JP4621332B2 - Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios - Google Patents

Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios Download PDF

Info

Publication number
JP4621332B2
JP4621332B2 JP2000151991A JP2000151991A JP4621332B2 JP 4621332 B2 JP4621332 B2 JP 4621332B2 JP 2000151991 A JP2000151991 A JP 2000151991A JP 2000151991 A JP2000151991 A JP 2000151991A JP 4621332 B2 JP4621332 B2 JP 4621332B2
Authority
JP
Japan
Prior art keywords
seismic isolation
rise building
low
aspect ratio
rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000151991A
Other languages
Japanese (ja)
Other versions
JP2001329716A (en
Inventor
雅彦 東野
覚 相沢
弘樹 濱口
敬三 岩下
雅史 山本
長仁 木林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2000151991A priority Critical patent/JP4621332B2/en
Publication of JP2001329716A publication Critical patent/JP2001329716A/en
Application granted granted Critical
Publication of JP4621332B2 publication Critical patent/JP4621332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
この発明は、地震時にロッキング振動に伴う引き抜き力(浮き上がり現象)が発生する高層建物又はアスペクト比が大きい低層建物(以下適宜、高層建物等と云う)の免震方法及び免震構造の技術分野に属し、更に云えば、汎用の積層ゴム等の免震装置を使用して実施できる高層建物等の免震方法及び免震構造に関する。
【0002】
【従来の技術】
従来、地震時のロッキング振動に伴う引き抜き力が発生する高層建物等の免震方法及び免震構造の技術としては、例えば、実公平6−18996号公報、特許第2631486号公報(平成9年7月16日発行)等に種々開示されて公知である。
【0003】
前記公報に開示された従来技術はいずれも、図7Aに示したように、建物aが水平方向に大きく変位することを許容する技術思想に立脚しており、上下方向にはできるだけ変位を生じさせないため、建物aとこれを支持する基礎bとの接点を上下方向に緊結した構造を基本としている。
【0004】
【本発明が解決しようとする課題】
しかしながら、前記高層建物等の場合、地震時の動きは、図7Bに示したように、上下方向の変位を基本とするロッキング振動が支配的となり、免震装置cに大きな引き抜き力が作用する。そのため前記従来技術のように建物aと基礎bとを緊結した構造の場合には、前記引き抜き力に耐える免震装置c及び基礎bが必要となり、多数の棒状部材で結合したり、或いは転倒防止用の積層ゴム体を併用するほかない。その上、建物aの柱にも同様な引き抜き力が作用するから当該柱もそれなりに高強度な構造に構築する必要があり、コストが大変嵩むという問題があった。
【0005】
また、都市部の建物のように隣接する建物との間隔が少ない場合には、免震層が大変形を起こすと地表部分において隣接する建物へ衝突し二次災害を起こす危険性もある。
【0006】
ところで、近年、本出願人は、特願平11−42759号(平成11年2月22日付け出願)に開示しているように、前記高層建物等とこれを支持する支持版との接点を上下方向に緊結せず、上下方向の変位を基本とするロッキング振動に伴う引き抜き力を許容する免震方法及び免震構造を開発した。この原理思想は、出願明細書の段落[0017]〜[0021]と図面の図4に記載したとおりである。
【0007】
しかしながら、前記ロッキング振動に伴う引き抜き力(浮き上がり現象)を許容する免震方法及び免震構造を、汎用の積層ゴム等の免震装置を使用して実施する技術は、未だ開発されていない。
【0008】
本発明の目的は、地震時にロッキング振動に伴う引き抜き力が発生する高層建物等の免震層において、引き抜き力が発生する部位に滑り支承を設置し、引き抜き力が発生しない部位に汎用の免震装置を配置して当該引き抜き力の影響を受けない免震方法及び免震構造を提供することである。
【0009】
本発明の次の目的は、高層建物等の柱、基礎構造物、ひいては免震装置に引き抜き力が発生しないため、それらの設計を簡易に行え、免震装置周辺部材の設計、施工の大幅な合理化を図れ、経済的に非常に優れた免震方法及び免震構造を提供することである。
【0010】
上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る高層建物又はアスペクト比が大きい低層建物の免震方法は、
地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震方法であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容する構成の滑り支承を設置すると共に、引き抜き力が発生しない部位には免震装置を設置することを特徴とする。
【0011】
請求項2に記載した発明に係る高層建物又はアスペクト比が大きい低層建物の免震方法は、地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震方法であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容し、当該高層建物又はアスペクト比が大きい低層建物の復元時の衝撃を吸収、緩和する構成の滑り支承を設置すると共に、引き抜き力が発生しない部位には免震装置を設置することを特徴とする。
【0012】
請求項3に記載した発明に係る高層建物又はアスペクト比が大きい低層建物の免震構造は、地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震構造であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容する構成の滑り支承が設置され、引き抜き力が発生しない部位には免震装置が設置されていることを特徴とする。
【0013】
請求項4に記載した発明に係る高層建物又はアスペクト比が大きい低層建物の免震構造は、地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震構造であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容し、当該高層建物又はアスペクト比が大きい低層建物の復元時の衝撃を吸収、緩和する構成の滑り支承が設置され、引き抜き力が発生しない部位には免震装置が設置されていることを特徴とする。
【0014】
請求項5に記載した発明は、請求項4に記載した高層建物又はアスペクト比が大きい低層建物の免震構造において、前記滑り支承は、鉛直方向に離間可能な滑り材と相手部材とから成り、前記滑り材は高層建物又はアスペクト比が大きい低層建物と、基礎構造物のいずれか一方へ設けられ、前記相手部材は他方へ設けられていること、前記滑り材と相手部材のいずれか一方、又は双方に、高層建物等の復元時の衝撃を吸収、緩和する弾性部材が設けられていることを特徴とする。
【0015】
請求項6に記載した発明は、請求項5に記載した高層建物又はアスペクト比が大きい低層建物の免震構造において、前記弾性部材は、ゴム、積層ゴム、若しくは鉛直バネ、又はこれらの組み合わせであることを特徴とする。
【0016】
【発明の実施の形態、及び実施例】
図1と図2は、請求項1と請求項3に記載した高層建物等1の免震方法及び免震構造の実施形態を示している。
【0017】
この免震構造20は、地震時にロッキング振動に伴う引き抜き力が発生する高層建物等1に好適に実施され、前記高層建物等1の免震層2において地震時にロッキング振動に伴う引き抜き力が発生する部位Xに、引き抜き力を基礎構造物3へ伝達せずに高層建物等1の浮き上がりを許容する構成の滑り支承4が設置されている。引き抜き力が発生しない部位Yには免震装置5が設置されている(請求項3記載の発明)。
【0018】
前記滑り支承4と免震装置5は、高層建物等1の柱1aの直下位置に設置することが好ましいが、これに限定されない。
【0019】
前記滑り支承4は、図2に示したように、鉛直方向に離間可能な滑り材8と相手部材9とから成り、前記滑り材8は高層建物等1側のフーチング6へ設けられ、前記相手部材9は基礎構造物3側のフーチング7へ設けられている。また、前記滑り材8の上方には、金属板11を介して、主に前記滑り材8が地震等の水平力が発生した場合にスムーズに動きだすために作用するゴム等の緩和部材10が設けられている。更に、前記緩和部材10の上面は、アンカーボルト14により高層建物等1側のフーチング6に緊結された取付プレート12の下面と強固に密着されている。前記相手部材9の下面はやはり、アンカーボルト14により基礎構造物3側のフーチング7に緊結された取付プレート13の上面と強固に密着されている。なお、前記滑り材8を基礎構造物3側へ設け、相手部材9を高層建物等1側へ設けて実施することもできる。因みに、図中の符号3aは、支持杭を示している。
【0020】
前記免震装置5は、金属板とゴムを交互に積層して構成された所謂積層ゴムであり格別新規なものではない。よって、詳細図は省略する。
【0021】
前記免震構造20を施工するための免震工法は、前記高層建物等1の免震層2において地震時にロッキング振動に伴う引き抜き力が発生する部位Xに、引き抜き力を基礎構造物3へ伝達せずに高層建物等1の浮き上がりを許容する構成の前記滑り支承4を設置すると共に、引き抜き力が発生しない部位Yには前記免震装置5を設置して実施する(請求項1記載の発明)。
【0022】
地震時にロッキング振動に伴う引き抜き力が発生する部位Xは、本実施形態では高層建物等1の四隅とし計4体の滑り支承4を設置しているが、これに限定されない。当該部位Xは、高層建物等1のアスペクト比などから構造設計上設定し、例えば、図3A、Bに示したような箇所で実施する場合もある。ちなみに、図3Aは、前記部位Xを高層建物等1のコーナー部とし計12体の滑り支承4を設置して実施しており、図3Bは、前記部位Xを高層建物等1の外周部とし計16体の滑り支承4を設置して実施している。以下の異なる実施形態についても同様の技術思想とする。
【0023】
したがって、請求項1と請求項3記載の高層建物等の免震方法及び免震構造は、ロッキング振動に伴う引き抜き力が発生しないレベルの地震に対しては、前記滑り支承4は、前記免震装置5とともに高層建物等1の長期荷重を支持すると同時に滑り機構により免震装置として機能するため、引き抜き抵抗力を持たない前記免震装置5と合わせて安定した免震構造20を提供することができる。
【0024】
また、ロッキング振動に伴う引き抜き力が発生する大きな地震に対しては、図4に示したように、前記滑り支承4の滑り材8と相手部材9は離間して引き抜き力は基礎構造物3へ一切伝達せずに高層建物等1の浮き上がりを許容し、それに伴い高層建物等1の重心が上下に動き、もって地震により高層建物等1に入るエネルギーを消費させる免震構造20を提供することができる。
