JP2014101749A - Period-prolonged architectural structure - Google Patents

Period-prolonged architectural structure Download PDF

Info

Publication number
JP2014101749A
JP2014101749A JP2014011020A JP2014011020A JP2014101749A JP 2014101749 A JP2014101749 A JP 2014101749A JP 2014011020 A JP2014011020 A JP 2014011020A JP 2014011020 A JP2014011020 A JP 2014011020A JP 2014101749 A JP2014101749 A JP 2014101749A
Authority
JP
Japan
Prior art keywords
building
column
damping
damping joint
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014011020A
Other languages
Japanese (ja)
Other versions
JP5918282B2 (en
Inventor
Ichiro Nagashima
一郎 長島
Hiroshi Hibino
浩 日比野
Ryota Maseki
龍大 欄木
Masaru Yoshikawa
優 吉川
Hiroyuki Narihara
弘之 成原
Shinichi Takezaki
真一 竹崎
Satoshi Yasuda
聡 安田
Makoto Kayashima
誠 萱嶋
Kazuhiro Kaneda
和浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014011020A priority Critical patent/JP5918282B2/en
Publication of JP2014101749A publication Critical patent/JP2014101749A/en
Application granted granted Critical
Publication of JP5918282B2 publication Critical patent/JP5918282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an architectural structure in which acceleration acting on a building during the earthquake is reduced and it is not necessary to consider such special settlement as to allow large deformation for the exterior of the building, facility piping, or the like.SOLUTION: In a part of a column 200 and/or a wall formed from reinforced-concrete or iron-frame reinforced-concrete, a vibration control joint 100 formed from a material with the rigidity lower and an allowable shear deformation amount larger than concrete, is interposed for reducing horizontal rigidity of the column 200 and/or the wall, such that a natural period is prolonged in an architectural structure. A core reinforcing bar 700 or a core steel frame is provided to penetrate upper and lower sides of the column 200 with the vibration control joint 100 interposed therebetween.

Description

本発明は、躯体の一部に水平剛性の低い制振目地を用いることによって躯体の剛性を下げ、躯体本来の固有周期を長周期化すると共に、地震時の層間変形を所定の範囲内に抑制した建築物に関するものである。   The present invention reduces the rigidity of the chassis by using damping joints with low horizontal rigidity for a part of the chassis, lengthens the natural period of the chassis, and suppresses inter-layer deformation during an earthquake within a predetermined range. It is related to the building.

建物を構成する柱、梁、壁等の構造部材の断面積を増大させて剛性と強度を向上させることによって耐震性を確保する一般的な耐震設計に対して、建物の基礎部分または中間層に免震層を設けることにより建物の固有周期を長周期化し、免震層の大変形と引き換えに地震時の建物に作用する加速度を低減する、いわゆる免震設計がある。   For general seismic design that ensures seismic resistance by increasing the cross-sectional area of structural members such as columns, beams, and walls that make up the building, thereby improving rigidity and strength, There is a so-called seismic isolation design that prolongs the natural period of a building by providing a base isolation layer and reduces acceleration acting on the building during an earthquake in exchange for large deformation of the base isolation layer.

建築物の免震設計を開示した文献として、例えば特開平5−10386号公報(特許文献1)がある。当該公報によれば、上部構造の鉛直荷重を支持する免震支承と、振動エネルギーを吸収する減衰部材と、過大変位を抑制する衝撃緩衝部材とを一体化した免震装置によって建築物を支持する。このような免震装置を用いた建築物に地震力が作用した場合、免震装置が水平方向に大変形し、同時に建築物自体に作用する加速度つまり地震荷重は大幅に低減される。したがって、建築物の躯体構造の設計荷重は大幅に低減され、軽量な上部構造を実現することができる。さらに、地震時に建築物に作用する加速度が低減されるので、家具類の転倒などの危険性は大幅に軽減される。   As literature which disclosed the seismic isolation design of the building, there exists Unexamined-Japanese-Patent No. 5-10386 (patent document 1), for example. According to this publication, a building is supported by a seismic isolation device that integrates a base isolation bearing that supports the vertical load of the superstructure, a damping member that absorbs vibration energy, and an impact buffering member that suppresses excessive displacement. To do. When a seismic force acts on a building using such a seismic isolation device, the seismic isolation device is greatly deformed in the horizontal direction, and at the same time, the acceleration acting on the building itself, that is, the seismic load is greatly reduced. Therefore, the design load of the building frame structure is greatly reduced, and a lightweight superstructure can be realized. Furthermore, since the acceleration that acts on the building during an earthquake is reduced, the risk of falling furniture is greatly reduced.

上記の公報に記載された技術は、建物下部に免震装置を設けることによって建物全体を免震するものであるのに対して、特開2003−27765号公報(特許文献2)は、柱の中間部に免震装置を設け、当該部分より上のみを免震することを提案したものである。特許文献2は、建物の全重量の70%以上を支持する複数の中間層に免震装置を設けてその上部を免震することによって、免震装置の水平変形を20〜30cm程度以下に抑えて免震支承である積層ゴムの設計を容易にすることを提案している。   The technique described in the above publication is to seismically isolate the entire building by providing a seismic isolation device in the lower part of the building, whereas JP 2003-27765 A (Patent Document 2) A seismic isolation device was installed in the middle part, and it was proposed to isolate only the part above that part. Patent document 2 suppresses the horizontal deformation of the seismic isolation device to about 20 to 30 cm or less by providing seismic isolation devices in a plurality of intermediate layers supporting 70% or more of the total weight of the building and isolating the upper part thereof. It has been proposed to facilitate the design of laminated rubber, which is a seismic isolation bearing.

