JPH04111810A - Underwater earthquake-isolating method and structure - Google Patents
Underwater earthquake-isolating method and structureInfo
- Publication number
- JPH04111810A JPH04111810A JP22896390A JP22896390A JPH04111810A JP H04111810 A JPH04111810 A JP H04111810A JP 22896390 A JP22896390 A JP 22896390A JP 22896390 A JP22896390 A JP 22896390A JP H04111810 A JPH04111810 A JP H04111810A
- Authority
- JP
- Japan
- Prior art keywords
- building
- seismic isolation
- underwater
- earthquake
- retaining wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000010276 construction Methods 0.000 claims abstract description 11
- 238000002955 isolation Methods 0.000 claims description 50
- 239000004567 concrete Substances 0.000 abstract description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 abstract description 4
- 230000003014 reinforcing effect Effects 0.000 abstract description 4
- 238000009415 formwork Methods 0.000 abstract description 3
- 210000001520 comb Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011150 reinforced concrete Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 241001417494 Sciaenidae Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
Landscapes
- Foundations (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野]
本発明は、地震等による振動工不ル十−を吸収する免震
装置を建屋に設ける場合に用いる水中免震構法及び水中
免震構造に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an underwater seismic isolation construction method and an underwater seismic isolation structure used when a building is provided with a seismic isolation device that absorbs vibrations caused by earthquakes, etc. It is something.
[従来の技術]
近年、免震構造システムは事務所ビル、マンジョンなと
に実際に採用されるケースが増えてきている。それらの
免震構造システムは一般に良く知られているように、水
平剛性の非常に小さい積層ゴムを用いて、建物の固有周
期を伸ばし、大きな加速度が建物に伝わらないようにし
ている。さらには、上記積層コムに粘性ダンパー、鋼材
タンパ−鉛タンバー或は摩擦ダンパーなとの免震装置を
組み合わせて、中小から大地震の範囲に至るまで建物の
加速度応答か小さくなるように工夫されている。また、
積層コム自体に減衰性能を有する高減衰積層コムを用い
ているものも見られる。[Prior Art] In recent years, seismic isolation structural systems have been increasingly used in office buildings, condominiums, and the like. As is generally well known, these seismic isolation structural systems use laminated rubber with very low horizontal stiffness to extend the building's natural period and prevent large accelerations from being transmitted to the building. Furthermore, by combining the above laminated combs with seismic isolation devices such as viscous dampers, steel tampers, lead tambours, or friction dampers, the building's acceleration response is reduced from small to large earthquakes. There is. Also,
Some use high-attenuation laminated combs that have attenuation performance in the laminated combs themselves.
このような免震装置を用いた免震構造は、建屋の側面あ
るいは第2図に示すように下面に単に免震装置1を設け
た構造形式となっている。符号2は建屋、符号3は地盤
である。A seismic isolation structure using such a seismic isolation device has a structure in which the seismic isolation device 1 is simply provided on the side surface of the building or on the bottom surface as shown in FIG. Reference numeral 2 is the building, and reference numeral 3 is the ground.
[発明か解決しようとする課題]
しかしなから、従来における免震装置は非常に高額であ
るため、建築構造物に免震装置を設けると施工経費に高
額を要するという問題点かあった。[Problems to be Solved by the Invention] However, since conventional seismic isolation devices are very expensive, there is a problem in that installing a seismic isolation device in a building structure requires high construction costs.
本発明は斯かる問題点に鑑みてなされたものであり、そ
の課題とするところは、従来技術に比べて施工経費を軽
減することができる水中免震構法及び水中免震構造を提
供する点にある。The present invention has been made in view of such problems, and its object is to provide an underwater base isolation method and an underwater base isolation structure that can reduce construction costs compared to conventional techniques. be.