【0025】
よって、前記免震装置(積層ゴム)5はもちろん、その周辺部材へ引き抜き抵抗力に伴う反力が発生しないため、前記免震装置5は汎用の簡易な構造で実施できるし、その周辺部材の設計を簡易に行い得る。
【0026】
なお、前記滑り支承4の構成は図示例に限定されない。前記滑り材8と相手部材9とが離間可能な構成であれば、ベアリングを用いた滑り支承でも好適に実施することができる。
【0027】
図5A、Bは、請求項2と請求項4に記載した高層建物等1の免震方法及び免震構造の実施形態を示している。
【0028】
この免震構造30は、前記高層建物等1の免震層2において地震時にロッキング振動に伴う引き抜き力が発生する部位Xに、引き抜き力を基礎構造物3へ伝達せずに高層建物等1の浮き上がりを許容し、当該高層建物等1の復元時の衝撃を吸収、緩和する構成の滑り支承15が設置されている。引き抜き力が発生しない部位Yには前記免震装置5が設置されている(請求項4記載の発明)。
【0029】
この免震構造30は、前記免震構造20と比して、滑り支承の構成のみが相違する。すなわち、図5に示した滑り支承15は、図2に示した滑り支承4と比して、高層建物等1の復元時の衝撃を吸収、緩和する弾性部材16が設けられていることを特徴とする(請求項5記載の発明)。具体的に前記滑り支承15は、緩和部材10の上面に金属板11を取り付け、該金属板11と上部取付プレート12との間に皿バネ等の鉛直バネ(弾性部材)16が設けられていることを特徴とする(請求項6記載の発明)。
【0030】
よって、前記滑り支承15を用いた免震構造は、長期荷重支持状態では前記鉛直バネ16に初期圧縮力がかかった状態とされている。なお、前記鉛直バネ16の中心部分には、せん断力を伝達するとともに鉛直変形を許容するダボピン17が設けられている。
【0031】
前記免震構造30を施工するための免震工法は、前記高層建物等1の免震層2において地震時にロッキング振動に伴う引き抜き力が発生する部位Xに、引き抜き力を基礎構造物3へ伝達せずに高層建物等1の浮き上がりを許容し、当該高層建物等の復元時の衝撃を吸収、緩和する構成の前記滑り支承15を設置すると共に、引き抜き力が発生しない部位には前記免震装置5を設置して実施する(請求項2記載の発明)。
【0032】
したがって、請求項4記載の免震構造30は、前記請求項3記載の免震構造20と比して、上記した略同様の作用効果を奏するほか、引き抜き力が作用する地震が発生しても、初期圧縮力より小さければ、前記滑り支承15は、図5Bに示したような変形となり、前記滑り材8と相手部材9は離間せずに安定した浮き上がり状態を保持することができる。
【0033】
また、前記引き抜き力が初期圧縮力より大きければ、請求項2記載の免震構造20と同様に前記滑り支承15の滑り材8と相手部材9は離間するが、前記滑り支承15に設けられた鉛直バネ(弾性部材)16の作用により、前記ロッキング振動に伴う高層建物等1の復元時の衝撃を吸収、緩和することができ、当該滑り支承15及びその周辺部材の破損等を極力抑え、恒久的な免震構造を提供することができる。
【0034】
図6A、Bは、請求項2と請求項4に記載した高層建物等1の免震方法及び免震構造の異なる実施形態を示している。
【0035】
この免震構造40は、前記免震構造30と比して、滑り支承の構成のみが相違する。すなわち、図6に示した滑り支承18は、図5に示した滑り支承15と比して、緩和部材10を不要とし、前記鉛直バネ16の代わりに、鉛直剛性を十分に柔らかくして直列に繋いだやや厚めのゴム19(弾性部材)が設けられていることを特徴とする(請求項5、6記載の発明)。
【0036】
よって、前記滑り支承18を用いた免震構造は、長期荷重支持状態では前記ゴム19に初期圧縮力がかかった状態とされている。
【0037】
したがって、この免震構造40は、前記免震構造30と略同様の作用効果を奏する。すなわち、引き抜き力が作用する地震が発生しても、初期圧縮力より小さければ、前記滑り支承18は、図6Bに示したような変形となり、前記滑り材8と相手部材9は離間せずに安定した浮き上がり状態を保持することができる。
【0038】
また、前記引き抜き力が初期圧縮力より大きければ、請求項2記載の免震構造20と同様に前記滑り支承18の滑り材8と相手部材9は離間するが、前記滑り支承18に設けられたゴム(弾性部材)19の作用により、前記ロッキング振動に伴う高層建物等1の復元時の衝撃を吸収、緩和することができ、当該滑り支承18及びその周辺部材の破損等を極力抑え、恒久的な免震構造を提供することができる。
【0039】
【本発明の奏する効果】
請求項1〜6に記載した高層建物等の免震方法及び免震構造によれば、
1)ロッキング振動に伴う引き抜き力が発生しないレベルの地震に対しては、滑り支承は、免震装置とともに高層建物等の長期荷重を支持すると同時に滑り機構により免震装置として機能するため、引き抜き抵抗力を持たない免震装置と合わせて安定した免震方法及び免震構造を提供することができる。
2)ロッキング振動に伴う引き抜き力が発生する大きな地震に対しては、滑り支承の滑り材と相手部材は離間して引き抜き力は基礎構造物へ一切伝達せずに高層建物等の浮き上がりを許容し、それに伴い高層建物等の重心が上下に動き、もって地震により高層建物等に入るエネルギーを消費させる免震方法及び免震構造を提供することができる。
3)高層建物等の柱、基礎構造物、ひいては免震装置に引き抜き力が発生しないため、それらを損傷させることは皆無である。それに伴い、汎用の積層ゴム等の免震装置で実施でき、前記免震装置等の設計を簡易に行え、免震装置周辺部材の設計、施工の大幅な合理化を図れ、経済的に非常に優れた免震構造を提供することができる。
4)滑り支承に設けられた鉛直バネ、ゴム等の弾性部材により初期圧縮力がかかった免震構造の場合は、引き抜き力が作用する地震が発生しても、前記初期圧縮力より小さければ、前記滑り支承は、前記滑り材と相手部材は離間せずに全体として安定した浮き上がり状態を保持する免震方法及び免震構造を提供することができる。また、ロッキング振動に伴う高層建物等の復元時の衝撃を吸収、緩和することができ、当該滑り支承及びその周辺部材の破損等を極力抑え、恒久的な免震構造を提供することができる。
【図面の簡単な説明】
【図1】本発明にかかる高層建物等の免震構造の実施形態を概略的に示した平面図である。
【図2】本発明にかかる高層建物等の免震構造の滑り支承を示した立面図である。
【図3】A、Bはそれぞれ、本発明にかかる高層建物等の免震構造の異なる実施形態を概略的に示した平面図である。
【図4】図2に示した滑り支承に引き抜き力が生じた状態を示した立面図である。
【図5】Aは、本発明にかかる高層建物等の免震構造の滑り支承の異なる実施形態を示した立面図であり、Bは、同滑り支承に引き抜き力が生じた状態の一例を示した立面図である。
【図6】Aは、本発明にかかる高層建物等の免震構造の滑り支承の異なる実施形態を示した立面図であり、Bは、同滑り支承に引き抜き力が生じた状態の一例を示した立面図である。
【図7】Aは従来の、Bは本発明による地震エネルギーの低減化原理の説明図である。
【符号の説明】
1 高層建物等
2 免震層
3 基礎構造物
4 滑り支承
5 免震装置
8 滑り材
9 相手部材
16 弾性部材
20、30、40 免震構造
[0001]
This invention is the field of seismic isolation methods and seismic isolation structure of high-rise buildings or the aspect ratio is large low-rise buildings pulling force caused by the rocking vibration during an earthquake (lifting phenomenon) occurs (hereinafter appropriately referred to as high-rise buildings, etc.) More specifically, the present invention relates to a seismic isolation method and a seismic isolation structure for a high-rise building or the like that can be implemented using a seismic isolation device such as a general-purpose laminated rubber.
[0002]
[Prior art]
Conventionally, as a technology for seismic isolation methods and seismic isolation structures for high-rise buildings or the like that generate pull-out force due to rocking vibration during an earthquake, for example, Japanese Utility Model Publication No. 6-18996 and Japanese Patent No. 2631486 (July 1997) (Published on May 16) and the like.
[0003]
As shown in FIG. 7A, all of the conventional techniques disclosed in the above publications are based on the technical idea that allows the building a to be greatly displaced in the horizontal direction, and do not cause displacement in the vertical direction as much as possible. Therefore, it is based on a structure in which the contact point between the building a and the foundation b that supports the building a is fastened in the vertical direction.
[0004]
[Problems to be solved by the present invention]
However, in the case of the high-rise building or the like, as shown in FIG. 7B, the rocking vibration based on the vertical displacement is dominant in the movement at the time of the earthquake, and a large pulling force acts on the seismic isolation device c. Therefore, in the case of the structure in which the building a and the foundation b are tightly connected as in the prior art, the seismic isolation device c and the foundation b that can withstand the pulling-out force are required, and can be coupled with a large number of rod-shaped members or prevented from falling. There is no choice but to use a laminated rubber body together. In addition, since the same pulling force acts on the pillar of the building a, it is necessary to construct the pillar as such with a high-strength structure, and there is a problem that the cost is very high.