特開平5−10386号公報JP-A-5-10386 特開2003−27765号公報JP 2003-27765 A

前記一般的な耐震設計思想によった場合は、通常の地震動に対しては建物の躯体構造が損傷を受けることはないが、建物の応答加速度が大きくなるために、家具の転倒、二次部材の損傷などが生じがちである。さらに、大地震の場合には躯体構造を構成する大梁にも損傷を生じる可能性がある。さらに、鉄筋コンクリート構造物は、層剛性が高く許容層間変形が小さいために、粘性系の制振ダンパーは効果が殆ど期待できなかった。特に60m以下の中低層構造物では固有周期が1秒程度以下と短いために、応答加速度あるいは地震時の動的荷重が大きいにもかかわらず、免震構造以外で地震応答加速度を低減する有効な手段は無かった。   According to the general seismic design concept, the structure of the building will not be damaged by normal seismic motion, but the response acceleration of the building will increase. It tends to cause damage. Furthermore, in the case of a large earthquake, there is a possibility that damage will occur to the girder constituting the frame structure. Furthermore, reinforced concrete structures have high layer rigidity and small allowable interlayer deformation, so that viscous damping dampers could hardly be expected. Especially for middle- and low-rise structures of 60m or less, the natural period is as short as about 1 second or less, so it is effective to reduce the seismic response acceleration except for the seismic isolation structure even though the response acceleration or the dynamic load during earthquake is large. There was no means.

一方、免震構造を採用した場合、免震装置に支持された上部構造は地震時の応答加速度が低減されるので、建物の躯体構造の健全性が維持されるだけでなく、家具の転倒、二次部材の損傷は大幅に軽減される。しかし、免震装置に大変形が集中するために、免震装置を設けた階の建物外装、設備配管、階段、エレベータなどについてはこの変形を許容するための特別な収まりを設けたり、フレキシブル配管などを用いることなどが必要になる。建物の基礎部分で免震する場合は免震装置を設置するためのピットが必要になり、さらに建物周辺には建物の変位を許容するためのスペースが必要になる。これらはいずれも免震設計を採用した場合のコスト上昇要因となる。   On the other hand, when the seismic isolation structure is adopted, the superstructure supported by the seismic isolation device reduces the response acceleration at the time of the earthquake, so not only the soundness of the building's frame structure is maintained, but also the fall of furniture, Damage to the secondary member is greatly reduced. However, because large deformation concentrates on the seismic isolation device, the building exterior of the floor where the seismic isolation device is installed, equipment piping, stairs, elevators, etc. are provided with a special fit to allow this deformation, or flexible piping It is necessary to use etc. In the case of seismic isolation at the foundation of the building, a pit is required for installing the seismic isolation device, and a space for allowing displacement of the building is required around the building. These are all factors that increase costs when using seismic isolation design.

本発明は、一般的な耐震設計および免震設計が有する上記の課題を解決して、地震時に建物に作用する加速度を軽減すると共に、建物外装、設備配管等について大変形を許容するような特別な収まり等を考慮する必要のない建築物を提供することを目的としたものである。   The present invention solves the above-mentioned problems of general seismic design and seismic isolation design, reduces the acceleration acting on the building during an earthquake, and allows a special deformation that allows large deformation of the building exterior, equipment piping, etc. The purpose is to provide buildings that do not need to take into account the need for extra accommodation.

上記の目的を達成するために、本発明は、鉄筋コンクリートまたは鉄骨鉄筋コンクリートからなる柱および/または壁の一部に、コンクリートよりも剛性が低く、許容せん断変形量が大きい材料からなる制振目地が介在されて、柱および/または壁の水平剛性が低減されることで、固有周期が長周期化された建築物であって、前記制振目地を挟んで、前記柱の上側と下側を貫通するように芯鉄筋または芯鉄骨が設けられていることを特徴とする建築物を提案する。   In order to achieve the above object, according to the present invention, a vibration control joint made of a material having a lower rigidity and a larger allowable shear deformation than concrete is interposed in a column and / or a wall made of reinforced concrete or steel reinforced concrete. Thus, the horizontal rigidity of the columns and / or walls is reduced, so that the natural period is a long period, and the upper and lower sides of the columns penetrate through the damping joint. In this way, a building having a core rebar or a core steel frame is proposed.

本発明によれば、制振目地を挟んで、柱の上側と下側を貫通するように芯鉄筋または芯鉄骨が設けられているから、地震力によって、外周柱が引張力を受ける際は、芯鉄筋が抵抗する。   According to the present invention, since the core rebar or the core steel frame is provided so as to penetrate the upper side and the lower side of the column across the damping joint, when the outer peripheral column receives a tensile force due to the seismic force, Core rebar resists.

また、本発明は、鉄筋コンクリートまたは鉄骨鉄筋コンクリートからなる柱および/または壁の一部に、コンクリートよりも剛性が低く許容せん断変形量が大きい材料からなる制振目地が介在されて柱および/または壁の水平剛性が低減されることで、固有周期が長周期化された建築物を提案する。   In addition, the present invention provides a column and / or wall made of a reinforced concrete or steel reinforced concrete column and / or wall with a vibration damping joint made of a material having a lower rigidity and a larger allowable shear deformation than concrete. We propose a building with a long natural period by reducing horizontal rigidity.

ここで、コンクリートよりも水平方向の剛性が低く許容せん断変形量が大きい材料としては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、エチレン・プロピレンゴム、ブチルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム等のゴム系材料、エラストマー等の高分子材料、繊維補強ゴムのような複合材料を用いることができる。さらに、これらを鋼板と組み合わせたり、すべり支承、金属ばねのような構造体であっても良い。   Here, as materials having a lower horizontal rigidity than concrete and a large allowable shear deformation amount, for example, natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, butyl rubber, fluoro rubber Further, rubber materials such as urethane rubber and silicone rubber, polymer materials such as elastomer, and composite materials such as fiber reinforced rubber can be used. Further, these may be combined with a steel plate, a sliding support, or a structure such as a metal spring.

