JP2017223088A - Building - Google Patents

Building Download PDF

Info

Publication number
JP2017223088A
JP2017223088A JP2016120927A JP2016120927A JP2017223088A JP 2017223088 A JP2017223088 A JP 2017223088A JP 2016120927 A JP2016120927 A JP 2016120927A JP 2016120927 A JP2016120927 A JP 2016120927A JP 2017223088 A JP2017223088 A JP 2017223088A
Authority
JP
Japan
Prior art keywords
building
floor
radiation shielding
shielding structure
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016120927A
Other languages
Japanese (ja)
Inventor
靖彦 辻
Yasuhiko Tsuji
靖彦 辻
和田 裕介
Yusuke Wada
裕介 和田
耕助 澤田
Kosuke Sawada
耕助 澤田
篤哉 湯淺
Atsuya Yuasa
篤哉 湯淺
孝一 葛西
Koichi Kasai
孝一 葛西
夏樹 淀川
Natsuki Yodogawa
夏樹 淀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2016120927A priority Critical patent/JP2017223088A/en
Publication of JP2017223088A publication Critical patent/JP2017223088A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a building formable as a structure strong against an earthquake, even when improving a degree of freedom of a layout.SOLUTION: In a building 10, a base-isolation layer 11 is provided underground. This building 10 comprises a liniac chamber constituted of a radiation shielding structure 30 in an upper layer floor of a second story to the base-isolation layer 11. The radiation shielding structure 30 comprises a shielding floor, the shielding ceiling and a shielding wall. A radiation shielding member 35 having a thickness of about 1 m-about 3 m and constituted of concrete 31 of burying a reinforcement and constituted of an iron plate, is buried in the shielding floor, the shielding ceiling and the shielding wall. Concrete 25 of burying the reinforcement is placed in an outer peripheral part of a column 21 for installing the concrete 31 of the radiation shielding structure 30 in a lower story than the radiation shielding structure 30.SELECTED DRAWING: Figure 1

Description

本発明は、免震層と放射線遮蔽構造体とを備えた建築物に関する。   The present invention relates to a building including a seismic isolation layer and a radiation shielding structure.

がん等の病気の治療や痛みの緩和を行なうために、放射線治療装置(リニアック)を用いることがある。この放射線治療装置では、高放射能の放射線を病巣に照射する。このため、放射線治療装置が設置される部屋は、外部へ放射線が漏れないように、放射線遮蔽構造によって構成されている(例えば、特許文献1参照。)。特許文献1に記載の放射線遮蔽構造物は、遮蔽側壁部と遮蔽床部と遮蔽天井部とを備えている。そして、遮蔽天井部は、放射線発生装置側の第1コンクリート層と、外側の第2コンクリート層との間に、平均放射線減衰率が低い材料で構成される中間層とを有している。   A radiation therapy device (linac) may be used to treat diseases such as cancer and to relieve pain. In this radiotherapy apparatus, high-activity radiation is irradiated to a lesion. For this reason, the room in which the radiation therapy apparatus is installed is configured by a radiation shielding structure so that radiation does not leak outside (see, for example, Patent Document 1). The radiation shielding structure described in Patent Literature 1 includes a shielding side wall portion, a shielding floor portion, and a shielding ceiling portion. And the shielding ceiling part has the intermediate | middle layer comprised with a material with a low average radiation attenuation factor between the 1st concrete layer by the side of a radiation generator, and the 2nd outer concrete layer.