[0005]
In addition, when the distance between adjacent buildings such as urban buildings is small, there is a risk that if the seismic isolation layer undergoes a large deformation, it will collide with adjacent buildings on the surface and cause a secondary disaster.
[0006]
By the way, in recent years, as disclosed in Japanese Patent Application No. 11-42759 (filed on February 22, 1999), the present applicant has provided a contact point between the high-rise building and the like and a supporting plate supporting the same. We have developed a seismic isolation method and seismic isolation structure that do not bind in the vertical direction and allow the pulling force associated with the rocking vibration based on the vertical displacement. This principle is as described in paragraphs [0017] to [0021] of the application specification and FIG. 4 of the drawings.
[0007]
However, a technique for implementing the seismic isolation method and the seismic isolation structure that allows the pulling force (lifting phenomenon) associated with the rocking vibration using a seismic isolation device such as a general-purpose laminated rubber has not yet been developed.
[0008]
The purpose of the present invention is to install a sliding bearing at a site where the pulling force is generated in a seismic isolation layer such as a high-rise building where a pulling force is generated due to rocking vibration at the time of an earthquake. It is to provide a seismic isolation method and a seismic isolation structure that are not affected by the pulling force by arranging the devices.
[0009]
The next object of the present invention is that pull-out force does not occur in pillars, foundation structures, and seismic isolation devices such as high-rise buildings, so that they can be easily designed, and the design and construction of seismic isolation device peripheral members The aim is to provide rational seismic isolation methods and structures that are rational and economically superior.
[0010]
As means for solving the problems of the prior art, a seismic isolation method for a high-rise building or a low-rise building having a large aspect ratio according to the invention described in claim 1 is:
A seismic isolation method for a high-rise building where a pulling force is generated due to rocking vibration during an earthquake or a low-rise building with a large aspect ratio ,
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure It is characterized in that a sliding bearing having a structure that allows lifting is installed, and a seismic isolation device is installed in a portion where no pulling force is generated.
[0011]
The seismic isolation method for a high-rise building or a low-rise building with a large aspect ratio according to the invention described in claim 2 is a seismic isolation method for a high-rise building or a low-rise building with a large aspect ratio that generates a pulling force due to rocking vibration during an earthquake. And
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure Install a sliding bearing with a structure that allows lifting and absorbs and relieves shocks during restoration of the high-rise building or low-rise building with a large aspect ratio , and installs a seismic isolation device at a site where pull-out force does not occur. Features.
[0012]
The seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio according to the invention described in claim 3 is a seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio that generates a pulling force due to rocking vibration during an earthquake. And
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure A sliding bearing having a structure that allows lifting is installed, and a seismic isolation device is installed at a site where no pulling force is generated.
[0013]
The seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio according to the invention described in claim 4 is a seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio that generates a pulling force due to rocking vibration during an earthquake. And
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure Sliding bearings with a structure that allows lifting and absorbs and relieves shock when restoring high-rise buildings or low-rise buildings with a large aspect ratio are installed, and seismic isolation devices are installed in areas where pull-out force does not occur It is characterized by.
[0014]
The invention described in claim 5 is the seismic isolation structure for a high-rise building or a low-rise building having a large aspect ratio described in claim 4, wherein the sliding bearing is composed of a sliding member and a mating member that can be separated in the vertical direction. the skids are a low-rise building high rise building or a large aspect ratio, or provided to one of a substructure, said mating member is provided to the other, either one of the skids and the mating member, Or both are provided with the elastic member which absorbs and relieve | moderates the impact at the time of restoration | reconstruction of a high-rise building etc., It is characterized by the above-mentioned.