制振目地は、前記したゴム等の材料からなり、柱または壁の中間部(上端と下端の間のいずれかの位置)、あるいは上部または下部に設けられた層状の構造体または支承体で、鉛直荷重を支持することができる。制振目地は柱のどの部分に設けてもよく、例えば柱頭部、中間部などに設けることができる。同一層では同じ高さに設けることが好ましいが、外周部、内部などのグルーピング別に設ける位置(高さ)を違えても良い。制振目地は、建物階高にもよるが、鉛直方向の厚さが一般に100mm程度以下、好ましくは50mm以下のシート状の構造体である。本明細書では、柱および壁は、鉄筋コンクリートまたは鉄骨鉄筋コンクリートの部分と前記制振目地とを含む。   The damping joint is made of a material such as rubber as described above, and is a layered structure or support provided in the middle part of the column or wall (any position between the upper and lower ends), or at the upper or lower part, A vertical load can be supported. The damping joint may be provided at any part of the pillar, for example, at the pillar head or the middle part. Although it is preferable to provide the same layer at the same height, the positions (heights) provided for each grouping such as the outer periphery and the inside may be different. The damping joint is a sheet-like structure having a vertical thickness of generally about 100 mm or less, preferably 50 mm or less, depending on the building floor height. In this specification, a pillar and a wall contain the part of a reinforced concrete or a steel reinforced concrete, and the said damping joint.

同一階に制振目地を設けた柱と制振目地を設けない柱を混在させ、制振目地を設けない柱は2層分の長柱にするなどとしてもよい。このような構造上のバリエーションを用いれば、建物の固有周期調整のために設計の自由度を広げることができる。地震時に引張り力が働く柱には芯鉄筋を配置してもよい等、従来の免震構造に比較して適用範囲は広い。各層の変形を目地に集中させるため、付近に小型のダンパーを配置することも可能になる。例えば、柱頭に制振目地を設けて天井裏にダンパーを設ける構造などである。また、建築計画上、鉄筋コンクリート壁が必要な場合にも、壁に制振目地を設けることが可能であり、適用範囲が広い。さらに、従来の免震構造では、免震層の相対変形が非常に大きいので、粘弾性ダンパー等を適用することはサイズやコストの面で困難であったが、目地部分の相対変形が小さいので、粘弾性ダンパー等を適用することも可能である。   It is also possible to mix pillars with damping joints and pillars without damping joints on the same floor, and make pillars without damping joints into long pillars for two layers. If such a structural variation is used, the degree of freedom of design can be expanded to adjust the natural period of the building. The applicable range is wider than conventional seismic isolation structures, for example, core reinforcing bars may be placed on columns that exert a tensile force during an earthquake. Since the deformation of each layer is concentrated on the joint, a small damper can be arranged in the vicinity. For example, there is a structure in which a damping joint is provided at the capital and a damper is provided at the ceiling. Moreover, even when a reinforced concrete wall is required for an architectural plan, it is possible to provide a damping joint on the wall, and the application range is wide. Furthermore, in the conventional seismic isolation structure, the relative deformation of the seismic isolation layer is very large, so it was difficult to apply viscoelastic dampers in terms of size and cost, but the relative deformation of the joints is small. It is also possible to apply a viscoelastic damper or the like.

建物の固有周期を長周期化するとは、制振目地を設けない場合に比較して建物の固有周期がより長周期になることをいう。制振目地を設けた階の地震時の層間水平変位を階高の1/50未満、できれば1/100未満に抑制することが好ましい。ただし、層間水平変位1/50あるいは1/100は安全性やその後の使用を考慮した凡その目安である。地震時とは、地震を想定した設計用地震動または設計用地震力に対してという意味である。鉄筋コンクリートまたは鉄骨鉄筋コンクリート建築物の地震時層間変位は、一般には階高の数百分の1となるので、地震時の層間水平変位を階高の1/100好ましくは1/50まで許容する本発明においては、制振目地の材料としてコンクリートよりも剛性が低く許容せん断変形量が大きい材料である前記ゴム系の材料等を用いて、層間水平変位の多くを制振目地に集中するのが好ましい。   To increase the natural period of the building means that the natural period of the building becomes longer than when no damping joint is provided. It is preferable to suppress the horizontal displacement between layers at the time of the earthquake of the floor provided with the damping joint to less than 1/50 of the floor height, preferably to less than 1/100. However, the interlayer horizontal displacement 1/50 or 1/100 is a rough guide in consideration of safety and subsequent use. The term “earthquake” means design earthquake motion or design seismic force assuming an earthquake. The inter-layer displacement at the time of earthquake of a reinforced concrete or steel-framed reinforced concrete building is generally one-hundredth of the floor height, so that the horizontal displacement at the time of an earthquake is allowed to be 1/100, preferably 1/50 of the floor height. In this case, it is preferable to concentrate most of the interlayer horizontal displacement on the damping joint by using the rubber-based material, which is a material having a lower rigidity and a larger allowable shear deformation than concrete, as the damping joint material.

制振目地に用いる材料の剛性が高いほど、あるいは制振目地の層厚が小さいほど、さらには制振目地の断面積が大きいほど柱の剛性が高くなり、地震時の当該階の層間水平変位は抑制される傾向にあるので(その逆によって層間水平変位は増大する傾向にある)、制振目地に用いる材料の剛性と制振目地の寸法を適切に設定することによって、地震時の当該階の層間水平変位を階高の1/50未満あるいは1/100未満に抑制することが可能になる。   The higher the stiffness of the material used for the damping joint, or the smaller the thickness of the damping joint, and the larger the cross-sectional area of the damping joint, the higher the rigidity of the column. Therefore, the horizontal displacement between layers tends to increase. On the other hand, by appropriately setting the rigidity of the material used for the damping joint and the dimensions of the damping joint, Can be suppressed to less than 1/50 or less than 1/100 of the floor height.

本発明に基づく建築物には、さらに、ダンパーを設けて振動時の運動エネルギーを吸収させることもできる。本発明に基づく場合は、制振目地の低剛性と大変形能力に起因して地震時の層間変位が大きくなるので、ダンパーは有効にエネルギーを吸収することができる。ダンパーとしては、オイルダンパーのような装置を外的に付加することでもよいが、制振目地の材料として粘弾性材料を選択するなどして、材料自体にダンパー機能を持たせても良い。   The building according to the present invention can further be provided with a damper to absorb kinetic energy during vibration. When based on this invention, since the interlayer displacement at the time of an earthquake becomes large due to the low rigidity and large deformation capacity of the damping joint, the damper can effectively absorb energy. As the damper, a device such as an oil damper may be externally added, but the material itself may have a damper function by selecting a viscoelastic material as a material for the damping joint.