1課題を解決するための手段]
請求項1記載の発明の要旨は、下面に免震装置を設けて
なる建屋を水の中に入れ、当該建屋に生じる浮力により
前記免震装置に加わる荷重を軽減する水中免震構法に存
する。[Means for Solving Problem 1] The gist of the invention according to claim 1 is to immerse a building provided with a seismic isolation device on the lower surface into water, and to reduce the load applied to the seismic isolation device due to the buoyancy generated in the building. This is due to the underwater seismic isolation construction method that reduces the
請求項2記載の発明の要旨は、上面に開口部を有する有
底箱状体と、当該有底箱状体に入れてなる建屋と、前記
建屋の下面と前記有底箱状体の底部上面との間に設けて
なる免震装置と、前記建屋と前記箱状体との間隙に存す
る水とを備えた水中免震構造に存する。The gist of the invention according to claim 2 is to provide a bottomed box-like body having an opening on the top surface, a building housed in the bottomed box-like body, and a lower surface of the building and a bottom upper surface of the bottomed box-like body. The underwater seismic isolation structure includes a seismic isolation device provided between the building and the box-shaped body, and water existing in the gap between the building and the box-shaped body.
1作用]
水は、建屋に浮力を生じさせ、当該浮力により免震装置
に加わる荷重を軽減する。したがって、建屋に設けるへ
き免震装置の個数を減少させることかできる。1 Effect] Water causes buoyancy in the building, and the buoyancy reduces the load applied to the seismic isolation device. Therefore, the number of seismic isolation devices installed in the building can be reduced.
それ故、本発明は免震装置を設けた建築構造物の施工経
費を軽減することができる。Therefore, the present invention can reduce the construction cost of a building structure provided with a seismic isolation device.
[実施例]
以下、本発明の実施例について図面を参照して詳細に説
明する。たたし、本実施例に記載されている構成部品の
寸法、材質、形状、その相対配置などは、特に特定的な
記載かないかぎりは、この発明の範囲をそれらのみに限
定する趣旨のものではなく、単なる説明例にすぎない。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this example are not intended to limit the scope of this invention to only those, unless specifically stated. It's just an illustrative example.
本実施例に係る水中免震構造について第1図を用いて説
明する。The underwater seismic isolation structure according to this embodiment will be explained using FIG. 1.
当該水中免震構造Aは、第1図に示すように原子力発電
所に適用したものであり、地盤G中に構築した有底箱状
体10と、当該有底箱状体10に一部を入れてなる原子
力発電所の建屋20と、当該建屋20と前記有底箱状体
10との間に設けてなる複数の免震装置11と、前記建
屋20と前記箱状体10との間隙に存する水30とから
なるものである。The underwater seismic isolation structure A is applied to a nuclear power plant as shown in Fig. 1, and consists of a box-like body 10 with a bottom built in the ground G and a part of the box-like body 10 with a bottom. a building 20 of a nuclear power plant, a plurality of seismic isolation devices 11 provided between the building 20 and the bottomed box-like body 10, and a gap between the building 20 and the box-like body 10. It consists of 30% water.
前記有底箱状体10は、平面視において外輪郭四角形の
鉄筋コンクリ−1・製の擁壁10aと、当該擁壁10a
に連続してなる鉄筋コンクリート製の基礎板10bとか
らなるものである。前記擁壁10aの内寸は前記建屋2
0の外寸よりも大きいものである。前記基礎板Jobは
、平面視四角形の板状体であり、その上面の所要箇所に
ペデスタルlocを設け、また周縁部から前記擁壁10
aが立ち上がっている。The bottomed box-like body 10 includes a retaining wall 10a made of reinforced concrete 1 and having a rectangular outer contour in plan view, and a retaining wall 10a made of reinforced concrete.
It consists of a reinforced concrete foundation plate 10b which is continuous with the base plate 10b. The inner dimensions of the retaining wall 10a are those of the building 2.
It is larger than the outer size of 0. The foundation plate Job is a rectangular plate-like body in plan view, and has pedestal locs provided at required locations on its upper surface, and also connects the retaining wall 10 from the periphery.
A is standing up.
建屋20は、原子力発電装置を内設しており、その側壁
及び底版を水密性コンクリートにより構築したものであ
る。The building 20 houses a nuclear power generation device, and its side walls and bottom slab are constructed of watertight concrete.
前記免震装置11は、−L面を前記建屋20の下面に固
定し、下面を前記基礎板Jobに設けてなるペデスタル
]Ocに固定してなるものである。The seismic isolation device 11 has its −L surface fixed to the lower surface of the building 20, and its lower surface fixed to the pedestal Oc provided on the base plate Job.