[0015]
The invention described in claim 6 is the seismic isolation structure of the high-rise building or low-rise building having a large aspect ratio described in claim 5, wherein the elastic member is rubber, laminated rubber, vertical spring, or a combination thereof. It is characterized by that.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show an embodiment of a seismic isolation method and a seismic isolation structure for a high-rise building or the like 1 described in claims 1 and 3.
[0017]
This seismic isolation structure 20 is preferably implemented in a high-rise building 1 that generates a pulling force associated with rocking vibration during an earthquake, and a pulling force that accompanies rocking vibration occurs in the seismic isolation layer 2 of the high-rise building 1 or the like. A sliding bearing 4 having a configuration that allows the high-rise building 1 to be lifted without transmitting the pulling force to the foundation structure 3 is installed in the part X. The seismic isolation device 5 is installed in the part Y where no pulling force is generated (the invention according to claim 3).
[0018]
The sliding bearing 4 and the seismic isolation device 5 are preferably installed immediately below the pillar 1a of the high-rise building 1 or the like, but are not limited thereto.
[0019]
As shown in FIG. 2, the sliding bearing 4 is composed of a sliding member 8 and a mating member 9 that can be separated in the vertical direction. The sliding member 8 is provided on a footing 6 on one side of a high-rise building or the like. The member 9 is provided on the footing 7 on the foundation structure 3 side. Further, above the sliding material 8, a relaxation member 10 such as rubber is provided via the metal plate 11 so that the sliding material 8 mainly starts moving smoothly when a horizontal force such as an earthquake occurs. It has been. Further, the upper surface of the relaxation member 10 is firmly in close contact with the lower surface of the mounting plate 12 that is fastened to the footing 6 on the one side of the high-rise building or the like by the anchor bolt 14. The lower surface of the mating member 9 is firmly in close contact with the upper surface of the mounting plate 13 that is fastened to the footing 7 on the side of the substructure 3 by the anchor bolts 14. The sliding material 8 may be provided on the foundation structure 3 side, and the mating member 9 may be provided on the high-rise building 1 side. Incidentally, the code | symbol 3a in a figure has shown the support pile.
[0020]
The seismic isolation device 5 is a so-called laminated rubber formed by alternately laminating metal plates and rubber, and is not particularly novel. Therefore, detailed drawings are omitted.
[0021]
The seismic isolation method for constructing the seismic isolation structure 20 transmits the pulling force to the base structure 3 to the part X where the pulling force accompanying rocking vibration is generated in the seismic isolation layer 2 of the high-rise building 1 or the like. The sliding bearing 4 having a configuration that allows the high-rise building 1 to lift without being installed is installed, and the seismic isolation device 5 is installed at the site Y where no pulling force is generated (the invention according to claim 1). ).
[0022]
In this embodiment, the four portions of the sliding support 4 are installed at the four corners of the high-rise building 1 in the portion X where the pulling force due to the rocking vibration is generated at the time of the earthquake. However, the present invention is not limited to this. The part X is set in the structural design based on the aspect ratio of the high-rise building 1 or the like, and may be implemented, for example, in the places shown in FIGS. 3A and 3B. Incidentally, in FIG. 3A, the part X is a corner part of a high-rise building etc. 1 and a total of twelve sliding supports 4 are installed, and FIG. 3B is the outer part of the high-rise building etc. 1 A total of 16 sliding bearings 4 are installed and implemented. The same technical idea is applied to the following different embodiments.
[0023]
Therefore, the seismic isolation method and the seismic isolation structure for high-rise buildings and the like according to claim 1 and claim 3 are configured so that the sliding bearing 4 is free from the seismic isolation for an earthquake of a level that does not generate a pulling force accompanying rocking vibration. Since the device 5 supports the long-term load of the high-rise building 1 together with the device 5 and functions as a seismic isolation device by the sliding mechanism, it is possible to provide a stable seismic isolation structure 20 together with the seismic isolation device 5 having no pulling resistance. it can.
[0024]