また、複数階の柱および/または壁に制振目地を設けた場合は、一層効果的に建物の長周期化および応答加速度の低減を図ることができる。   In addition, when vibration suppression joints are provided on columns and / or walls of a plurality of floors, it is possible to further effectively increase the period of the building and reduce the response acceleration.

特定階において、鉛直荷重を支持する全ての柱および/または壁に制振目地を設けることもできる。この場合の特定階は、最下層階であっても良いし、中間階あるいは最上階であっても良い。   It is also possible to provide damping joints on all columns and / or walls that support vertical loads on a specific floor. The specific floor in this case may be the lowest floor, the middle floor, or the top floor.

あるいは、特定階の一部の柱および/または壁にのみ制振目地を設けた構造であっても良い。この場合、制振目地を設けた柱および/または壁によって支持される梁および床と、制振目地を設けていない柱および/または壁によって支持される梁および床との間には地震時に相対変位を生じるので、両者の間にダンパーを設けることによって振動エネルギーを有効に吸収することができる。耐震壁と柱梁架構からなる建物や、コアと柱梁架構からなる建物の場合には、耐震壁やコアには制振目地を設けず、柱梁架構のみ制振目地を設けて、耐震壁やコアと周囲の柱梁架構間に相対変形が生じるようにして、その間に制振ダンパーを設置して高減衰化することも可能である。   Or the structure which provided the damping joint only in the one part pillar and / or wall of the specific floor may be sufficient. In this case, the beam and floor supported by columns and / or walls with damping joints and the beams and floor supported by columns and / or walls without damping joints are relatively Since displacement occurs, vibration energy can be effectively absorbed by providing a damper between them. In the case of a building consisting of a seismic wall and a column beam frame, or a building consisting of a core and a column beam frame, the seismic wall and core are not provided with damping joints, but only the column beam frame is provided with a damping joint. It is also possible to provide a high damping by installing a damping damper between the core and the surrounding column beam frame.

本発明によった場合、制振目地によって柱および/または壁の水平剛性を低減するので建物の固有周期は、制振目地が無い構造に比較して長周期化される。本発明によれば地震時に建築物に加わる動的荷重が低減される一方、層間変位は階高の1/50未満あるいは1/100未満に抑制されているので家具の転倒、二次部材の損傷や、大地震時の躯体構造の損傷を抑制することができ、建物外装、設備配管、階段、エレベータなどについてはこの変形を許容するための特別な収まりを設けたり、フレキシブル配管などを用いることなども不要になる。   According to the present invention, since the horizontal rigidity of the columns and / or walls is reduced by the damping joint, the natural period of the building is made longer than that of the structure without the damping joint. According to the present invention, the dynamic load applied to the building during the earthquake is reduced, while the interlayer displacement is suppressed to less than 1/50 or less than 1/100 of the floor height, so that the furniture falls and the secondary member is damaged. In addition, damage to the frame structure during a major earthquake can be suppressed, and the building exterior, equipment piping, stairs, elevators, etc. can be provided with special accommodation to allow this deformation, flexible piping, etc. Is also unnecessary.

さらに、鉄筋コンクリートまたは鉄骨鉄筋コンクリート構造物に比較して層間変形が大きいので、60m以下の中低層構造物においても粘性系の制振ダンパーが有効に機能する。1層あたりの変形は、制振目地部分が大半を負担するので、柱部分の変形が小さくなり、柱の損傷を防止できる。また、従来制震効果が期待できなかった、固有周期の短い中低層鉄筋コンクリート構造物も制振目地により長周期化が可能で、必要に応じてダンパーを併設することで、高い制振効果が期待できる。   Furthermore, since the interlayer deformation is larger than that of reinforced concrete or steel-framed reinforced concrete structures, viscous damping dampers function effectively even in medium and low-rise structures of 60 m or less. As the deformation per layer is mostly borne by the damping joint, the deformation of the column is reduced, and the column can be prevented from being damaged. In addition, medium- and low-rise reinforced concrete structures with a short natural period, which could not be expected in the past, can be extended with a damping joint, and a high damping effect can be expected by installing a damper if necessary. it can.

本発明によれば、制振目地を挟んで、柱の上側と下側を貫通するように芯鉄筋または芯鉄骨が設けられているから、地震力によって、外周柱が引張力を受ける際は、芯鉄筋が抵抗する。   According to the present invention, since the core rebar or the core steel frame is provided so as to penetrate the upper side and the lower side of the column across the damping joint, when the outer peripheral column receives a tensile force due to the seismic force, Core rebar resists.

本発明に基づく建築物の骨組みを構成する鉄筋コンクリート製柱梁構造の概念図Conceptual diagram of a reinforced concrete column beam structure constituting the framework of a building according to the present invention 本発明を、耐震壁を有する建物に用いた実施例の立面図Elevated view of an embodiment in which the present invention is used for a building having a seismic wall 本発明を、耐震壁等のコア部分と柱梁架構を有する建物に適用した実施例の概念図The conceptual diagram of the Example which applied this invention to the building which has core parts, such as a seismic wall, and a column beam frame ダンパーを用いた他の実施例の概念図Conceptual diagram of another embodiment using a damper 制振目地部分を芯鉄筋が貫通する実施例の概念図Conceptual diagram of an embodiment in which the core reinforcing bar penetrates the damping joint part 本発明に基づく実施例の平面図(左)と立面図(右)Plan view (left) and elevation (right) of an embodiment according to the present invention 本発明に基づく実施例の平面図(左)と立面図(右)Plan view (left) and elevation (right) of an embodiment according to the present invention 本発明に基づく実施例の平面図(左)と立面図(右)Plan view (left) and elevation (right) of an embodiment according to the present invention 本発明に基づく実施例の平面図(左)と立面図(右)Plan view (left) and elevation (right) of an embodiment according to the present invention 本発明に基づく実施例の平面図(左)と立面図(右)Plan view (left) and elevation (right) of an embodiment according to the present invention 本発明に基づく実施例の平面図(左)と立面図(右)Plan view (left) and elevation (right) of an embodiment according to the present invention

以下に、実施例に基づいて本発明の具体的な態様を説明するが、本発明は以下に記載する実施例に限定されるものではなく、実施例は発明の理解を助けるために記載するに過ぎないことはいうまでも無い。   Hereinafter, specific embodiments of the present invention will be described based on examples. However, the present invention is not limited to the examples described below, and the examples are described to help the understanding of the invention. It goes without saying that it is not too much.