なお、前記免震装置11には積層ゴム、オイルダンパー
、鋼材タンパ−1若しくは鉛入り積層コム、又はそれら
の組み合わせ等、本発明を実施するうえて好適なものを
用いれば良い。The seismic isolation device 11 may be made of laminated rubber, an oil damper, a steel tamper 1, a lead-containing laminated comb, or a combination thereof, which is suitable for carrying out the present invention.
次に、以−Lのように構成した水中免震構造の水中免震
構法について説明する。Next, the underwater base isolation construction method of the underwater base isolation structure constructed as shown below will be explained.
まず、前記原子力発電施設を構築すべき地盤Gを根切り
した後、鉄筋を組み立てコンクリートを打設して前記基
礎板10bを構築する。First, after cutting the ground G on which the nuclear power generation facility is to be built, reinforcing bars are assembled and concrete is poured to construct the foundation plate 10b.
次いで、前記擁壁10aの型枠工を行い、係る型枠内に
、鉄筋を組み立てた後コンクリートを打設して擁壁10
aを構築する。Next, formwork for the retaining wall 10a is carried out, and after assembling reinforcing bars in the formwork, concrete is poured to complete the retaining wall 10.
Construct a.
次いで、前記基礎板]、 Obに設けてなるペデスタル
IOcに複数の免震装置11の下面を固設する。Next, the lower surfaces of the plurality of seismic isolation devices 11 are fixed to the pedestal IOc provided on the base plate Ob.
次いで、前記建屋20を前記各免震装置11の上に構築
する。Next, the building 20 is constructed on top of each of the seismic isolation devices 11.
次いで、前記建屋20と前記有底箱状体10との間隙に
注水する。Next, water is poured into the gap between the building 20 and the bottomed box-like body 10.
以上の工程により前記水中免震構造Aを構築することか
できる。The underwater seismic isolation structure A can be constructed through the above steps.
次ぎに、以−Lのように構成した水中免震構法及び水中
免震構造Aの作用効果について説明する。Next, the effects of the underwater seismic isolation method and the underwater seismic isolation structure A configured as shown below will be explained.
■ 免震装置11のコスト低減効果
前記建屋20と前記有底箱状体10との間隙に注水した
水30は、建屋20に浮力を生じさせ、当該浮力により
免震装置11に加わる鉛直荷重を軽減する。1.たがっ
て、建屋20に設けるべき免震装置11の個数を減少さ
せることができる。■ Cost reduction effect of the seismic isolation device 11 The water 30 injected into the gap between the building 20 and the bottomed box-like body 10 creates buoyancy in the building 20, and the buoyancy reduces the vertical load applied to the seismic isolation device 11. Reduce. 1. Therefore, the number of seismic isolation devices 11 to be provided in the building 20 can be reduced.
例えば、外寸80mX80mで建屋重量200.000
tの原子力発電所を免震する場合、定格荷重500t
の免震装置11を用いると400個必要となる。建屋2
0を20mの深さまで沈めると、128.000 tの
浮力が建屋20に作用するので建屋20の見掛けの重量
は72.000 tとなり、免震装置11の個数は40
0個から144個に低減することかできる。これは、免
震装置11のコストに換算すると、定格荷重1(あたり
の価格を10.000円と仮定すると、12億8,00
0万円のコスト低減となる。For example, the outside size is 80m x 80m and the building weight is 200,000.
When seismically isolating a nuclear power plant of 500 tons, the rated load is 500 tons.
400 seismic isolation devices 11 are required. Building 2
When 0 is sunk to a depth of 20 m, a buoyant force of 128,000 t acts on the building 20, so the apparent weight of the building 20 is 72,000 t, and the number of seismic isolation devices 11 is 40.
The number can be reduced from 0 to 144. When converted into the cost of the seismic isolation device 11, the rated load 1 (assuming the price per unit is 10,000 yen) is 1,280,000 yen.
This results in a cost reduction of 0,000 yen.