特開2016−57188号公報Japanese Patent Laid-Open No. 2006-57188

従来、放射線遮蔽構造物を備えた建築物は、耐震構造で構成されている。そして、放射線遮蔽構造物は、遮蔽構造を用いるため、他のフロア構造よりも重くなる。そこで、放射線遮蔽構造物は、重量の支持のために、通常、建築物の地下や1階(最下層)に設置されていた。これは、上層階に遮蔽構造を設置すると、耐震構造の場合は、想定外の大きい地震の発生により遮蔽構造直下の構造部材(柱)が損傷して建築物に影響を与える可能性があることによる。このように放射線遮蔽構造物を建築物の地下や1階に設置する場合には、建築物におけるレイアウトの自由度が低くなることがあった。   Conventionally, a building provided with a radiation shielding structure is configured with an earthquake resistant structure. And since a radiation shielding structure uses a shielding structure, it becomes heavier than other floor structures. Therefore, the radiation shielding structure is usually installed in the basement or the first floor (lowermost layer) of the building to support the weight. This is because if a shielding structure is installed on the upper floor, in the case of an earthquake-resistant structure, there is a possibility that structural members (columns) directly under the shielding structure may be damaged due to the occurrence of an unexpected large earthquake and affect the building by. Thus, when installing a radiation shielding structure in the basement or the first floor of a building, the degree of freedom of layout in the building may be lowered.

本発明は、上記課題に鑑みてなされ、その目的は、レイアウトの自由度を確保しながら、地震に強い構造とすることができる建築物を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the building which can be made into a structure strong against an earthquake, ensuring the freedom degree of a layout.

・上記課題を解決する建築物は、免震層と放射線遮蔽構造体とを備えた建築物において、前記免震層の直上階よりも上層階の設置フロアに、放射線遮蔽構造体を配置する。これにより、レイアウトの自由度を向上させても、地震に強い構造とすることができる。   -The building which solves the said subject WHEREIN: In the building provided with the seismic isolation layer and the radiation shielding structure, a radiation shielding structure is arrange | positioned on the installation floor of an upper floor rather than the floor immediately above the said seismic isolation layer. Thereby, even if the freedom degree of a layout is improved, it can be set as a structure strong against an earthquake.

・上記建築物において、前記免震層に対して2階層目の上層階に、前記放射線遮蔽構造体を配置することが好ましい。これにより、放射線遮蔽構造体の設置フロアにおける地震による最大応答絶対加速度を小さくすることができる。また、建築物全体の最大応答絶対加速度も小さくできる。   -In the said building, it is preferable to arrange | position the said radiation shielding structure to the upper floor of the 2nd hierarchy with respect to the said seismic isolation layer. Thereby, the maximum response absolute acceleration by the earthquake in the installation floor of a radiation shielding structure can be made small. In addition, the maximum response absolute acceleration of the entire building can be reduced.

・上記建築物において、前記放射線遮蔽構造体が設けられた階層と前記免震層との間の階層には、制振ダンパが設けられていることが好ましい。これにより、地震等の振動に対して、建築物全体を効率よく制振させることができる。   -In the said building, it is preferable that the vibration damper is provided in the hierarchy between the hierarchy in which the said radiation shielding structure was provided, and the said seismic isolation layer. Thereby, the whole building can be efficiently damped against vibration such as an earthquake.

・上記建築物において、前記放射線遮蔽構造体が設けられた階層と前記免震層との間の階層には、鉄骨鉄筋コンクリート構造の柱が設けられていることが好ましい。これにより、コンクリートの支圧による支持性能が期待できるとともに、放射線遮蔽構造体直下の柱の固定度を向上させることができる。従って、重い放射線遮蔽構造体を、軸力、せん断、曲げに対して、より強固に支持することができる。   -In the said building, It is preferable that the column of the steel reinforced concrete structure is provided in the hierarchy between the hierarchy in which the said radiation shielding structure was provided, and the said seismic isolation layer. Thereby, while supporting performance by the bearing pressure of concrete can be expected, the fixing degree of the column directly under the radiation shielding structure can be improved. Therefore, a heavy radiation shielding structure can be more firmly supported against axial force, shearing and bending.

本発明によれば、レイアウトの自由度を向上させて、地震に強い構造にすることができる。   According to the present invention, the degree of freedom in layout can be improved and a structure that is resistant to earthquakes can be obtained.