図1は、本発明の1つの実施例に基づく建築物の骨組みを構成する鉄筋コンクリート製柱梁架構の概念を図示したものである。途中階のそれぞれの柱210の柱頭部には、制振目地100が設けられている。制振目地100は、ウレタンゴムからなり、厚さは50mm程度、平面形状は柱210の水平断面形状と実質的に同じである。制振目地100の材料は、鉛直荷重の支持能力と、水平荷重に対する必要な剛性、変形能力、強度を有すれば、ウレタンゴム以外のゴム、他の高分子材料、複合材料を用いることができることは既に記載したとおりである。さらに、同条件を満たす限り、すべり支承、金属ばねのような構造体であっても良い。   FIG. 1 illustrates the concept of a reinforced concrete column beam structure that constitutes a framework of a building according to one embodiment of the present invention. A damping joint 100 is provided at the head of each pillar 210 on the intermediate floor. The damping joint 100 is made of urethane rubber, has a thickness of about 50 mm, and a planar shape is substantially the same as the horizontal sectional shape of the pillar 210. As the material of the damping joint 100, rubber other than urethane rubber, other polymer materials, and composite materials can be used as long as the material has the supporting ability of vertical load and the necessary rigidity, deformation ability and strength against horizontal load. Is as already described. Furthermore, a structure such as a sliding bearing or a metal spring may be used as long as the same condition is satisfied.

一層上の階の柱200には、柱の柱頭と柱脚のほぼ中央の位置に制振目地100が設けられている。制振目地100を設けるべき位置は、図示されている位置に限定されず、柱頭と柱脚の間のどの位置であっても良い。ここでは、複数階の柱に制振目地100を設けた例を示したが、制振目地は1層のみに設けても良い。   The column 200 on the upper floor is provided with a damping joint 100 at a position approximately in the center between the column head and the column base. The position where the damping joint 100 is to be provided is not limited to the illustrated position, and may be any position between the stigma and the column base. Here, an example in which the vibration damping joint 100 is provided on the pillars of a plurality of floors is shown, but the vibration damping joint may be provided in only one layer.

図示した架構の階高が4mであるとすると、制振目地100を設けた各階の、地震時の水平変形が40mm未満に抑制されるよう、制振目地を含む架構全体の剛性が決定される。層間水平変位が階高の1/100程度であれば、二次部材の損傷や、大地震時の躯体構造の損傷を抑制することができる。ただし、二次部材の損傷や躯体の損傷の観点から許容される場合には、階高の1/100よりも大きな、例えば階高の1.5/100や1/50の層間水平変位を許容するものであっても良い。地震時の水平変形を算出するための荷重は、静的荷重、動的荷重の何れであっても良い。例えば、0.2Gの水平加速度が建物に作用すると考えて、静的荷重−変形解析によって当該階の水平変形を算出することによって各部材の剛性をまたは断面を決定することができる。   Assuming that the floor height of the frame shown in the figure is 4 m, the rigidity of the entire frame including the damping joint is determined so that the horizontal deformation at the time of the earthquake of each floor provided with the damping joint 100 is suppressed to less than 40 mm. . If the interlayer horizontal displacement is about 1/100 of the floor height, damage to the secondary member and damage to the frame structure during a large earthquake can be suppressed. However, when it is permitted from the viewpoint of damage to the secondary member and the frame, the horizontal displacement of the interlayer is larger than 1/100 of the floor height, for example, 1.5 / 100 or 1/50 of the floor height. It may be what you do. The load for calculating the horizontal deformation at the time of the earthquake may be either a static load or a dynamic load. For example, assuming that a horizontal acceleration of 0.2 G acts on a building, the rigidity or cross section of each member can be determined by calculating the horizontal deformation of the floor by static load-deformation analysis.

図2は、本発明の他の実施例であって、耐震壁400を有する建物に制振目地100を用いた場合の概念を示す立面図である。建物の第1層を構成する耐震壁400の頂部には制振目地100が、耐震壁の全水平断面にわたって搭載されている。また、第2層を構成する耐震壁400の頂部には、部分的に制振目地100が搭載され、他の部分は空隙500である。耐震壁の全水平断面にわたって制振目地を搭載するか否かは、制振目地の部分に必要な剛性と耐震目地材料の剛性等によって適宜設定することができる。制振目地を設置する位置は、柱について記載したのと同様に、耐震壁の頂部から基部の間のどの位置であっても良い。   FIG. 2 is an elevational view showing the concept when the damping joint 100 is used in a building having a seismic resistant wall 400 according to another embodiment of the present invention. A damping joint 100 is mounted on the top of the earthquake-resistant wall 400 constituting the first layer of the building over the entire horizontal section of the earthquake-resistant wall. In addition, the damping joint 100 is partially mounted on the top of the earthquake-resistant wall 400 constituting the second layer, and the other part is a gap 500. Whether or not the damping joint is mounted over the entire horizontal section of the earthquake-resistant wall can be appropriately set depending on the rigidity required for the portion of the damping joint and the rigidity of the earthquake-resistant joint material. The position where the damping joint is installed may be any position between the top and the base of the seismic wall, as described for the column.