■ 防災上のメリット
前記建屋20の外周を水30か囲繞しているので防火対
策は一切不要となる。また、人間か近づくのは事実−ヒ
不可能なので、テロ行為等の人災に対しても有効である
。■ Advantages in terms of disaster prevention Since the outer periphery of the building 20 is surrounded by water 30, no fire prevention measures are required. Furthermore, since it is virtually impossible for humans to approach, it is also effective against man-made disasters such as acts of terrorism.
■ 擁壁10aの設計合理化
埋込みの深い建物の場合、前記擁壁10aの設計が土圧
荷重の増大により困難になるか、水圧が加わるので、前
記擁壁10aに加わる応力が大幅に緩和され、擁壁10
aの設計合理化か可能となる。しかるに、擁壁10a構
築に要するコンクリート打設量、配筋量等を軽減するこ
とができ、結実施工経費を低減することかできる。■ Rationalizing the design of the retaining wall 10a In the case of a building with deep embedding, the design of the retaining wall 10a becomes difficult due to an increase in earth pressure load, or water pressure is applied, so the stress applied to the retaining wall 10a is significantly alleviated. Retaining wall 10
It becomes possible to rationalize the design of a. However, it is possible to reduce the amount of concrete placed, the amount of reinforcement, etc. required to construct the retaining wall 10a, and the construction cost can be reduced.
■ 積層コムの耐久性能の向上
積層ゴムの劣化には大気中の酸素、オゾンが影響するこ
とが知られているか、本構法の採用により積層ゴムは大
気と一切遮断されるので、これらの要因による劣化を大
幅に抑制することが可能となる。■ Improving the durability of laminated combs It is known that the deterioration of laminated rubber is affected by oxygen and ozone in the atmosphere. By adopting this construction method, laminated rubber is completely isolated from the atmosphere, so these factors can It becomes possible to significantly suppress deterioration.
なお、本実施例においては前記擁壁10aを前記基礎板
10bの周縁部に垂設してなるが、本発明の範囲をそれ
に限定する趣旨ではなく、本発明においては他の構成、
例えば斜設する方法等、本発明を実施するうえで好適な
ものを用いることができる。In this embodiment, the retaining wall 10a is vertically disposed on the periphery of the base plate 10b, but this is not intended to limit the scope of the present invention, and other configurations,
For example, a method suitable for carrying out the present invention, such as an oblique installation method, can be used.
[発明の効果]
本発明は、建屋に設けるべき免震装置の個数を減少させ
ることにより、免震装置を設けた建築構造物の施工経費
を軽減することができる。[Effects of the Invention] The present invention can reduce the construction cost of a building structure provided with a seismic isolation device by reducing the number of seismic isolation devices to be provided in a building.
第1図は本発明の一実施例に係る水中免震構造の断面図
であり、第2図は従来例に係る免震構造の断面図である
。
A・ ・・水中免震構造、
10・・・・・有底箱状体、11・・・免震装置、20
建屋、30 ・水。FIG. 1 is a sectional view of an underwater seismic isolation structure according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional seismic isolation structure. A...Underwater base isolation structure, 10...Bottomed box-shaped body, 11...Seismic isolation device, 20
Building, 30 ・Water.
Claims (2)
、当該建屋に生じる浮力により前記免震装置に加わる荷
重を軽減する水中免震構法。(1) An underwater seismic isolation construction method in which a building with a seismic isolation device installed on the lower surface is placed in water, and the buoyancy generated in the building reduces the load applied to the seismic isolation device.