本実施形態における建築物の内部構造を説明する断面模式図。The cross-sectional schematic diagram explaining the internal structure of the building in this embodiment. 本実施形態における建築物の要部の断面図。Sectional drawing of the principal part of the building in this embodiment. 本実施形態におけるシミュレーション解析に用いた情報の説明図であり、(a)は本実施形態の免震層の直上より1階層上層に放射線遮蔽構造体がある建築物、(b)は免震層の直上に放射線遮蔽構造体がある比較対象の建築物を示す。It is explanatory drawing of the information used for the simulation analysis in this embodiment, (a) is a building which has a radiation shielding structure in the hierarchy one layer from right above the base isolation layer of this embodiment, (b) is a base isolation layer. A comparative building with a radiation shielding structure directly above is shown. 本実施形態におけるシミュレーション解析結果を説明する図であり、(a)は最大応答絶対加速度、(b)は最大層せん断力を示す。It is a figure explaining the simulation analysis result in this embodiment, (a) shows the maximum response absolute acceleration, (b) shows the maximum layer shear force. 変更例における建築物の内部構造を説明する断面模式図。The cross-sectional schematic diagram explaining the internal structure of the building in the example of a change.

以下、図1〜図4を用いて、建築物を具体化した一実施形態を説明する。
ここでは、図1に示すように、放射線遮蔽構造体を備えた8階建ての建築物10について説明する。建築物10は、病院等の医療施設であって、放射線遮蔽構造体30によって構成されたリニアック室を備えている。
Hereinafter, the embodiment which actualized the building is described using FIGS.
Here, as shown in FIG. 1, an 8-story building 10 having a radiation shielding structure will be described. The building 10 is a medical facility such as a hospital, and includes a linac room configured by a radiation shielding structure 30.

建築物10には、地下に免震層11が設けられている。免震層11は、地上に設置される上部構造物と、基礎や地下の躯体等の下部構造物との間に設けられている。そして、免震層11の直上階が地上1階となるように配置されている。免震層11には、複数の免震装置11aが間隔をおいて設置されている。免震装置11aとして、積層ゴムアイソレータ等を用いる。   The building 10 is provided with a base isolation layer 11 in the basement. The seismic isolation layer 11 is provided between an upper structure installed on the ground and a lower structure such as a foundation or an underground frame. And it arrange | positions so that the directly upper floor of the seismic isolation layer 11 may become the ground floor. In the seismic isolation layer 11, a plurality of seismic isolation devices 11a are installed at intervals. A laminated rubber isolator or the like is used as the seismic isolation device 11a.

建築物10の上部構造物は、鉄骨の柱21及び梁22を有した鉄骨造で構成されている。建築物10の2階(免震層11に対して2階層上層階)に、放射線遮蔽構造体30を設ける。放射線遮蔽構造体30は、建築物10の設置階(2階)のフロア中央に配置されている。   The superstructure of the building 10 is constructed of a steel frame having steel columns 21 and beams 22. A radiation shielding structure 30 is provided on the second floor of the building 10 (two floors above the seismic isolation layer 11). The radiation shielding structure 30 is arranged at the center of the floor of the building 10 where the building 10 is installed (the second floor).

図2に示すように、放射線遮蔽構造体30は、リニアック(放射線治療装置)を配置したリニアック室を構成している。この放射線遮蔽構造体30は、遮蔽床、遮蔽天井及び遮蔽壁を有している。遮蔽床、遮蔽天井及び遮蔽壁は、約1m〜約3mの厚みを有し、鉄筋が埋設されたコンクリート31によって構成されている。このコンクリート31は、複数の柱21に固着されている。この結果、放射線遮蔽構造体30は、複数の柱21に一体固定された鉄骨コンクリート構造で構成されている。更に、遮蔽床、遮蔽天井及び遮蔽壁のすべてに、鉄板等で構成される放射線遮蔽部材35が埋設されている。   As shown in FIG. 2, the radiation shielding structure 30 constitutes a linac chamber in which linacs (radiotherapy apparatuses) are arranged. The radiation shielding structure 30 has a shielding floor, a shielding ceiling, and a shielding wall. The shielding floor, shielding ceiling, and shielding wall have a thickness of about 1 m to about 3 m, and are constituted by concrete 31 in which reinforcing bars are embedded. The concrete 31 is fixed to the plurality of columns 21. As a result, the radiation shielding structure 30 is constituted by a steel concrete structure integrally fixed to the plurality of columns 21. Furthermore, a radiation shielding member 35 made of an iron plate or the like is embedded in all of the shielding floor, shielding ceiling, and shielding wall.