建物が、柱梁架構と耐震壁を有する場合は、制振目地は、柱と耐震壁の同一のレベル(例えば柱頭と耐震壁頂部)に設けるのが好ましい。   When the building has a column beam frame and a seismic wall, the damping joint is preferably provided at the same level of the column and the seismic wall (for example, the head of the column and the top of the seismic wall).

図3は、本発明を、耐震壁またはエレベータシャフト等のコア部分と柱梁架構を有する建物に適用した実施例の概念図である。制振目地を有しない耐震壁400(またはエレベータシャフト、階段等の剛性が高く許容変形が小さい部分)と柱頭に制振目地100を設けた柱梁架構の梁300とを制振ダンパー600によって連結した構造である。耐震壁400の部分は剛性が高く地震時の変形が小さいのに対して、柱梁架構の部分は制振目地の変形能力に起因して地震時の変形が比較的大きいので、ダンパー600は振動エネルギーを有効に吸収して、柱梁架構の振動を抑制する。制振目地100に粘弾性材料を用いれば、柱梁架構の制振効果を期待することもできる。
また、制振目地100の下部の位置(例えば、柱の、柱頭に設けた制振目地100の下の位置)と、制振目地100の上部(例えば、制振目地100に支持された梁)を制振ダンパー620で連結することも有効である。当該ダンパー620は、制振ダンパー600と併用してもよい。
FIG. 3 is a conceptual diagram of an embodiment in which the present invention is applied to a building having a core portion such as a seismic wall or an elevator shaft and a column beam frame. A seismic wall 400 (or an elevator shaft, staircase, etc., which has high rigidity and small allowable deformation) and a beam 300 of a column beam frame having a damping joint 100 at the top of the column are connected by a damping damper 600. This is the structure. The seismic wall 400 has high rigidity and small deformation at the time of earthquake, whereas the column beam structure has relatively large deformation at the time of earthquake due to the deformation capacity of the damping joint, so that the damper 600 vibrates. Absorbs energy effectively and suppresses vibration of column beam frame. If a viscoelastic material is used for the damping joint 100, the damping effect of the column beam frame can be expected.
Further, the position below the damping joint 100 (for example, the position below the damping joint 100 provided at the top of the pillar) and the top of the damping joint 100 (for example, the beam supported by the damping joint 100). It is also effective to connect them with a vibration damper 620. The damper 620 may be used in combination with the vibration damper 600.

層間水平変形への追従能力が小さいエレベータシャフト、大径配管、階段等を制振目地を設けないコア部分に集中配置し、その他の部分を制振目地を設けた柱梁架構構造とすることによって、柱梁架構部分については1/100よりも大きな層間変位を許容することができる。その場合の大地震時の許容層間変位は、例えば階高の1/50あるいは他の条件から許容される場合はそれ以上の値であってもよい。   By locating elevator shafts, large-diameter pipes, staircases, etc. that have low ability to follow inter-layer horizontal deformation in a core part that does not have damping joints, and other parts that have a column beam structure with damping joints. In the column beam frame portion, an interlayer displacement larger than 1/100 can be allowed. In this case, the allowable interlayer displacement at the time of a large earthquake may be, for example, 1/50 of the floor height or a value higher than that when allowed from other conditions.

図4は、ダンパーを用いた他の実施例を示す概念図である。柱頭に制振目地100を設けた架構の場合、制振目地によって支持される柱および当該柱と連結された梁からなる部分(具体的には梁の部分)と、制振目地100の直下の柱頭部とをダンパー600で連結することにしても良い。制振目地の変形に起因してこの部分の相対変位が大きくなるので、ダンパーは有効に振動エネルギーを吸収する。制振目地100に粘弾性材料あるいはすべり支承を用いることは、ダンパー600の使用と等価である。これらとダンパー600を併用することもできる。   FIG. 4 is a conceptual diagram showing another embodiment using a damper. In the case of a frame provided with a damping joint 100 at the stigma, a part (specifically, a beam part) composed of a column supported by the damping joint and a beam connected to the pillar (specifically, a beam part), and a part directly below the damping joint 100 The column heads may be connected with a damper 600. Since the relative displacement of this portion increases due to deformation of the damping joint, the damper effectively absorbs vibration energy. Using a viscoelastic material or a sliding bearing for the damping joint 100 is equivalent to using the damper 600. These and the damper 600 can be used in combination.

図5は、地震時に柱に引張力が作用することを想定した場合の制振目地100部分の構造を示すものである。制振目地100を挟んで柱200の上側と下側を貫通するように芯鉄筋700または芯鉄骨が設けられており、該芯鉄筋700が柱に作用する引張力に抵抗する。制振目地100の中央部には、地震時に芯鉄筋700が制振目地100と干渉しないように、貫通孔が設けられている。つまり、芯鉄筋700の周囲には、制振目地100との間にドーナツ状の空隙が設けられている。ただし、この空隙は必須ではない。   FIG. 5 shows the structure of the vibration-damping joint 100 when it is assumed that a tensile force acts on the column during an earthquake. A core rebar 700 or a core steel frame is provided so as to penetrate the upper side and the lower side of the column 200 with the damping joint 100 interposed therebetween, and the core rebar 700 resists a tensile force acting on the column. A through hole is provided in the center of the damping joint 100 so that the core rebar 700 does not interfere with the damping joint 100 during an earthquake. That is, a donut-shaped gap is provided around the core rebar 700 between the damping joint 100 and the core reinforcing bar 700. However, this gap is not essential.