状体に入れてなる建屋と、前記建屋の下面と前記有底箱
状体の底部上面との間に設けてなる免震装置と、前記建
屋と前記箱状体との間隙に存する水とを備えた水中免震
構造。(2) A bottomed box-like body having an opening on the top surface, a building enclosed in the bottomed box-like body, and a building provided between the lower surface of the building and the bottom upper surface of the bottomed box-like body. An underwater seismic isolation structure comprising a seismic isolation device and water existing in a gap between the building and the box-shaped body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22896390A JPH04111810A (en) | 1990-08-30 | 1990-08-30 | Underwater earthquake-isolating method and structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22896390A JPH04111810A (en) | 1990-08-30 | 1990-08-30 | Underwater earthquake-isolating method and structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04111810A true JPH04111810A (en) | 1992-04-13 |
Family
ID=16884611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22896390A Pending JPH04111810A (en) | 1990-08-30 | 1990-08-30 | Underwater earthquake-isolating method and structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04111810A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002047637A (en) * | 2000-08-01 | 2002-02-15 | Tokyu Constr Co Ltd | Stabilizing construction method and device for floating body structure |
JP2002276196A (en) * | 2001-03-14 | 2002-09-25 | Nishimatsu Constr Co Ltd | Seismically isolated structure |
JP2007211445A (en) * | 2006-02-08 | 2007-08-23 | Shimizu Corp | Floating body type base-isolated structure |
JP2007253968A (en) * | 2006-03-22 | 2007-10-04 | Nishimatsu Constr Co Ltd | Earthquake-isolating device, and floating roof type tank |
JP2010248894A (en) * | 2009-03-27 | 2010-11-04 | Iwao Yanase | Construction method and device for earthquake avoidance sliding foundation |
JP2016014237A (en) * | 2014-07-01 | 2016-01-28 | 清水建設株式会社 | Position restoration method for seismically isolated structure |
-
1990
- 1990-08-30 JP JP22896390A patent/JPH04111810A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002047637A (en) * | 2000-08-01 | 2002-02-15 | Tokyu Constr Co Ltd | Stabilizing construction method and device for floating body structure |
JP4702986B2 (en) * | 2000-08-01 | 2011-06-15 | 東急建設株式会社 | Floating structure stabilization method and equipment |
JP2002276196A (en) * | 2001-03-14 | 2002-09-25 | Nishimatsu Constr Co Ltd | Seismically isolated structure |
JP2007211445A (en) * | 2006-02-08 | 2007-08-23 | Shimizu Corp | Floating body type base-isolated structure |
JP2007253968A (en) * | 2006-03-22 | 2007-10-04 | Nishimatsu Constr Co Ltd | Earthquake-isolating device, and floating roof type tank |
JP2010248894A (en) * | 2009-03-27 | 2010-11-04 | Iwao Yanase | Construction method and device for earthquake avoidance sliding foundation |
JP2016014237A (en) * | 2014-07-01 | 2016-01-28 | 清水建設株式会社 | Position restoration method for seismically isolated structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gueraud et al. | Seismic isolation using sliding-elastomer bearing pads | |
JP2009007894A (en) | Ground liquefaction preventing method, liquefaction registant ground, and building base part structure | |
JPS5963592A (en) | Earthquake-proof support structure for solid reactor | |
JP5621101B1 (en) | Seismic foundation for buildings | |
JPH04111810A (en) | Underwater earthquake-isolating method and structure | |
US20040068125A1 (en) | Foundation building system with antiseismic plates | |
JP2004526076A5 (en) | ||
US4587779A (en) | System for protecting a body from motions transmitted through the ground | |
Pall et al. | Seismic response of a friction-base-isolated house in Montreal | |
JP3074572B2 (en) | Seismic isolation support structure for low-load structures | |
Olariu et al. | Base isolation for seismic retrofitting of existing structures | |
JPH0447116B2 (en) | ||
Paul et al. | Seismic performance and economic feasibility of structures by optimal positioning of combined base isolation systems | |
Hidayaty et al. | Numerical analysis of viscous wall dampers on steel frame | |
Rashidov et al. | Modern requirements for the design of earthquakeresistant buildings | |
CA1160650A (en) | System for protecting a body from motions transmitted through the ground | |
JP2022150598A (en) | Base-isolated building | |
JP7413153B2 (en) | Reactor building structure | |
Sarrazin et al. | Design of a base isolated confined masonry building | |
Pankar et al. | SUITABILITY OF DIFFERENT BASE ISOLATION SYSTEMS ACCORDING TO LENGTH TO WIDTH RATIO OF HIGH-RISE BUILDINGS | |
JP2023056088A (en) | Base isolation building | |
Khan et al. | Seismic behavior of base isolated buildings with soft story for Dhaka region | |
Taniwangsa | Design considerations for a base-isolated demonstration building | |
Mallikarjun et al. | A Study on Dynamic Response of High-Rise Buildings using Lead Rubber Bearing Isolator | |
JPS6338112B2 (en) |