Further, for a large earthquake in which a pulling force is generated due to rocking vibration, as shown in FIG. 4, the sliding member 8 and the mating member 9 of the sliding bearing 4 are separated from each other and the pulling force is applied to the foundation structure 3. Providing a seismic isolation structure 20 that allows the high-rise building 1 to lift without any transmission, and accordingly the center of gravity of the high-rise building 1 moves up and down, thereby consuming energy that enters the high-rise building 1 due to an earthquake. it can.
[0025]
Therefore, the seismic isolation device (laminated rubber) 5 and the peripheral members thereof are not affected by the reaction force due to the pulling resistance force, so the seismic isolation device 5 can be implemented with a general-purpose simple structure. Design can be performed easily.
[0026]
The configuration of the sliding bearing 4 is not limited to the illustrated example. As long as the sliding member 8 and the mating member 9 can be separated from each other, a sliding bearing using a bearing can be preferably implemented.
[0027]
5A and 5B show an embodiment of a seismic isolation method and a seismic isolation structure for a high-rise building or the like 1 described in claims 2 and 4.
[0028]
This seismic isolation structure 30 is provided in the base isolation structure 2 of the high-rise building 1 such as the high-rise building 1 without transmitting the pull-out force to the foundation structure 3 at the site X where the pull-out force due to the rocking vibration is generated during the earthquake. A sliding bearing 15 having a structure that allows floating and absorbs and relaxes an impact at the time of restoration of the high-rise building 1 is installed. The seismic isolation device 5 is installed in the part Y where no pulling force is generated (the invention according to claim 4).
[0029]
This seismic isolation structure 30 differs from the seismic isolation structure 20 only in the configuration of the sliding bearing. That is, the sliding bearing 15 shown in FIG. 5 is provided with an elastic member 16 that absorbs and relieves shock when the high-rise building 1 is restored, compared with the sliding bearing 4 shown in FIG. (Invention of claim 5) Specifically, the sliding support 15 has a metal plate 11 attached to the upper surface of the relaxation member 10, and a vertical spring (elastic member) 16 such as a disc spring is provided between the metal plate 11 and the upper mounting plate 12. (Invention of claim 6).
[0030]
Therefore, the seismic isolation structure using the sliding bearing 15 is in a state in which an initial compressive force is applied to the vertical spring 16 in a long-term load supporting state. A dowel pin 17 that transmits shearing force and allows vertical deformation is provided at the center of the vertical spring 16.
[0031]
The seismic isolation method for constructing the seismic isolation structure 30 transmits the pulling force to the base structure 3 to the part X where the pulling force accompanying rocking vibration is generated in the seismic isolation layer 2 of the high-rise building 1 or the like. The above-mentioned seismic isolation device is installed in a part where the pulling force is not generated and the sliding support 15 is configured to allow the high-rise building 1 to lift without absorbing and absorb and mitigate the impact when the high-rise building is restored. 5 is carried out (the invention according to claim 2).
[0032]
Therefore, the seismic isolation structure 30 according to claim 4 has substantially the same effect as the above-described seismic isolation structure 20 according to claim 3, and even when an earthquake in which a pulling force acts is generated. If it is smaller than the initial compression force, the sliding bearing 15 is deformed as shown in FIG. 5B, and the sliding member 8 and the mating member 9 can be kept in a stable floating state without being separated from each other.
[0033]
Further, if the pull-out force is larger than the initial compressive force, the sliding member 8 and the mating member 9 of the sliding bearing 15 are separated from each other as in the seismic isolation structure 20 according to claim 2, but provided on the sliding bearing 15. By the action of the vertical spring (elastic member) 16, it is possible to absorb and mitigate the impact when the high-rise building or the like 1 accompanying the rocking vibration is restored, and to prevent the sliding bearing 15 and its peripheral members from being damaged as much as possible. Can provide a basic seismic isolation structure.
[0034]
6A and 6B show different embodiments of the seismic isolation method and the seismic isolation structure of the high-rise building 1 described in claims 2 and 4.
[0035]
This seismic isolation structure 40 differs from the seismic isolation structure 30 only in the configuration of the sliding bearing. That is, the sliding bearing 18 shown in FIG. 6 does not require the relaxing member 10 as compared with the sliding bearing 15 shown in FIG. 5, and instead of the vertical spring 16, the vertical rigidity is sufficiently softened in series. A slightly thicker rubber 19 (elastic member) is provided (inventions according to claims 5 and 6).
[0036]
Therefore, the seismic isolation structure using the sliding bearing 18 is in a state in which an initial compressive force is applied to the rubber 19 in a long-term load supporting state.