更に、放射線遮蔽構造体30よりも下層階で、放射線遮蔽構造体30のコンクリート31が取り付けられる柱21の外周部には、鉄筋が埋設されたコンクリート25が打設されている。従って、放射線遮蔽構造体30の直下の下層階を構成する柱21は、鉄骨鉄筋コンクリート構造で構成されている。   Further, concrete 25 in which reinforcing bars are embedded is placed on the outer peripheral portion of the column 21 to which the concrete 31 of the radiation shielding structure 30 is attached at a lower floor than the radiation shielding structure 30. Therefore, the column 21 constituting the lower floor immediately below the radiation shielding structure 30 is configured with a steel reinforced concrete structure.

上述した建築物10の構成は、以下の思想に基づくものである。
免震構造物の場合、免震層で地震エネルギの大半が消費される。このため、極めて稀に発生する地震時の地震エネルギに対して免震層上部の架構は弾性に保たれる設計がなされており、想定外の大地震が生じても、架構の塑性変形能力には余裕があるため、倒壊には至らないことが期待できる。
また、免震構造物は、建物(建築物)の固有周期が長いため、耐震構造物の場合とは応答性状が異なり、地震動との共振も生じない。
The structure of the building 10 described above is based on the following concept.
In the case of a seismic isolation structure, most of the seismic energy is consumed in the seismic isolation layer. For this reason, the frame in the upper part of the seismic isolation layer is designed to be elastic against the seismic energy generated by extremely rare earthquakes, and even if an unexpected large earthquake occurs, the frame's plastic deformation capacity will be reduced. Can afford to not collapse.
In addition, since the seismic isolation structure has a long natural period of the building (building), the response characteristics are different from those of the earthquake-resistant structure, and resonance with earthquake motion does not occur.

このため、大重量で高い剛性の架構を、免震層の直上階よりも上層階に設置した場合においても、上下階の柱の固定度の向上等により、剛性急変の影響の緩和や剛性の高い壁にせん断力の集中の緩和が期待できる。   For this reason, even when a heavy, high-rigidity frame is installed on a higher floor than the upper floor of the seismic isolation layer, the effect of sudden changes in rigidity can be reduced and the rigidity Relaxation of shear force concentration can be expected on high walls.

以下、上述した思想を検証するために行なったシミュレーションの条件及び結果を説明する。
図3(a)には、建築物10の各階の質点系モデル、各階の重量及びその階までの積算重量と、比較対象との重量の相対割合とを示している。また、図3(b)には、放射線遮蔽構造体30が免震層の直上(ここでは1階)にある場合各階の質点系モデル、各階の重量及びその階までの積算重量を示している。本実施形態の建築物10は、比較対象の建築物に比べて、3階分の積算質量が17.5%、2階分の積算質量が15%増加している。
Hereinafter, the conditions and results of the simulation performed to verify the above-described idea will be described.
FIG. 3A shows the mass point system model of each floor of the building 10, the weight of each floor, the accumulated weight up to that floor, and the relative ratio of the weight to the comparison target. FIG. 3B shows the mass system model of each floor, the weight of each floor, and the total weight up to that floor when the radiation shielding structure 30 is directly above the seismic isolation layer (here, the first floor). . In the building 10 of the present embodiment, the accumulated mass for the third floor is increased by 17.5%, and the accumulated mass for the second floor is increased by 15% compared to the building to be compared.

図4は、本実施形態の建築物10及び比較対象の建築物におけるシミュレーション結果を示している。なお、本実施形態の建築物10は、図3(a)に示すように、放射線遮蔽構造体30を2階(免震層から2階層目の上層階)に設置した構造であり、比較対象の建築物は、図3(b)に示すように、放射線遮蔽構造体30を1階(免震層直上階)に設置した構造である。   FIG. 4 shows a simulation result in the building 10 of this embodiment and the building to be compared. In addition, the building 10 of this embodiment is a structure which installed the radiation shielding structure 30 in the 2nd floor (the upper floor of the 2nd hierarchy from a seismic isolation layer) as shown to Fig.3 (a), and is a comparison object As shown in FIG. 3 (b), the building has a structure in which a radiation shielding structure 30 is installed on the first floor (the floor directly above the seismic isolation layer).