図6は、本発明の基づく建築物の一つの実施例を示す第1層の平面図(左)と立面図(右)である。平面図に示されているように、第1層は、すべての柱230に制振目地100が設けられている。制振目地が設けられている位置は、立面図に示されているように、第1層については柱の中間部、第2層については柱頭部である、第3層およびそれより上の層には制振目地100が設けられていない。建物を地震動から絶縁する場合には最下層階で絶縁するのが有効であるが、制振目地によって当該階において一定の層間変形を許容しつつ建物全体の長周期化を図ることで地震荷重の低減を図るためには、制振目地を中間階や最上階に設けてもよい。通常は、1つの層については同じエレベーションの位置に制振目地を設けるが、必ずしもそうでなくてもよい。   FIG. 6 is a plan view (left) and an elevation view (right) of the first layer showing one embodiment of a building based on the present invention. As shown in the plan view, in the first layer, the damping joints 100 are provided on all the pillars 230. As shown in the elevation view, the position where the damping joint is provided is the middle part of the column for the first layer, the head of the column for the second layer, the third layer and above The layer is not provided with a damping joint 100. It is effective to insulate the building from the ground floor, but it is effective to insulate the seismic load by increasing the period of the entire building while allowing constant interlayer deformation on the floor by the damping joint. In order to reduce it, vibration damping joints may be provided on the intermediate floor or the top floor. Normally, a damping joint is provided at the same elevation position for one layer, but this is not always necessary.

図7は、本発明の基づく建築物の他の実施例を示す第1層の平面図(左)と立面図(右)である。第1層の平面図に示されているように、制振目地100は内部の柱230にのみ設けられており、外周の柱240には制振目地が設けられていない。制振目地が設けられた部分の梁と、制振目地が設けられていない部分の柱との接合部350は、相対変位を許容するよう隙間を空けるか、弾性的なジョイントによって水平方向の拘束を弱めるのが好ましい。制振目地が設けられた2つの部分については、両者をピン接合することによってモーメントの伝達を行わない(変位のみ相互に拘束する)ようにしても良い。   FIG. 7 is a plan view (left) and an elevation view (right) of the first layer showing another embodiment of a building based on the present invention. As shown in the plan view of the first layer, the damping joint 100 is provided only on the inner pillar 230, and the outer pillar 240 is not provided with a damping joint. The joint 350 between the beam of the part where the damping joint is provided and the column of the part where the damping joint is not provided has a clearance to allow relative displacement or is restrained in the horizontal direction by an elastic joint. It is preferable to weaken. About two parts provided with the damping joint, you may make it not transmit a moment by pin-joining both (only displacement is mutually restrained).

図8は、本発明の基づく建築物の他の実施例(一部に耐震壁を有する場合)を示す第1層の平面図(左)と立面図(右)である。各層の平面視中央部付近には耐震壁450が設けられている。建物の第1層および第2層は、すべての柱230と耐震壁450に制振目地100、110が設けられている。このように、耐震壁にも制振目地110を設けることによって、耐震壁を有する建物についても全体の長周期化を図ることができる。   FIG. 8 is a plan view (left) and an elevation view (right) of the first layer showing another embodiment of the building based on the present invention (in the case of having a seismic wall in part). A seismic wall 450 is provided near the center of each layer in plan view. In the first layer and the second layer of the building, all the pillars 230 and the seismic walls 450 are provided with damping joints 100 and 110. Thus, by providing the damping joint 110 also on the seismic wall, it is possible to increase the overall period of the building having the seismic wall.

図9は、1階および2階の全ての柱230の柱頭部に制振目地100を設け、柱頭と上階の梁300をダンパー600によって連結した実施例である。ダンパーは図示したように外部に設けるものであっても良いが、制振目地100の材料自体が粘弾性を有することによってダンパー機能を内在させるものであっても良い。あるいは、制振目地と滑り支承を直列的に用いたものであっても良い。   FIG. 9 shows an embodiment in which damping joints 100 are provided at the heads of all the pillars 230 on the first floor and the second floor, and the pillars and the upper floor beams 300 are connected by dampers 600. The damper may be provided outside as shown in the figure, but the damper itself may have a damper function because the material itself of the damping joint 100 has viscoelasticity. Alternatively, a vibration damping joint and a sliding bearing may be used in series.

図10は、地震時に、建物の外周柱220に引張力が作用することを想定して、外周柱220には芯鉄筋を有する制振目地を設けた実施例の概念図である。引張力の作用しない内部の柱230には、芯鉄筋の無い制振目地を設けている。地震力によって、外周柱220が引張力を受ける際は、芯鉄筋が抵抗する。制振目地を柱の柱頭と柱脚の間のどの位置に設けても良い点については、前出の実施例と同様である。   FIG. 10 is a conceptual diagram of an embodiment in which a damping joint having a core rebar is provided on the outer peripheral column 220 on the assumption that a tensile force acts on the outer peripheral column 220 of the building during an earthquake. The inner pillar 230 where no tensile force acts is provided with a vibration-damping joint without a core rebar. When the outer peripheral column 220 receives a tensile force due to the seismic force, the core rebar resists. The point that the damping joint may be provided at any position between the column head and the column base is the same as in the previous embodiment.

図11は、建物中央に剛性の高いコア部分を有し、コア部分を柱梁架構が取り囲む構造の建物に本発明を適用した実施例を示すものである。コア壁450で囲まれたコア部分は、制振目地を設けておらず、柱梁架構部分を構成する柱の柱頭に制振目地100を設けた。また、コア部分と柱梁架構とは弾性ジョイント350によってある程度の相対変形を許容すると同時に、ダンパー600を設けて振動エネルギーを吸収する。前出の例のように、コア壁と柱梁架構全てに制振目地を設けることも可能であるし、本実施例のように、コア壁以外の部分にのみ制振目地を設けても良い。   FIG. 11 shows an embodiment in which the present invention is applied to a building having a highly rigid core portion at the center of the building and a structure in which the core portion is surrounded by a column beam frame. The core portion surrounded by the core wall 450 is not provided with a vibration damping joint, and the vibration damping joint 100 is provided at the column head of the column constituting the column beam frame portion. Further, the core portion and the column beam frame allow some relative deformation by the elastic joint 350, and at the same time, the damper 600 is provided to absorb the vibration energy. As in the previous example, it is possible to provide damping joints on all of the core walls and column beam frames, and as in this embodiment, damping joints may be provided only on portions other than the core walls. .

以上、種々の実施例について記載したが、これらを適宜組み合わせて用いることも、既存の技術と組み合わせて用いることも可能なことは自明である。   Although various embodiments have been described above, it is obvious that these can be used in appropriate combination or can be used in combination with existing technology.

100 制振目地
200、210、230、240 柱
300 梁
310 床スラブ
400 耐震壁
450 コア壁
500 空隙
600、620 ダンパー
700 芯鉄筋
350、360 弾性ジョイント
100 Damping joints 200, 210, 230, 240 Column 300 Beam 310 Floor slab 400 Earthquake resistant wall 450 Core wall 500 Air gap 600, 620 Damper 700 Core rebar 350, 360 Elastic joint

Claims (1)

鉄筋コンクリートまたは鉄骨鉄筋コンクリートからなる柱および/または壁の一部に、コンクリートよりも剛性が低く、許容せん断変形量が大きい材料からなる制振目地が介在されて、
柱および/または壁の水平剛性が低減されることで、固有周期が長周期化された建築物であって、
前記制振目地を挟んで、前記柱の上側と下側を貫通するように芯鉄筋または芯鉄骨が設けられていることを特徴とする建築物。
Columns and / or walls made of reinforced concrete or steel reinforced concrete intervene with damping joints made of a material that is lower in rigidity than concrete and has a large allowable shear deformation,
A building whose natural period is prolonged by reducing the horizontal rigidity of the columns and / or walls,
A building in which a core rebar or a core steel frame is provided so as to penetrate the upper side and the lower side of the pillar across the vibration damping joint.
JP2014011020A 2014-01-24 2014-01-24 Long-period building Active JP5918282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011020A JP5918282B2 (en) 2014-01-24 2014-01-24 Long-period building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011020A JP5918282B2 (en) 2014-01-24 2014-01-24 Long-period building

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008107244A Division JP5727690B2 (en) 2008-04-16 2008-04-16 Long-period building

Publications (2)

Publication Number Publication Date
JP2014101749A true JP2014101749A (en) 2014-06-05
JP5918282B2 JP5918282B2 (en) 2016-05-18

Family

ID=51024484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011020A Active JP5918282B2 (en) 2014-01-24 2014-01-24 Long-period building

Country Status (1)

Country Link
JP (1) JP5918282B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106869569A (en) * 2017-04-09 2017-06-20 北京工业大学 A kind of core-added laminated post of raising underground frame structure system anti-seismic performance
JP2017179890A (en) * 2016-03-30 2017-10-05 大成建設株式会社 Building structure with diagonal beam
CN109914613A (en) * 2019-04-15 2019-06-21 国网河北省电力有限公司经济技术研究院 Clapboard radius component, capability of diaphragm-through style beam-column joint and building

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136990A (en) * 1991-08-08 1994-05-17 Shimizu Corp Base isolation structure
JP2001003596A (en) * 1999-06-21 2001-01-09 Taisei Corp Architectural structure of building
JP2004162259A (en) * 2002-11-08 2004-06-10 Taisei Corp Support structure of structure foundation
JP2006077530A (en) * 2004-09-13 2006-03-23 Taisei Corp Remodeling structure and support of existing building
JP2006161436A (en) * 2004-12-08 2006-06-22 Takenaka Komuten Co Ltd Base-isolated building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136990A (en) * 1991-08-08 1994-05-17 Shimizu Corp Base isolation structure
JP2001003596A (en) * 1999-06-21 2001-01-09 Taisei Corp Architectural structure of building
JP2004162259A (en) * 2002-11-08 2004-06-10 Taisei Corp Support structure of structure foundation
JP2006077530A (en) * 2004-09-13 2006-03-23 Taisei Corp Remodeling structure and support of existing building
JP2006161436A (en) * 2004-12-08 2006-06-22 Takenaka Komuten Co Ltd Base-isolated building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179890A (en) * 2016-03-30 2017-10-05 大成建設株式会社 Building structure with diagonal beam
CN106869569A (en) * 2017-04-09 2017-06-20 北京工业大学 A kind of core-added laminated post of raising underground frame structure system anti-seismic performance
CN106869569B (en) * 2017-04-09 2019-04-30 北京工业大学 A kind of core-added laminated column improving underground frame structure system anti-seismic performance
CN109914613A (en) * 2019-04-15 2019-06-21 国网河北省电力有限公司经济技术研究院 Clapboard radius component, capability of diaphragm-through style beam-column joint and building
CN109914613B (en) * 2019-04-15 2023-09-05 国网河北省电力有限公司经济技术研究院 Partition through type node assembly, partition through type beam column node and building

Also Published As

Publication number Publication date
JP5918282B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5567094B2 (en) Long-period building
Etedali et al. A proposed approach to mitigate the torsional amplifications of asymmetric base-isolated buildings during earthquakes
JP5918282B2 (en) Long-period building
JP6809136B2 (en) Seismic isolation structure
JP5727690B2 (en) Long-period building
KR101449930B1 (en) Outside type vibration control system for construction
JP7154328B2 (en) damping building
JP2010242449A (en) Seismic response control repair structure and seismic response control repair method for existing building
JP5290786B2 (en) Damping structure
JP5059687B2 (en) Building seismic control structure
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP2008297727A (en) Seismic reinforcing structure of existing building
JP2017043988A (en) Vibration control building
JP4828951B2 (en) Laminated rubber bearing and seismic isolation system
JP6495638B2 (en) Complex building
JP2014156707A (en) Vibration control structure
Patel Study on a Base Isolation System
JP2017223088A (en) Building
JP2013096205A (en) Seismic control structure
Sahu et al. Seismic and wind analysis of RCC building with different shape of shear wall and without shear wall
JP2010189903A (en) Damping frame for building
JP5456461B2 (en) Seismic isolation structure
JP5053554B2 (en) Vibration control device
JP3925868B2 (en) Seismic retrofit structure and seismic control structure using the same
Hlaing Comparative Study on Seismic Resistant Design Using Base Isolation System

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5918282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250