[0037]
Therefore, the seismic isolation structure 40 has substantially the same effect as the seismic isolation structure 30. That is, even if an earthquake in which a pulling force acts is applied, if the sliding force is smaller than the initial compressive force, the sliding bearing 18 is deformed as shown in FIG. 6B, and the sliding member 8 and the mating member 9 are not separated from each other. A stable floating state can be maintained.
[0038]
Further, if the pull-out force is larger than the initial compressive force, the sliding member 8 and the mating member 9 of the sliding bearing 18 are separated from each other as in the seismic isolation structure 20 according to claim 2, but provided on the sliding bearing 18. By the action of the rubber (elastic member) 19, it is possible to absorb and mitigate the impact at the time of restoration of the high-rise building or the like 1 due to the rocking vibration, and to suppress damage to the sliding bearing 18 and its peripheral members as much as possible, and to be permanent. Can provide a simple seismic isolation structure.
[0039]
[Effects of the present invention]
According to the seismic isolation method and the seismic isolation structure for high-rise buildings described in claims 1 to 6,
1) For earthquakes at a level where no pulling force is generated due to rocking vibration, the sliding bearing supports a long-term load on a high-rise building or the like as well as the seismic isolation device, and at the same time functions as a seismic isolation device by a sliding mechanism. A stable seismic isolation method and seismic isolation structure can be provided together with a seismic isolation device that does not have power.
2) For large earthquakes where a pulling force is generated due to rocking vibration, the sliding material of the sliding bearing and the mating member are separated from each other, and the pulling force is not transmitted to the foundation structure, allowing the high-rise buildings to lift. Accordingly, it is possible to provide a seismic isolation method and a seismic isolation structure that consumes energy that enters a high-rise building or the like due to an earthquake by moving the center of gravity of the high-rise building or the like up and down.
3) Since no pulling force is generated in pillars, foundation structures, and eventually seismic isolation devices of high-rise buildings, there is no damage to them. Along with that, it can be carried out with seismic isolation devices such as general-purpose laminated rubber, and the design of the seismic isolation devices etc. can be simplified, and the design and construction of the peripheral members of the seismic isolation devices can be greatly rationalized, making it extremely economical. Can provide seismic isolation structure.
4) In the case of a base-isolated structure in which an initial compressive force is applied by an elastic member such as a vertical spring or rubber provided on the sliding bearing, even if an earthquake in which a pulling force acts is generated, if it is smaller than the initial compressive force, The sliding bearing can provide a seismic isolation method and a seismic isolation structure that maintain a stable floating state as a whole without separating the sliding member and the mating member. Moreover, the impact at the time of restoration of a high-rise building etc. accompanying a rocking vibration can be absorbed and relieved, damage to the sliding bearing and its peripheral members can be suppressed as much as possible, and a permanent seismic isolation structure can be provided.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing an embodiment of a seismic isolation structure such as a high-rise building according to the present invention.
FIG. 2 is an elevational view showing a sliding bearing of a seismic isolation structure such as a high-rise building according to the present invention.
FIGS. 3A and 3B are plan views schematically showing different embodiments of seismic isolation structures such as high-rise buildings according to the present invention.
4 is an elevational view showing a state in which a pulling force is generated in the sliding bearing shown in FIG. 2. FIG.
FIG. 5A is an elevational view showing different embodiments of a sliding bearing of a seismic isolation structure such as a high-rise building according to the present invention, and B is an example of a state in which a pulling force is generated in the sliding bearing. FIG.
FIG. 6A is an elevational view showing different embodiments of the sliding bearing of the seismic isolation structure such as a high-rise building according to the present invention, and FIG. 6B is an example of a state in which the pulling force is generated in the sliding bearing. FIG.
FIGS. 7A and 7B are explanatory views of the principle of reducing seismic energy according to the present invention, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High-rise building 2 Seismic isolation layer 3 Foundation structure 4 Sliding bearing 5 Seismic isolation device 8 Sliding material 9 Opposing member 16 Elastic member 20, 30, 40 Seismic isolation structure

