35%程度の値を確保して
いる。なお、この減衰定数が大きい程地震時のダンパー
によるエネルギー吸収量は大きいことになる。
Further, FIG. 8 shows the equivalent viscous damping constant depending on the displacement level, and a value of about 35% is secured with a deformation of about 15 cm. Note that the larger the attenuation constant, the greater the amount of energy absorbed by the damper during an earthquake.

第9図では、実大クラスの建物で鋼材ダンパーに要求さ
れる地震時エネルギー吸収量(50KINE相当時:震
度7クラスの極大地震時に相当、図面では鎖線■)と本
発明のダンパーの吸収能力の比較を行っているが、8c
mPfi度の変形によって必要なエネルギー吸収量をク
リアしており、十分なエネルギー吸収性能を示しており
、実際の建物に適用が可能なことを示している。
Figure 9 shows the seismic energy absorption required for a steel damper in a full-sized building (equivalent to 50KINE: equivalent to a maximum earthquake of seismic intensity 7 class, dashed line ■ in the drawing) and the absorption capacity of the damper of the present invention. I am making a comparison, but 8c
The required amount of energy absorption was cleared by changing the mPfi degree, indicating sufficient energy absorption performance, indicating that it can be applied to actual buildings.

(発明の効果) 本発明によれば、各棒体の断面積が小さくてきるため従
来例と同一の断面であっても曲げ剛性は小さくなり、建
物全体系の初期剛性への影響が小ざく、また棒体の変形
により高いエネルギー吸収能力を確保できる。
(Effects of the Invention) According to the present invention, since the cross-sectional area of each rod becomes smaller, the bending stiffness becomes smaller even if the cross-section is the same as that of the conventional example, and the influence on the initial stiffness of the entire building system is reduced. Also, high energy absorption capacity can be ensured by deforming the rod.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は使用状態を示す一部切欠正面図、第2図は第1
図m4線断面図、 第3図は第1図m4線断面図、 第4図は地震時の変形状態を示す正面図、第5図及び第
6図は水平力と水平変位の関係をそれぞれ示すグラフ、 第7図は鉛直方向変位と水平方向変位との関係を示すグ
ラフ、 第8図は変形レベルによる等価粘性減衰定数を示すグラ
フ、 第9図は地震時のエネルギー吸収量の累計を示すグラフ
である。 1・・・取付は板、3・・・棒体、 4・・・支持板、 5・・・ガイド部、6・・・保持部
、 B・・・下部構造、B1・・・上部建物。 以上 特許出願人     清水建設株式会社)1・21ズ1 第5図 第61ヌ!
Figure 1 is a partially cutaway front view showing the state of use, Figure 2 is the
Figure 3 is a sectional view taken along line M4 in Figure 1. Figure 4 is a front view showing the state of deformation during an earthquake. Figures 5 and 6 show the relationship between horizontal force and horizontal displacement. Graph, Figure 7 is a graph showing the relationship between vertical displacement and horizontal displacement, Figure 8 is a graph showing the equivalent viscous damping constant depending on the deformation level, and Figure 9 is a graph showing the cumulative amount of energy absorbed during an earthquake. It is. 1... Attachment to plate, 3... Rod body, 4... Support plate, 5... Guide part, 6... Holding part, B... Lower structure, B1... Upper building. Patent applicant: Shimizu Corporation) 1.21z1 Figure 5, Figure 61nu!

Claims (1)

【特許請求の範囲】 下部構造上に取り付ける取付け板と、 この取付け板上に立設して複数の棒体と、 各棒体上に取付け、上記取付け板と対向位置関係にある
支持板と この支持板上に立設したガイド部と、 上部建物下部に取り付け、上記ガイド部を移動可能に保
持する保持部と からなるダンパー。
[Scope of Claims] A mounting plate attached to the lower structure; a plurality of rods erected on the mounting plate; a support plate mounted on each rod and facing the mounting plates; A damper consisting of a guide part erected on a support plate, and a holding part attached to the lower part of an upper building to movably hold the guide part.
JP13040586A 1986-06-06 1986-06-06 Damper Granted JPS62288270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13040586A JPS62288270A (en) 1986-06-06 1986-06-06 Damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13040586A JPS62288270A (en) 1986-06-06 1986-06-06 Damper

Publications (2)

Publication Number Publication Date
JPS62288270A true JPS62288270A (en) 1987-12-15
JPH0412793B2 JPH0412793B2 (en) 1992-03-05

Family

ID=15033495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13040586A Granted JPS62288270A (en) 1986-06-06 1986-06-06 Damper

Country Status (1)

Country Link
JP (1) JPS62288270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135730U (en) * 1989-04-18 1990-11-13
JP2019210596A (en) * 2018-05-31 2019-12-12 Jfeスチール株式会社 Seismic isolation damper and seismic isolation structure with the seismic isolation damper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258343A (en) * 1984-06-04 1985-12-20 多田 英之 Earthquake dampening apparatus having attenuation function
JPS614457A (en) * 1984-06-15 1986-01-10 Sankyo Seiki Mfg Co Ltd Linear actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258343A (en) * 1984-06-04 1985-12-20 多田 英之 Earthquake dampening apparatus having attenuation function
JPS614457A (en) * 1984-06-15 1986-01-10 Sankyo Seiki Mfg Co Ltd Linear actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135730U (en) * 1989-04-18 1990-11-13
JP2019210596A (en) * 2018-05-31 2019-12-12 Jfeスチール株式会社 Seismic isolation damper and seismic isolation structure with the seismic isolation damper

Also Published As

Publication number Publication date
JPH0412793B2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
JPS62288270A (en) Damper
JP2733917B2 (en) Damping device
JP2919303B2 (en) Collision mitigation damping structure, building using the structure, and damping method
JPS5918864A (en) Earthquake-proof enclosure
JPS6366987B2 (en)
JPH0262668B2 (en)
JPS62220734A (en) Vibrational energy absorbing device
JPH0259261B2 (en)
JPH0259262B2 (en)
JPS60223577A (en) Earthquake dampening apparatus
JP2669112B2 (en) Damper for vibration isolation
JPH0535973U (en) Vibration control structure of the body
JPH0335472B2 (en)
JPS62242145A (en) Damper for earthquake proofing use
JP2000328811A (en) Vibrational energy absorber using wire bundle
JPH01247633A (en) Damping mechanism for vibrationproof device
JP3254322B2 (en) Seismic isolation device
JPS62189263A (en) Construction of building
JPS63293284A (en) Vibration damping building
JPH0579220A (en) Frame incorporated damping device
JPH03194077A (en) Vibration damping system for building
JP2766885B2 (en) Vibration control method for buildings
JPH0674667B2 (en) Damping mechanism and building having damping mechanism
JPH04194180A (en) Camper against axial expansion-vibration of column in structure
JPS61162683A (en) Structural member imparting vibration attenuation capacity to structure