図4(a)は、各階における最大応答絶対加速度、図4(b)は各層間における最大層せん断力を示している。
図4(a)に示すように、本実施形態の建築物10における最大応答絶対加速度(応答加速度)は、4階と3階で増加しているが、建物全体としては低減している。特に、5階より上の応答加速度は低減しており、放射線遮蔽構造体30が設置された床面の応答加速度は10%低減している。
FIG. 4A shows the maximum response absolute acceleration at each floor, and FIG. 4B shows the maximum layer shear force between the layers.
As shown to Fig.4 (a), although the maximum response absolute acceleration (response acceleration) in the building 10 of this embodiment has increased on the 4th floor and the 3rd floor, it has decreased as the whole building. In particular, the response acceleration above the fifth floor is reduced, and the response acceleration of the floor surface on which the radiation shielding structure 30 is installed is reduced by 10%.

図4(b)に示すように、本実施形態の建築物10における最大層せん断力(層せん断力)は、1階と免震層との間、2階と1階との間において増加している。しかし、建築物10の2階以上の重量が15%以上増えているにもかかわらず、建築物10の層せん断力は4%程度しか増えていない。また、3階よりも上層階の層せん断力は約10%低減している。   As shown in FIG. 4 (b), the maximum layer shear force (layer shear force) in the building 10 of this embodiment increases between the first floor and the seismic isolation layer, between the second floor and the first floor. ing. However, although the weight of the second floor or more of the building 10 has increased by 15% or more, the layer shear force of the building 10 has increased only by about 4%. In addition, the layer shear force of the upper floor is lower by about 10% than the third floor.

本実施形態によれば、以下のような効果を得ることができる。
(1)本実施形態において、建築物10は、免震層11と放射線遮蔽構造体30とを備え、免震層11に対して2階層目の上層階(2階)に放射線遮蔽構造体30を配置した。これにより、1階層のレイアウトの自由度を確保できるとともに、放射線遮蔽構造体30の設置フロア(2階)における地震による最大応答絶対加速度を小さくすることができる。更に、建築物10全体の最大応答絶対加速度も小さくすることができる。
According to this embodiment, the following effects can be obtained.
(1) In this embodiment, the building 10 includes the seismic isolation layer 11 and the radiation shielding structure 30, and the radiation shielding structure 30 is located on the second upper floor (second floor) with respect to the seismic isolation layer 11. Arranged. As a result, it is possible to secure a one-level layout freedom and to reduce the maximum response absolute acceleration due to an earthquake on the installation floor (second floor) of the radiation shielding structure 30. Furthermore, the maximum response absolute acceleration of the entire building 10 can also be reduced.

(2)本実施形態において、建築物10の放射線遮蔽構造体30は、設置フロアの中央に配置した。これにより、重い放射線遮蔽構造体30から各柱21までの距離が短くなるため、各柱21から放射線遮蔽構造体30集中するせん断力が小さくすることができる。   (2) In this embodiment, the radiation shielding structure 30 of the building 10 is disposed at the center of the installation floor. Thereby, since the distance from the heavy radiation shielding structure 30 to each pillar 21 becomes short, the shear force which concentrates the radiation shielding structure 30 from each pillar 21 can be made small.

(3)本実施形態において、放射線遮蔽構造体30よりも下層階で、放射線遮蔽構造体30のコンクリート31が取り付けられる柱21の外周部は、鉄筋が埋設されたコンクリート25で構成されている。これにより、コンクリート25の支圧による支持性能が期待できるとともに、放射線遮蔽構造体30直下の柱21の固定度を向上させることができる。従って、重い放射線遮蔽構造体30を、軸力、せん断、曲げに対して、より強固に支持することができる。   (3) In the present embodiment, the outer peripheral portion of the column 21 to which the concrete 31 of the radiation shielding structure 30 is attached on the lower floor than the radiation shielding structure 30 is composed of concrete 25 in which reinforcing bars are embedded. Thereby, the support performance by the bearing pressure of the concrete 25 can be expected, and the fixing degree of the column 21 directly below the radiation shielding structure 30 can be improved. Therefore, the heavy radiation shielding structure 30 can be supported more firmly against axial force, shearing and bending.

また、上記実施形態は、以下のように変更してもよい。
・上記実施形態において、建築物10は、免震層11の2階層目の上層階に、放射線遮蔽構造体30を設置した。放射線遮蔽構造体は、免震層の直上階よりも上層階に配置すればよい。例えば、図5に示すように、免震層11の3階層目の上層階に放射線遮蔽構造体30を配置した建築物50としてもよい。この建築物50においては、柱51及び梁52を鉄骨で構成した。更に、この建築物50の放射線遮蔽構造体30よりも下層階で、放射線遮蔽構造体30のコンクリート31が取り付けられる柱51の外周部には、鉄筋が埋設されたコンクリート55が打設されている。また、この建築物50の放射線遮蔽構造体30よりも下層階には、オイルダンパ等の制振ダンパ57を配置する。これにより、地震等の振動に対して、建築物10全体を制振させることができる。
更に、上記実施形態のように、免震層11の2階層目の上層階に放射線遮蔽構造体30を設置した場合においても、放射線遮蔽構造体30よりも下層階に、制振ダンパを設置してもよい。
Moreover, you may change the said embodiment as follows.
In the above embodiment, the building 10 has the radiation shielding structure 30 installed on the upper floor of the second layer of the seismic isolation layer 11. What is necessary is just to arrange | position a radiation shielding structure to an upper floor rather than the directly upper floor of a seismic isolation layer. For example, as shown in FIG. 5, it is good also as the building 50 which has arrange | positioned the radiation shielding structure 30 in the upper floor of the 3rd hierarchy of the seismic isolation layer 11. As shown in FIG. In this building 50, the columns 51 and the beams 52 are made of steel frames. Furthermore, concrete 55 in which reinforcing bars are embedded is placed on the outer periphery of the column 51 to which the concrete 31 of the radiation shielding structure 30 is attached at a lower floor than the radiation shielding structure 30 of the building 50. . Further, a vibration damper 57 such as an oil damper is disposed on a lower floor than the radiation shielding structure 30 of the building 50. Thereby, the whole building 10 can be controlled with respect to vibrations, such as an earthquake.
Furthermore, even when the radiation shielding structure 30 is installed on the upper floor of the second layer of the seismic isolation layer 11 as in the above embodiment, a damping damper is installed on the lower floor than the radiation shielding structure 30. May be.

・上記実施形態において、放射線遮蔽構造体30は、建築物10,50の設置フロアの中央に配置した。放射線遮蔽構造体30の設置位置は、設置フロアの中央に限定されるものではない。例えば、設置フロアの厳密に中央位置である必要はなく、中央を含む領域等の中央に近い位置が好ましい。   -In the said embodiment, the radiation shielding structure 30 was arrange | positioned in the center of the installation floor of the buildings 10 and 50. FIG. The installation position of the radiation shielding structure 30 is not limited to the center of the installation floor. For example, it is not necessary to be exactly the center position of the installation floor, and a position close to the center such as an area including the center is preferable.

・上記実施形態において、建築物10は、8階建ての建物を想定した。放射線遮蔽構造体を有する建物は、免震層の直上階以外の階層があれば、8階建てに限定されるものではない。例えば、9階以上の高層建物や、2階や3階程度の低層建物にも適用できる。   -In the said embodiment, the building 10 assumed the building of 8 stories. A building having a radiation shielding structure is not limited to an eight-story building as long as it has a layer other than the floor directly above the seismic isolation layer. For example, the present invention can be applied to a high-rise building having 9 floors or more and a low-rise building having 2 floors or 3 floors.

10,50…建築物、11…免震層、11a…免震装置、21,51…柱、22,52…梁、25,31,55…コンクリート、30…放射線遮蔽構造体、35…放射線遮蔽部材、57…制振ダンパ。   DESCRIPTION OF SYMBOLS 10,50 ... Building, 11 ... Seismic isolation layer, 11a ... Seismic isolation device, 21,51 ... Column, 22,52 ... Beam, 25,31,55 ... Concrete, 30 ... Radiation shielding structure, 35 ... Radiation shielding Member, 57 ... damping damper.

Claims (4)

免震層と放射線遮蔽構造体とを備えた建築物において、
前記免震層の直上階よりも上層階の設置フロアに、放射線遮蔽構造体を配置したことを特徴とする建築物。
In buildings with seismic isolation layers and radiation shielding structures,
A building characterized in that a radiation shielding structure is arranged on an installation floor above a floor directly above the seismic isolation layer.
前記免震層に対して2階層目の上層階に、前記放射線遮蔽構造体を配置したことを特徴とする請求項1に記載の建築物。   The building according to claim 1, wherein the radiation shielding structure is arranged on an upper floor of a second hierarchy with respect to the seismic isolation layer. 前記放射線遮蔽構造体が設けられた階層と前記免震層との間の階層には、制振ダンパが設けられていることを特徴とする請求項1又は2に記載の建築物。   The building according to claim 1 or 2, wherein a vibration damper is provided in a layer between the layer in which the radiation shielding structure is provided and the seismic isolation layer. 前記放射線遮蔽構造体が設けられた階層と前記免震層との間の階層には、鉄骨鉄筋コンクリート構造の柱が設けられていることを特徴とする請求項1〜3の何れか1項に記載の建築物。   The steel layer-reinforced concrete structure column is provided in a layer between the layer in which the radiation shielding structure is provided and the seismic isolation layer. Building.
JP2016120927A 2016-06-17 2016-06-17 Building Pending JP2017223088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120927A JP2017223088A (en) 2016-06-17 2016-06-17 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120927A JP2017223088A (en) 2016-06-17 2016-06-17 Building

Publications (1)

Publication Number Publication Date
JP2017223088A true JP2017223088A (en) 2017-12-21

Family

ID=60687726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120927A Pending JP2017223088A (en) 2016-06-17 2016-06-17 Building

Country Status (1)

Country Link
JP (1) JP2017223088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101432A (en) * 2018-12-21 2020-07-02 清水建設株式会社 Radiation reduction structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101432A (en) * 2018-12-21 2020-07-02 清水建設株式会社 Radiation reduction structure
JP7175184B2 (en) 2018-12-21 2022-11-18 清水建設株式会社 Radiation reduction structure

Similar Documents

Publication Publication Date Title
JP5567094B2 (en) Long-period building
JP2017223088A (en) Building
JP2014101749A (en) Period-prolonged architectural structure
JP2010242449A (en) Seismic response control repair structure and seismic response control repair method for existing building
KR101323589B1 (en) Vibration isolation system in transfer story of apartment housing
KR101399397B1 (en) A Tuned Pendulum Slab Damper system for seismic structure and the method of using this system
JP7154328B2 (en) damping building
JP4990729B2 (en) Seismic isolation building
JP6467831B2 (en) Multistory parking lot and vibration control building
Keerthana et al. Seismic response control using base isolation strategy
JP5727690B2 (en) Long-period building
JP2017043988A (en) Vibration control building
JP5290786B2 (en) Damping structure
JP4828951B2 (en) Laminated rubber bearing and seismic isolation system
Awchat et al. Seismic Response of Tall Building with Underground Storey Using Dampers
JP7169903B2 (en) building
JPH09235891A (en) Aseismatic reinforcing structure for existing building
JP5270739B2 (en) Seismic isolation structure for floor slabs
JP2023160727A (en) Base-isolated structure
KR102332393B1 (en) The tuned liquid damper for mixed-use apartment building
Kim et al. Evaluation of seismic performance and effectiveness of multiple slim-type damper system for seismic response control of building structures
JP7145669B2 (en) Seismic isolation structure
Parin Panchal Comparative Study on Seismic Analysis of RC Frame Multistorey Building with Varied Location of Soft Storey and Friction Damper
Cardonea et al. 2 Seismic Rehabilitation of Existing 3 Reinforced Concrete Buildings with 4 Seismic Isolation: A Case Study
Dikmen Effectiveness of seismic isolation on mid-rise buildings