Claims (6)

地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震方法であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容する構成の滑り支承を設置すると共に、引き抜き力が発生しない部位には免震装置を設置することを特徴とする、高層建物又はアスペクト比が大きい低層建物の免震方法。
A seismic isolation method for a high-rise building where a pulling force is generated due to rocking vibration during an earthquake or a low-rise building with a large aspect ratio ,
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure A seismic isolation method for a high-rise building or a low-rise building with a large aspect ratio , characterized by installing a sliding bearing configured to allow lifting, and installing a seismic isolation device at a site where no pulling force is generated.
地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震方法であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容し、当該高層建物又はアスペクト比が大きい低層建物の復元時の衝撃を吸収、緩和する構成の滑り支承を設置すると共に、引き抜き力が発生しない部位には免震装置を設置することを特徴とする、高層建物又はアスペクト比が大きい低層建物の免震方法。
A seismic isolation method for a high-rise building where a pulling force is generated due to rocking vibration during an earthquake or a low-rise building with a large aspect ratio ,
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure Install a sliding bearing with a structure that allows lifting and absorbs and relieves shocks during restoration of the high-rise building or low-rise building with a large aspect ratio , and installs a seismic isolation device at a site where pull-out force does not occur. A seismic isolation method for high-rise buildings or low-rise buildings with a large aspect ratio .
地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震構造であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容する構成の滑り支承が設置され、引き抜き力が発生しない部位には免震装置が設置されていることを特徴とする、高層建物又はアスペクト比が大きい低層建物の免震構造。
A seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio that generates a pulling force due to rocking vibration during an earthquake,
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure A seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio , characterized in that a sliding bearing having a structure that allows lifting is installed, and a seismic isolation device is installed in a region where no pulling force is generated.
地震時にロッキング振動に伴う引き抜き力が発生する高層建物又はアスペクト比が大きい低層建物の免震構造であって、
前記高層建物又はアスペクト比が大きい低層建物の免震層において地震時にロッキング振動に伴う引き抜き力が発生する部位に、引き抜き力を基礎構造物へ伝達せずに高層建物又はアスペクト比が大きい低層建物の浮き上がりを許容し、当該高層建物又はアスペクト比が大きい低層建物の復元時の衝撃を吸収、緩和する構成の滑り支承が設置され、引き抜き力が発生しない部位には免震装置が設置されていることを特徴とする、高層建物又はアスペクト比が大きい低層建物の免震構造。
A seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio that generates a pulling force due to rocking vibration during an earthquake,
At a site pulling force due to rocking vibrations during an earthquake in the seismic isolation layer of the high-rise building or a high aspect ratio low-rise buildings is generated, the low-rise buildings high-rise building or a high aspect ratio without transmitting a drawing force to the substructure Sliding bearings that are designed to absorb and mitigate shock when restoring high-rise buildings or low-rise buildings with a large aspect ratio are installed, and seismic isolation devices are installed in areas where pull-out force does not occur A seismic isolation structure for high-rise buildings or low-rise buildings with a large aspect ratio .
前記滑り支承は、鉛直方向に離間可能な滑り材と相手部材とから成り、前記滑り材は高層建物又はアスペクト比が大きい低層建物と、基礎構造物のいずれか一方へ設けられ、前記相手部材は他方へ設けられていること、前記滑り材と相手部材のいずれか一方、又は双方に、高層建物等の復元時の衝撃を吸収、緩和する弾性部材が設けられていることを特徴とする、請求項4に記載した高層建物又はアスペクト比が大きい低層建物の免震構造。 The sliding bearing is composed of a sliding member and a mating member that can be separated in a vertical direction, and the sliding member is provided on one of a high-rise building, a low-rise building having a large aspect ratio, and a foundation structure, and the mating member Is provided on the other side, either one of the sliding material and the mating member, or both are provided with an elastic member that absorbs and relieves shock during restoration of a high-rise building, The seismic isolation structure of the high-rise building according to claim 4 or a low-rise building having a large aspect ratio . 前記弾性部材は、ゴム、積層ゴム、若しくは鉛直バネ、又はこれらの組み合わせであることを特徴とする、請求項5に記載した高層建物又はアスペクト比が大きい低層建物の免震構造。The seismic isolation structure for a high-rise building or a low-rise building with a large aspect ratio according to claim 5, wherein the elastic member is rubber, laminated rubber, vertical spring, or a combination thereof.
JP2000151991A 2000-05-23 2000-05-23 Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios Expired - Fee Related JP4621332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151991A JP4621332B2 (en) 2000-05-23 2000-05-23 Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151991A JP4621332B2 (en) 2000-05-23 2000-05-23 Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios

Publications (2)

Publication Number Publication Date
JP2001329716A JP2001329716A (en) 2001-11-30
JP4621332B2 true JP4621332B2 (en) 2011-01-26

Family

ID=18657470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151991A Expired - Fee Related JP4621332B2 (en) 2000-05-23 2000-05-23 Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios

Country Status (1)

Country Link
JP (1) JP4621332B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743412B2 (en) * 2005-10-31 2011-08-10 清水建設株式会社 Pile head seismic isolation structure
JP5901159B2 (en) * 2011-07-01 2016-04-06 章 和田 Seismic isolation structure
JP6067513B2 (en) * 2013-08-29 2017-01-25 鹿島建設株式会社 Seismic isolation structure
US9879415B2 (en) 2013-11-08 2018-01-30 Iso Systems Limited Resilient bearing
JP6475520B2 (en) * 2015-03-10 2019-02-27 日立Geニュークリア・エナジー株式会社 Sliding support and seismic isolation system
CN117166638A (en) * 2023-09-18 2023-12-05 兰州有色冶金设计研究院有限公司 Shock insulation building tensile device and building

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158697A (en) * 1994-12-08 1996-06-18 Taisei Corp Base isolation method and base isolation device applied to same method
JPH09242818A (en) * 1996-03-06 1997-09-16 Fujikura Ltd Base isolation structure for structure
JPH10280731A (en) * 1997-04-09 1998-10-20 Sekisui Chem Co Ltd Vibration isolation device
JPH11336202A (en) * 1998-05-26 1999-12-07 Nippon Pillar Packing Co Ltd Base isolation bearing device
JP2000081081A (en) * 1998-06-26 2000-03-21 Bridgestone Corp Slider

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158697A (en) * 1994-12-08 1996-06-18 Taisei Corp Base isolation method and base isolation device applied to same method
JPH09242818A (en) * 1996-03-06 1997-09-16 Fujikura Ltd Base isolation structure for structure
JPH10280731A (en) * 1997-04-09 1998-10-20 Sekisui Chem Co Ltd Vibration isolation device
JPH11336202A (en) * 1998-05-26 1999-12-07 Nippon Pillar Packing Co Ltd Base isolation bearing device
JP2000081081A (en) * 1998-06-26 2000-03-21 Bridgestone Corp Slider

Also Published As

Publication number Publication date
JP2001329716A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
KR100187527B1 (en) Horizontal and vertical seismic isolation bearing
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
JP2013047433A (en) Structure vibration control and base isolation method
JP4621332B2 (en) Seismic isolation method and seismic isolation structure for high-rise buildings or low-rise buildings with large aspect ratios
CN114439123A (en) Vertical tensile sliding shock isolation device
CN110344634B (en) Anti-seismic low-rise building
CN202530572U (en) High-damping and shock-insulation rubber base provided with limit devices
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
CN215829692U (en) Lead core rubber shock insulation support capable of resetting
CN110924551B (en) Friction sliding bearing seat vibration reduction structure between ground and building
CN201420308Y (en) Steel ball-spring vibration isolation support structure
JP3713645B2 (en) Seismic isolation device using laminated rubber
JP5290786B2 (en) Damping structure
JPH10292669A (en) Base isolating device of building and base isolating structure of building using the same
JP2013092009A (en) Structure vibration damping device and structure vibration damping method
KR100964299B1 (en) Lead Rubber Bearing
CN113818559B (en) Giant frame structure and three-dimensional shock absorption substructure
JP2000297558A (en) Base isolation device
CN217175254U (en) Vertical tensile sliding shock isolation device
JP4452372B2 (en) Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns
JP4588836B2 (en) Seismic isolation system and seismic isolation structure for reinforced concrete walls
JP3713646B2 (en) Seismic isolation structure
JP2011241602A (en) Wind-resistant ground base isolation structure using bearings and construction method thereof
CN219825608U (en) Three-dimensional tensile shock insulation support
CN108824664B (en) Embedded composite shock insulation device, embedded composite shock insulation system and use method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees